ESTIMATING THE CHARACTERISTIC EXPONENTS OF POLYNOMIALS

A. É. Eremenko and G. M. Levin

1. We consider a polynomial f of degree $d \geq 2$, and we denote its n-th iteration by f^{n}. The results of the theory of iterations that are used in the present article may be found in [1, 2].

A root of the equation $f^{n} z=z$ is called a periodic point (with period n). The quantity $\chi(z)=\frac{1}{n} \log \left|\left(f^{n}\right)^{\prime}(z)\right|$ is the characteristic exponent of this point. When the Julia set of the polynomial f is connected, we have

$$
\begin{equation*}
\chi(z) \leq 2 \log d, \tag{1.1}
\end{equation*}
$$

for any periodic point z, and this bound is sharp only when the Julia set is a line segment with z for its end [3]. In the present paper we obtain an upper bound for $\chi(z)$ for arbitrary polynomials, as well as a lower bound for $\chi(z)$ for the case in which the Julia set is totally disconnected.

We set

$$
\begin{equation*}
u_{f}(z)=\lim _{n \rightarrow \infty} \frac{1}{d^{n}} \log ^{+}\left|f^{n}(z)\right| . \tag{1.2}
\end{equation*}
$$

This limit exists and is a subharmonic function in C ([4] is a standard reference for the theory of subharmonic functions). The function u_{f} is nonnegative and continuous on C. It is harmonic and positive in the domain $D=\{z$: $\left.f^{n} z \rightarrow \infty, n \rightarrow \infty\right\}$, and $u_{f}(z)=0$ in $C \backslash D=K$. We have the functional equation

$$
\begin{equation*}
u_{f} \circ f=d u_{f} . \tag{1.3}
\end{equation*}
$$

The Riesz measure μ_{f} of the function u_{f} is concentrated in the Julia set $J=\partial D=\partial K$. This is the only probability measure in C that has the following property: For any Borel set $E \subset C$ on which the function f is univalent, we have

$$
\begin{equation*}
d \mu_{f}(E)=\mu_{f}(f E) \tag{1.4}
\end{equation*}
$$

The measure μ_{f} is called the equilibrium measure or the measure of maximum entropy.
Let $c_{1}, c_{2}, \ldots, c_{d-1}$ be all of the critical points (with zero derivative) of the polynomial f. We set

$$
\begin{align*}
& a=\max \left\{u\left(c_{j}\right): 1 \leq j \leq d-1\right\}, \tag{1.5}\\
& b=\min \left\{u\left(c_{j}\right): 1 \leq j \leq d-1\right\} . \tag{1.6}
\end{align*}
$$

The numbers a and b are natural parameters characterizing the degree of disconnection of the Julia set: $a=0$ if and only if J is connected; on the other hand, J is a Cantor set (totally disconnected) if $b>0$. We should also note the connection between the number a and mean of the characteristic exponent

$$
\chi_{f}=\int \log \left|f^{\prime}\right| d \mu_{f} .
$$

We have

$$
\chi_{f}=\log d+\sum_{j=1}^{d-1} u_{j}\left(c_{j}\right),
$$

so $a \leq \chi_{f}-\log d \leq(d-1) a$. In particular, $\chi_{f}=\log d$ if and only if $a=0$, i.e., J is connected.

Theorem 1.1. If $f(z)=z^{d}+c, c \in C$, then

$$
\begin{equation*}
\chi(z) \leq(d-1) a+2 \log d \leq 2 \chi_{f} \tag{1.7}
\end{equation*}
$$

for any periodic point z.
Let u be a subharmonic function, let μ be its Riesz measure, and let z_{0} be some point at which $u\left(z_{0}\right)=0$. We set

$$
n\left(r, u, z_{0}\right)=\mu\left(\left\{z:\left|z-z_{0}\right| \leq r\right\}\right), \quad N\left(r, u, v_{0}\right)=\int_{0}^{r} n\left(t, u, u_{0}\right) \frac{d t}{t} .
$$

Because $u\left(z_{0}\right)=0$, the Jensen formula yields

$$
N\left(r, u, z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) d \theta .
$$

