
v/:~ E WL.o (A;,) : I~x E w~ (H) c ~o. 
By choosing a suitable sequence of random elements {Bnx; n -> i}, we see that Lemma 3 holds. 

Proof of the Assertions in Example 2. Using the random variable ~ we can construct 
a sequence of random variables {~n =~ n (~), ~n �9 cl'b', n >_ I} such that 

i) ~n------1 for ~7>--I ,' n~1; 
(% n 

3) ~ E W  ~, t J D ~ I I E L ~ ( . ~  

By c o n s i d e r i n g  t h e  s e q u e n c e  {Bn~X; n -> t} we h a v e  x �9 ~ .  I n  a d d i t i o n  f o r  e a c h  n > 1 
i n t e g r a t i n g  by p a r t s  we o b t a i n  

(13~x; ~> --  [3 n (~x; ~> -b (~.x; D[3n). 

On t h e  s e t  ( % > n  E g : D ~ = - - 7 .  D(%. C o n s e q u e n t l y ,  

1 1 

rl . .+ ~ 

l, 

2. 

3. 

4. 
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PERIODIC POINTS OF POLYNOMIALS 

A. ~. Eremenko and G. M. Levin UDC 517.53 

We recall the most important facts of the Julia-Fatou theory as related to the iteration 
of polynomials (cf. [1-3]). Let P be a polynomial of degree m e 2, and pn its n-th iteration. 
A point z is called periodic if Pnz = z for some n �9 ~ The set {pkz}k=in is then called a 
cycle, and its cardinality is called the order of the cycle. The number % = (Pn)'(z), where 
z ~ ~, is called a multiplicator of a cycle of order n. A cycle is called repulsive if 
l~I > i. Let D~ = {z �9 @ : Pnz ~ ~, n ~ ~}. It is easy to see that D~ is a region and that 
�9 D~. The boundary of this region is called the Julia set J = J(P). An equivalent defi- 

nition is as follows. Let N(P) be the largest open set in �9 on which the family {pn} is 
normal. Then J(P) = �9 The Julia set is perfect and fully invariant, i.e., p-l(j) = j. 
Furthermore, j(pn) = j, n �9 ~. The polynomial P has no more than m - i nonrepulsive cycles 
[2]. On the other hand, the number of repulsive cycles is infinite; their union is a dense 
subset of J. 

Let D be a region, and z0 �9 8D. A point z 0 is called attainable (from D) if there exists 
a curve F c D which ends on z0. 

THEOREM i. Repulsive periodic points of the polynomial P are attainable from D=. 
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In the case where the set J(P) is connected, Theorem 1 was announced by Douady [2]. 
As far as we know, the proof was not published, 

Denote by T m a polynomial defined by the functional equation cos mm = Tm(cOs ~). 
Julia set J(T m) is the set [-i, i]. If Rm(z) = z m, then J(R m) is the unit circle. 
nomials T m and R m play an extremely important role in iteration theory [i, 3]. 

THEOREM 2. Suppose the set J(P) is connected. Then the equation 

m , m = deg P 

The 
The poly- 

(1) 

for the multiplicator ~ holds for any cycle of order n. Equality is achieved in Eq. (i) 
if and only if P is conjugate to T m by a linear transformation, and ~ is the multiplicator 
of the endpoint of the interval J(P) (which is a fixed point). 

Note that if Theorem i is proved, then Eq. (I) (without the case of equality) follows 
from Theorem 3 of Pommerenke's paper [4]. 

THEOREM 3. For any polynomial P of degree m, one of the following is true: 

i) there exists a cycle of order n with multiplicator ~, such that IX[ > mn; 

2) P is conjugate to R m by a linear transformation. 

Note that it is enough to prove Theorems 1 and 2 for fixed points, i.e., cycles of order 
i. 