We define the order of the measure μ at the point z_{0} as follows:

$$
\rho=\varliminf_{r \rightarrow 0} \frac{\log N\left(r, u, z_{0}\right)}{\log r}=\varliminf_{r \rightarrow 0} \frac{\log n\left(r, u, z_{0}\right)}{\log r}
$$

It is easy to see that the order of the measure μ is the same as the quantity

$$
\rho\left(u, z_{0}\right)=\varliminf_{r \rightarrow 0}\left(\log \max _{\theta} u\left(z_{0}+r e^{i \theta}\right)\right) / \log r,
$$

so it can also be called the order of the function u at the point z_{0}.
Theorem 1.2. For any polynomial f and any point $z_{0} \in J(f)$ we have

$$
\rho\left(u_{f}, z_{0}\right) \geq \frac{1}{\pi} \operatorname{arcctg} \frac{a d}{\pi},
$$

where the number a is given by formula (1.5).
Corollary 1.3. For any periodic point we have

$$
\begin{equation*}
\chi(z) \leq \frac{\pi \log d}{\operatorname{arcctg} \frac{d d}{\pi}} \tag{1.8}
\end{equation*}
$$

If $a=0$, then (1.7) and (1.8) become precisely bound (1.1). For small a we have

$$
\frac{\pi \log d}{\operatorname{arcctg} \frac{a d}{\pi}}=2 \log d+\frac{4 a d \log d}{\pi^{2}}+o(a), \quad a \rightarrow 0 .
$$

Thus, for $d \leq 8$ and small a inequality (1.8) provides a stronger result than Theorem 1.1.
For an arbitrary point $z_{0} \in J$ we define the (upper) characterstic exponent according to the formula

$$
x\left(z_{0}\right)=\varlimsup_{n \rightarrow \infty} \frac{1}{n} \log \left|\left(f^{n}\right)^{\prime}\left(z_{0}\right)\right|
$$

Recall that a polynomial is said to be hyperbolic if the trajectories of all of its critical points are attracted to attracting cycles.
Corollary 1.4. If f is a hyperbolic polynomial, then (1.8) is satisfied for any point $z \in J(f)$.
The proof of Theorem 1.2 uses the following result from the theory of subharmonic functions; this result is also of independent interest. We set

$$
A\left(r, u, z_{0}\right)=\inf _{\theta} u\left(z_{0}+r e^{i \theta}\right)
$$

Theorem 1.5. Let u be a subharmonic function in the neighborhood of a point $z_{0}, u\left(z_{0}\right)=0$, and assume that the order of the function u at the point z_{0} is ρ. Then

$$
\varlimsup_{n \rightarrow 0} \frac{A\left(r, u, z_{0}\right)}{n\left(r, u, z_{0}\right)} \geq \pi \operatorname{ctg} \pi \rho .
$$

This theorem is overshadowed by the so-called $\cos \pi \rho$ inequalities of the theory of entire and subharmonic functions (see, for example, [5-7]). Its proof is a modification of arguments of [6].

We now consider the case of a totally disconnected Julia set in which it is possible to obtain a uniform lower bound for the characteristic exponent.

Theorem 1.6. Let a and b be given by formulas (1.5) and (1.6), and assume that k is determined from the conditions $a<d^{k} b \leq d a$. Then

$$
\begin{equation*}
\chi(z) \geq \frac{a+d^{k}(d-2) b}{(d-1)^{k}} \geq(d-1) b \tag{1.9}
\end{equation*}
$$

for any periodic point z.
Corollary 1.7. The Hausdorff dimension of the Julia set satisfies the inequality

$$
\mathrm{HD}(J) \leq \frac{(d-1)^{k} \log d}{a+d^{k}(d-2)^{b}} \leq \frac{\log d}{(d-1)^{b}}
$$