The proof of Theorems 1 and 2 is cased on the study of the entire function introduced 
by Poincare. Suppose P(z 0) = z0, P'(z0 = X, IiI> i. From Poincare's theorem [i], the 
functional equation 

[ (}~z) ---- P ([ (z)) ( 2 ) 

has an entire solution f; moreover, this solution is uniquely determined by the conditions 

[ ( O ) = z o ,  f ' ( O ) = l -  ( 3 )  

[The simplest proof of these facts (it belongs to Poincare) goes as follows: we first deter- 
mine the formal power series f(z) = z 0 + z + ciz 2 + ... satisfying Eq. (2), and then show, 
by a direct analysis of the coefficients, that the series converges in some neighborhood 
of zero; finally, we extend the function f into r with the help of Eq. (2), taking into account 
that ]~] > i.] 

Denote by I the set of points on which the family {f(lnz) : n e ~ } is not normal. It 
is clear that I = f-1(j). Set D = f-l(D~). It follows from Eq. (2) and the full invariance 
of J and D~ that 

L I = I ,  k D = D .  ( 4 )  

Let G be the Green's function for the region D~ with a pole in ~ which is continued 
by the zero function on �9 The function G is continuous and subharmonic in C and obeys 
the functional equation found in [2]: 

G (p (z)~ = mG (z), z E r ( 5 )  

[This property follows immediately from the evident relation G(z)=lim m-nln [ pn (z) i" ] 

The function u(z) = G(f(z)) is continuous and subharmonic in ~. It follows from Eqs. 
(2) and (5) that 

u(~z) = mu(z~, zE~. ( 6 )  

Subharmonic functions satisfying Eq. (6) play an important role in the theory of entire func- 
tions (see, for example, [5]). 

The order of a subharmonic function u in ~ is determined by the formula 9= lim InB(r,u)/ 

inr, where B(r, u) = max{u(z) : Izl = r}. It follows from (6) that 

p = l n m / l n l L I  �9 ( 7 )  
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According to the "subharmonic version of the Denjoy-Carleman-Ahlfors theorem" [6, Theorem 
4.16], the number of connected components of the set {z : u(z) > 0} does not exceed max{2p, 
i}. We denote these components by D i ..... Dp. From Eq. (4) there exists an N such that 
INDi = D i. Choose a point w0 e Di and connect it by a curve 10 c D i with the point %-Nw 0 e D i. 

Then F =U)~-N'zF0 ~ D i is a curve which goes to zero. Its image f(F) c D~ is a curve which 

t2~O 

goes to z 0 by virtue of Eq. (3). This proves Theorem i. 

To prove Theorem 2, we note that if the Julia set is connected, then the set I = f-i(j) 
contains the continuum K connecting 0 and =. Indeed, if this is not true, then there exists 
a closed Jordan curve y which separates 0 and ~; moreover, X D I = r Let V be a neighborhood 
o~ zero on which f is bijective [this exists by virtue of Eq. (3)]. Choose V small enough 
so that J is not contained in f(V). Let M be a number large enough so that l-M~ c V. Taking 
Eq. (4) into account, we find h_My q I = r Thus f(l-My) fl J = r and the curve f(h-MT) sepa- 
rates z 0 and ~. This contradicts the fact that the set J is connected. 

A classical theorem of Wiman (see, for example, [5]) states that for a harmonic function 
v of order p < i, the inequality 

lim A (r, v) /B (r, v) . ~  cos ap, 

holds, where A(r, v) = inf {v(z) : ]z[ = r}. 

Since u(z) = 0, z e K, we have that A(r, u) ~ 0, and hence O e 0.5. The inequality 
(i) (with n = i) now follows from Eq. (7). 

Suppose now that equality holds in Eq. (i). Then p = 0.5. We show that the subharmonic 
function u e 0 of order 0.5 satisfying conditions (6) and A(r, v) ~ 0 necessarily takes 

the form 

I (0- -00) ,  10]~<~,  ( 8 )  u ( re  ~~ = c r  i %os -~ 

where  c > 0 and  @0 ~ [ - ~ ,  ~] a r e  some c o n s t a n t s .  T h i s  r e s u l t  may be d e r i v e d  f r o m  [ 7 ,  8 ] ;  
n o n e t h e l e s s ,  we p r e s e n t  an  i n d e p e n d e n t  s i m p l e  p r o o f .  