In $\S 2$ we will prove the following asymptotic expressions for $c \rightarrow \infty$ for the family of functions $f_{c}(z)=z^{d}+c, c \in C$:

$$
\begin{align*}
& a_{c}=b_{c}=\frac{1}{d} \log |c|+o(1) \tag{1.10}\\
& \chi(z)=\frac{d-1}{d} \log |c|+o(1) \tag{1.11}
\end{align*}
$$

for any periodic point $z=z_{0}$. It then follows immediately that bounds (1.7) and (1.9) are asymptotically sharp when $c \rightarrow \infty$, while (1.8) in the case under consideration differs from sharp by the factor $\log d$.
2. Proof of Theorem 1.1. We first prove (1.10) and (1.11). The polynomial f_{c} has a unique critical point 0 of multiplicity $d-1$. Thus,

$$
a_{c}=b_{c}=\lim _{n \rightarrow \infty} \frac{1}{d^{n}} \log ^{+}\left|f_{c}^{n}(0)\right|=\frac{1}{d} \log |c|+\sum_{k=1}^{\infty} \frac{1}{d^{k+1}} \log ^{+}\left|1+\frac{c}{\left(f_{c}^{k}(0)\right)^{d}}\right|
$$

When we let c go to ∞ we obtain (1.10).
If $z_{1}=z_{c}$ is a periodic point with period n, then

$$
\begin{equation*}
z_{i}=z_{i-1}^{d}+c, \quad i=2, \ldots, n ; \quad z_{1}=z_{n}^{d}+c \tag{2.1}
\end{equation*}
$$

It follows that $z_{i} \rightarrow \infty$ as $c \rightarrow \infty$. As a result,

$$
\prod_{i=1}^{n}\left(1+\frac{c}{z_{i}^{d}}\right)=\frac{1}{\left(z_{1} \cdot \ldots \cdot z_{n}\right)^{d-1}} \rightarrow 0, \quad c \rightarrow \infty
$$

so the modulus of at least one factor $\left(1+c / z_{j}^{d}\right), j=j(c)$, is small. We now find from (2.1) that $z_{i} / z_{i-1} \rightarrow 1, z_{n} / z_{1} \rightarrow 1$, so $\left|z_{i}\right|^{d} \sim|c|, c \rightarrow \infty, 1 \leq i \leq n$. As a result,

$$
\left(\prod_{i=1}^{n}\left|f_{c}\left(z_{i}\right)\right|\right)^{1 / n} \sim|c|^{(d-1) / d}, \quad c \rightarrow \infty
$$

which proves (1.11).
We can now complete the proof of Theorem 1.
We have

$$
a_{c}=\lim _{n=\infty} \frac{1}{d^{n}} \log ^{+}\left|f_{c}^{n}(0)\right| .
$$

The function $c \mapsto a_{c}$ is continuous [8] and subharmonic in C. It is equal to zero on the set $M=\left\{c: J\left(f_{c}\right)\right.$ is connected $\}$. The complement $U=\overline{\boldsymbol{C}} \backslash M$ is connected (by the principle of the maximum), and the function \boldsymbol{a}_{c} is positive and harmonic in U. Thus, $d a_{c}$ is a Green's function for the domain U with a pole at ∞.

Fix a natural number n. It is easy to see that

$$
\chi_{n}(c)=\max \left\{\chi(z): f_{c}^{n} z=z\right\}
$$

is a subharmonic function in C. In virtue of (1.1), we have $\chi_{n}(c) \leq 2 \log d$ on the set M, and in the neighborhood of ∞, by (1.10) and (1.11), we have $\chi_{n}(c) \leq(d-1) a_{c}+o(1)$.

Application of the principle of harmonic majorants to the domain U yields $\chi_{n}(c) \leq 2 \log d+(d-1) a_{c}$, i.e., (1.7).
3. Proof of Theorem 1.5. Without loss of generality, we assume that $z_{0}=0$. Furthermore, we assume that u is a subharmonic function in C and we have

$$
\begin{equation*}
u(z)=O(\log |z|), \quad z \rightarrow \infty \tag{3.1}
\end{equation*}
$$