The function u can be represented as [9] 

u ( z ) = , ( l n  1 - -  d F ; ,  
c 

where ~ is some Borel measure. Let n(t) = ~{~:]~} ~ t}. Then  O = lira !n n (t)/ln t. L e t  

u* (z) =- ,, 1 - -  - T  dn (t). 

The subharmonic function u* is of order p. We show that the measure ~ is concentrated on 
the ray s = {~ : arg~ = 80}. Suppose this is not so. Taking into account the fact that 
for fixed r > 0 the quantity in ]i - reie I has a strict minimum for % = 0, we obtain 

u * ( r ) = A ( r , l ~ * ) < A ( r , u ) = O ,  r > 0 .  

Then it follows from Eq. (6) that u*([i[z) = mu*(z), and hence 

lim A ( r , u * ) / B ( r , u * ) < O .  

T h i s  c o n t r a d i c t s  W i m a n ' s  t h e o r e m .  

Thus  t h e  m e a s u r e  ~ i s  c o n c e n t r a t e d  on some r a y  s a nd  t h e  f u n c t i o n  u i s  h a r m o n i c  i n  
� 9 1 6 3  S i n c e  u ~ 0 ,  t h e  i n e q u a l i t y  u > 0 h o l d s  i n  C \ s  M o r e o v e r ,  u = 0 on ~, s i n c e  A ( r ,  
u )  ~ 0. T h u s ,  u h a s  t h e  f o r m  o f  Eq. ( 8 ) .  

From t h i s  i t  f o l l o w s  t h a t  I i s  a r a y .  S i n c e  I = f - i ( j ) ,  t h e r e  e x i s t s  a c i r c l e  V s u c h  
t h a t  J N V i s  an  a n a l y t i c  c u r v e .  Then  i t  f o l l o w s  f r o m  F a t o u ' s  t h e o r e m  [1 ,  p .  225]  t h a t  t h e  
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polynomial P is conjugate to either T m or R m. The latter case is eliminated by direct check- 

ing. Theorem 2 is proved. 

Remark. Let G be a region, and let z 0 e 8G be an attainable boundary point. Two curves 
FI, F 2 c G ending on the point z 0 are called equivalent if there exists a sequence of curves 
~n c G, 7n ~ z0 connecting F i and F~. From the results of Douady [2, Sec. 6, Lemma i], it 
follows that if the Julia set is connected, then there exists a finite number of classes 
of equivalent curves in D~ which end on the periodic point z0. It is possible to show that 
the number p of these classes is equal to the number of connected components of the set D = 
{z : u(z) > 0}. Applying the Denjoy-Carleman-Ahlfors theorem, we find p ~ 2p. From Eq. 
(7) we find that IXl ~ m21P for a fixed point, or IXl ~ m2n/p for a cycle of order n. More 
delicate arguments show that the equality in these estimates is possible in only two cases: 
I) p = I; P is conjugate to T m and z0 is the endpaint of the interval J(P); 2) p = 2; P is 
conjugate to T m and z 0 is an interior point of the interval J(P). 

We now go to the proof of Theorem 3. Without loss of generality, we can assume that 
the leading coefficient of the polynomial P is equal to i. This is always possible to 
achieve by conjugating with a linear function which does not change the multiplicators. We 
will need the following lemmas. 

LEMMA i. Let 

c = c ( A ) =  V p, , ~  (z). 
P(zI~A 

Then c does not depend on A. Moreover, 

~q (P~)'(z)=c ~, nell ,  
Pn(z)=A 

(P~)' (z)=mn(m '~- l)--[-c ~, n 6 ~ ,  
,.,.,.d 

Pn(z}=z  

m = deg P. 

(9) 

(io) 

Proof. From the residue theorem 

�9 S { P - - A  Iz[=r 

(~,)2 
P- -B  }dz, 

where r is sufficiently large. The expression in the integral is O(z-2), z ~ ~; hence c(A) = 
c(B). We prove Eq. (9) by induction: 

V (P~+')'(z)= V (P~)'(o) V P'(z)=c ~ (pk),(o). 
pk+I (z)=A Pk(o})mA P( z)~o~ pk ( o~}=A 

In view of Eq. (9), it is enough to prove Eq. (i0) for n = i. Then Eq. (i0) follows from 
the fact that the residue of the function 

P' (z) (P (z) -- z)' (p,)2 (z) 
P (z) -- z P (z) 

in  t h e  p o i n t  ~ i s  e q u a l  t o  m ( m -  1) .  The lemma i s  p r o v e d .  

LEMMA 2. Suppose a l l  t h e  f i x e d  p o i n t s  o f  t h e  p o l y n o m i a l  P, wit:h t h e  p o s s i b l e  e x c e p t i o n  
o f  one ,  have  m u l t i p l i c a t o r s  e q u a l  t o  m = deg P. Then P i s  c o n j u g a t e  t o  R m. 

Proof. By conjugating with the function z + a, we make the exceptional point be equal 
to 0. From the hypotheses of the len~na, it follows that P(z) - z = z/m(P' (z) - m). Solving 
this differential equation with the boundary condition P(0) = 0, we find that P = R m. 

LEMMA 3. Let c, I e ~. If Re(X n) > Re(c n) for all n e ~, then i > 0. 

Proof. The cases cl = 0, argc = -+z/2, argk = -+~/2 are easily eliminated. There exists 
a 6 > 0 such that infinitely many points c n lie within the angle {z : largzl <- v/2 -- 6}. 
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This implies that IX[ ~ [ c [ .  If arg ~ ~ 0, then infinitely many points A n lie within some 
angle of the form {z : Iargz - zl ~ ~/2 - 6}. Thus 141 = Icl. Setting 81 = argk, 82 = 
arg c, we obtain 

cosnOl>cosnO~, n C~. (ii) 

In  p a r t i c u l a r ,  cos  2n0~ > cos  2nO 2, which i m p l i e s  

cos2nO1>cos2nOv nE~ .  (12)  

I t  f o l l o w s  from Eqs. (11)  and (12)  t h a t  cos  nO 1 > O, n e ~. Thus 0 z = O, which i s  s h a t  was 
needed .  

We now finish the proof of Theorem 3. Suppose that the moduli of the multiplicators 
of all cycles do not exceed m n, where n is the order of the cycle. 

Let ~ be the multiplicator of any fixed point. Then, by assumption, 

Re E (P")'(z)~<m n(nz ~-I)+Re(x ~); 
Pn(z)=2 

(13) 

moreover, the equality holds only if the multiplicators of all the fixed points, with the 
exception of one, are equal to m. Then from Lemma 2 we find that P is conjugate to R m. Sup- 
pose that the inequality (13) is strict for all n e ~. Comparing Eqs. (13) and (i0), we 
find that Re (A n) > Re(cn), n e ~. From Lemma 3, ~ > 0. This holds for all fixed points. 
If all their multiplicators are equal to m, we apply Lenm~a 2 again. Suppose that the equa- 
tion h i < m - e, i =1,2, e > 0 holds for two multiplicators. Choose a sequence nk such 
that Re (c nk) ~ 0, k e~ is satisfied. By virtue of Eq. (i0), we find that either m~k(mnk- 

1 <. E Re(Pnk)'(z)~mnk(m"k--2) +2(m-~)"~~ 2(m -- e) nk, which is impossible. Theorem 
Pnk(z)=z 

3 is proved. 

Remark. Suppose P(z) is a polynomial of degree m ~ 2 whose Julia set is connected. 
Denote by K(P) the lower bound of those x > 0, for which the inequality Ix I ~ m nx is satis- 
fied for multiplicators % of all cycles of order n e ~. We have proved that 1 ~ K(P) ~ 2. 
By the method of extremal lengths it is possible to prove the strict inequality K(P) < 2 
for the case in which the mapping P : J(P) ~-J(P) is hyperbolic [3]. 
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