(any function that is subharmonic on a compactum of C can be continued in C with property (3.1)). The function (1.2), to which we are preparing to apply Theorem 1.5 , already has property (3.1). We obtain the following representation from (3.1) and $u(0)=0$:

$$
\begin{equation*}
u(z)=\int \log \left|1-\frac{z}{\zeta}\right| d \mu_{\zeta} \tag{3.2}
\end{equation*}
$$

We set $A(r, u)=A(r, u, 0), n(r, u)=n(r, u, 0), N(r, u)=N(r, u, 0)$. Let

$$
v(z)=\int \log \left|1-\frac{z}{\zeta}\right| d \nu_{\zeta}
$$

where ν is a measure that is concentrated on a negative ray and has the computational function $n(r, v) \equiv n(r, u)$. It follows from the inequality $\log |1-|u|| \leq \log |1-u| \leq \log (1+|u|), u \in C$, that $A(r, u) \geq A(r, v)=v(-r)$. It is therefore sufficient to prove the theorem for the function v instead of u. We will need the following

Lemma 3.1 (on Polya peaks). Let Φ be an increasing function, $\Phi(0)=0$,

$$
\rho=\varliminf_{r \rightarrow 0} \frac{\log \Phi(r)}{\log r}<\infty
$$

Then there exist sequences $r_{k} \rightarrow 0, \varepsilon_{k} \rightarrow 0$, such that

$$
\begin{equation*}
\Phi(r) \leq \Phi\left(r_{k}\right)\left(\frac{r}{r_{k}}\right)^{\rho}\left(1+\varepsilon_{k}\right), \quad \varepsilon_{k} r_{k} \leq r \leq \varepsilon_{k}^{-1} r_{k} \tag{3.3}
\end{equation*}
$$

If we substitute $r \rightarrow \infty, r_{k} \rightarrow \infty$ for $r \rightarrow 0, r_{k} \rightarrow 0$ in (3.3) and reverse the inequality, we obtain a well-known proposition that is frequently used in number theory and the theory of meromorphic functions of finite order (for the proof, see, for example, [9]). Our formulation can be reduced to the standard statement by using the substitution $\Psi(r)=1 / \Phi(1 / r)$. Setting $\Phi(r)=N(r, v)$ in the lemma, we obtain a sequence of Polya peaks $r_{k} \rightarrow 0$ such that

$$
\begin{equation*}
N(r, v) \leq N\left(r_{k}, v\right)\left(\frac{r}{r_{k}}\right)^{\rho}\left(1+\varepsilon_{k}\right), \quad \varepsilon_{k} r_{k} \leq r \leq \varepsilon_{k}^{-1} r_{k} \tag{3.4}
\end{equation*}
$$

We now consecutively examine the subharmonic functions

$$
\begin{equation*}
v_{k}(z)=\frac{v\left(\boldsymbol{r}_{k} z\right)}{N\left(r_{k}, v\right)} \tag{3.5}
\end{equation*}
$$

It is obvious that

$$
\begin{equation*}
v_{k}(z)=\int \log \left|1-\frac{z}{\zeta}\right| d \nu_{k} \tag{3.6}
\end{equation*}
$$

where the measures ν_{k} are defined thus:

$$
\nu_{k}(E)=\frac{\nu\left(r_{k} E\right)}{N\left(r_{k}, v\right)}
$$

We have the relations

$$
\begin{align*}
n\left(r, v_{k}\right) & =\frac{n\left(r r_{k}, v\right)}{N\left(r_{k}, v\right)} \tag{3.7}\\
N\left(r, v_{k}\right) & =\frac{N\left(r r_{k}, v\right)}{N\left(r_{k}, v\right)} \tag{3.8}
\end{align*}
$$

It now follows from the bound $n\left(r, v_{k}\right) \leq N\left(r e, v_{k}\right)$ and (3.4) that the measures ν_{k} are uniformly bounded on compacta. Choosing a subsequence, we assume that $\nu_{k} \rightarrow \nu_{0}$ (convergence in the space conjugate to the space of continuous finite functions).

Then $v_{k} \rightarrow w_{0}$, where $w_{0}(z)=\int \log \left|1-\frac{z}{\zeta}\right| d \nu_{0}$. The convergence $v_{k} \rightarrow w_{0}$ occurs in mean with respect to area in each compactum in \boldsymbol{C}, and also in mean with respect to the 1 -measure on each compactum of \boldsymbol{R}. We have

$$
\begin{equation*}
n\left(r, v_{k}\right) \rightarrow n\left(r, w_{0}\right), \quad N\left(r, v_{k}\right) \rightarrow N\left(r, w_{0}\right) \tag{3.9}
\end{equation*}
$$

It follows from (3.4) and (3.8) that

$$
\begin{equation*}
N\left(r, w_{0}\right) \leq r^{\rho}, \quad 0 \leq r<\infty, \quad N\left(1, w_{0}\right)=1 \tag{3.10}
\end{equation*}
$$

The theorem will be proved if we prove that

$$
\begin{equation*}
\frac{w_{0}(-1)}{n\left(1, w_{0}\right)} \geq \pi \operatorname{ctg} \pi \rho \tag{3.11}
\end{equation*}
$$

For this we consider the auxilliary function

$$
w_{1}\left(r e^{i \theta}\right)=\rho^{2} \int_{0}^{\infty} \log \left|1+\frac{r e^{i \theta}}{t}\right| t^{\rho-1} d t=\frac{\pi \rho r^{\rho}}{\sin \pi \rho} \cos \rho \theta, \quad|\theta| \leq \pi
$$

(the equation follows from Jensen's formula). We have

$$
\begin{gather*}
n\left(r, w_{1}\right)=\rho r^{\rho} \tag{3.12}\\
N\left(r, w_{1}\right)=r^{\rho} \tag{3.13}\\
w_{1}(-1)=\pi \rho \operatorname{ctg} \pi \rho \tag{3.14}
\end{gather*}
$$

Note that the function $N\left(r, w_{0}\right)$ is convex with respect to logarithms. As a result, it follows from (3.10) that $N\left(r, w_{0}\right)$ is differentiable at the point 1 and

$$
\begin{equation*}
n\left(1, w_{0}\right)=\left.\frac{d}{d \log r} N\left(r, w_{0}\right)\right|_{r=1}=\left.\frac{d\left(r^{\rho}\right)}{d \log r}\right|_{r=1}=\rho \tag{3.15}
\end{equation*}
$$

We will now show that $w_{0}(-1) \geq w_{1}(-1)$. Both of the functions w_{0} and w_{1} are harmonic in the plane cut along a negative ray. We set

$$
w_{j}^{*}\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{-\theta}^{\theta} w_{j}\left(r e^{i \theta}\right) d \varphi, \quad 0 \leq \theta \leq \pi, \quad j=0,1
$$

It is easy to see that the functions w_{j}^{*} are harmonic in the upper halfplane (w_{j}^{*} is a trivial special case of Baernstein's *-function; see, for example, $[10,11])$.

We have $w_{0}^{*}(r)=w_{1}^{*}(r)=0, r>0$,

$$
\begin{equation*}
w_{0}^{*}(-r)=N\left(r, w_{0}\right) \leq r^{\rho}=N\left(r, w_{1}\right)=w_{1}^{*}(-r), \quad r>0 \tag{3.16}
\end{equation*}
$$

in virtue of (3.10) and (3.13). It follows, by the Phragmen-Lindelof theorem, that

$$
\begin{equation*}
w_{0}^{*}(z) \leq w_{1}^{*}(z), \quad \operatorname{Im} z>0 \tag{3.17}
\end{equation*}
$$

Furthermore, in virtue of (3.10) and (3.13), we have $w_{0}^{*}(-1)=w_{1}^{*}(-1)$, which, together with (3.17), yields

$$
\left.\frac{\partial w_{0}^{*}\left(e^{i \theta}\right)}{\partial \theta}\right|_{\theta=\pi} \geq\left.\frac{\partial w_{1}^{*}\left(e^{i \theta}\right)}{\partial \theta}\right|_{\theta=\pi}
$$

But $\left.\frac{\partial w \cdot\left(e^{2 \theta}\right)}{\partial \theta}\right|_{\theta=\pi}=\frac{1}{\pi} w_{j}(-1)$, so $w_{0}(-1) \geq w_{1}(-1)=\pi \rho \operatorname{ctg} \pi \rho$, which, together with (3.15), yields (3.11).
The theorem is proved.
4. Proof of Theorem 1.2 and Corollaries 1.3 and 1.4. To prove Theorem 1.2 we consider two cases:
a) the point z_{0} is contained in a connected Julia-set component with more than one point. Then $A\left(r, u, z_{0}\right) \equiv 0$ for a subharmonic function u and sufficiently small r; by Theorem 1.5, we now have $\rho \geq \frac{1}{2} \geq \frac{1}{\pi} \operatorname{arcctg} \frac{a d}{\pi}$;
b) the point z_{0} is a comnnected component of the Julia set J. We set $E_{0}=\{z: u(z) \leq a\}$. The set E_{0} is connected, so a is the largest critical value of the function u. Let E_{k} be the connected component of the set $f^{-k}\left(E_{0}\right)$ containing the point z_{0}. In other words, E_{k} is the connected component of the set $\left\{z: u(z) \leq a d^{-k}\right\}$ containing the point z_{0} (see (1.3)). It follows from (1.4) that

$$
\begin{equation*}
\mu\left(E_{k}\right) \geq d^{-k} \tag{4.1}
\end{equation*}
$$

$\left(\mu\left(E_{0}\right)=1\right.$, since $\left.\operatorname{supp} \mu=J \subset E_{0}\right)$. Since z_{0} is the connected component of the set J, we have

$$
\begin{equation*}
\bigcap_{k=0}^{\infty} E_{k}=\left\{z_{0}\right\} . \tag{4.2}
\end{equation*}
$$

Let D_{r} be a circle with center at the point z_{0} and radius r small enough for $C_{r}=\partial D_{r}$ to intersect E_{0}. Let $k(r)$ be the smallest natural number such that $E_{k(r)} \subset D_{r}$ (the existence of such a number is implied by (4.2)). It follows from (4.1) that

$$
\begin{equation*}
\mu\left(D_{r}\right) \geq \mu\left(E_{k(r)}\right) \geq d^{-k} \tag{4.3}
\end{equation*}
$$

By the definition of the number $k(r)$, the set $E_{k(r)-1}$ is not contained in D_{r}. Since $E_{k(r)-1}$ is connected and contains z_{0}, it must intersect C_{r}, so

$$
\begin{equation*}
A\left(r, u, z_{0}\right) \leq a d^{-k+1} . \tag{4.4}
\end{equation*}
$$

It follows from (4.3) that $n\left(r, u, z_{0}\right) \geq d^{-k}$. Thus, for all sufficiently small $r>0$,

$$
\frac{A\left(r, u, z_{0}\right)}{n\left(r, u, z_{0}\right)} \leq a d .
$$

Application of Theorem 1.5 finishes the proof of Theorem 1.2.
To prove the corollaries we will need
Proposition 4.1. Let $z_{0} \in J(f)$, and use $r_{n}\left(z_{0}\right)$ to denote the radius of the largest disk centered at $f^{n} z_{0}$ that contains a univalent branch g_{n} of the function f^{-n} with the property $g_{n}\left(f^{n} z_{0}\right)=z_{0}$. We assume that

$$
\begin{equation*}
\boldsymbol{r}\left(z_{0}\right)=\varliminf_{n \rightarrow \infty} r_{n}\left(z_{0}\right)>0 . \tag{4.5}
\end{equation*}
$$

Then

$$
\rho\left(u, z_{0}\right)=\frac{\log d}{\chi\left(z_{0}\right)}
$$

(the upper characteristic exponent $\chi\left(z_{0}\right)$ for any point $z_{0} \in J(f)$ is defined in $\S 1$).
Proof. The function g_{n} is univalent in the disk $\left\{z:\left|z-f^{n} z_{0}\right|<r\left(z_{0}\right)\right\}$. According to the "distortion theorem," half the disk $\left\{z:\left|z-f^{n} z_{0}\right|<\frac{1}{2} r\left(z_{0}\right)\right\}$ can be mapped onto an oval with bounded distortion E_{n}, where $t_{n}=\operatorname{diam} E_{n} \asymp\left|\left(f^{n}\right)^{\prime} z_{0}\right|^{-1}$ (the symbol \asymp indicates that a variable is bounded above and below by positive absolute constants). By the definition of the characteristic exponent,

$$
\varliminf_{n \rightarrow \infty} \frac{\log t_{n}}{n}=-\chi\left(z_{0}\right)
$$

On the other hand,

$$
\begin{gathered}
\mu\left(E_{n}\right) \asymp d^{-n}, \\
\frac{\log \mu\left(E_{n}\right)}{n} \rightarrow-\log d .
\end{gathered}
$$

It follows that

$$
\varlimsup_{n \rightarrow \infty} \frac{\log t_{n}}{\log \mu\left(E_{n}\right)}=\frac{\chi\left(z_{0}\right)}{\log d} .
$$

Because the function $n\left(t, u, z_{0}\right)$ is monotonic and $\log \mu\left(E_{n+1}\right)-\log \mu\left(E_{n}\right)=O(1)$, it follows that

$$
\varlimsup_{r \rightarrow 0} \frac{\log r}{\log n\left(r, u, z_{0}\right)}=\frac{\chi\left(z_{0}\right)}{\log d}
$$

$$
\rho\left(u, z_{0}\right)=\varliminf_{r \rightarrow 0} \frac{\log n\left(r, u, z_{0}\right)}{\log r}=\frac{\log d}{\chi\left(z_{0}\right)}
$$

We should note that condition (4.5) is satisfied in two cases:
a) f is an arbitrary polynomial and z_{0} is a periodic point;
b) f is a hyperbolic polynomial and $z_{0} \in J(f)$ is any point.

Thus, Corollaries 1.3 and 1.4 follow from Theorem 1.2 and Proposition 4.1.
5. Proof of Theorem 1.6 and Corollary 1.7.

We will use the method of extremal lengths [12], and we denote the modulus of a family of curves Γ by $M(\Gamma)=$ $\lambda(\Gamma)^{-1}$, where λ is the extremal length. An immediate consequence of the definition of modulus is

Lemma 5.1. Let Γ be a family of pairwise disjoint curves filling a domain U, and let $g: U \rightarrow g(U)$ be a holomorphic mapping with two properties:
(i) if $\gamma_{1}, \gamma_{2} \in \Gamma, \gamma_{1} \neq \gamma_{2}$, then $g\left(\gamma_{1}\right) \cap g\left(\gamma_{2}\right)=\emptyset$;
(ii) $g: \gamma \rightarrow g(\gamma)$ is a covering of degree no greater than N.

Then $M(\Gamma) \geq M(g(\Gamma)) / N$.
We label the critical points $c_{1}, c_{2}, \ldots, c_{d-1}$ of the polynomial f so that $u_{1} \geq u_{2} \geq \cdots \geq u_{d-1}$, where $u_{i}=u_{f}\left(c_{i}\right)$, and, in particular, $u_{1}=a, u_{d-1}=b$.

We can assume that $d^{l} u_{i} \neq u_{j}, i \neq j, l \in Z$. If we can prove the theorem for this case, we can obtain the general case from the continuity of the mappings $(z, f) \mapsto u_{f}(z)$ and $(z, f) \mapsto \chi(z)$.

It follows from this assumption that each component of the level curve $L(\rho)=\{z: u(z)=\rho\}$ is either a simple closed real analytic curve, or a figure-eight shaped curve (which occurs when $\rho=u_{l} d^{-l}, l \in Z_{+}$).

The Batcher function [2, 8] conformally maps the annulus $\left\{z: u_{1}<u(z)<d u_{1}\right\}$ onto the annulus $\left\{z: e^{u_{1}}<|z|<\right.$ $\left.e^{d u_{1}}\right\}$, so

$$
\begin{equation*}
M\left(\Gamma_{0}\right)=\frac{(d-1) u_{1}}{2 \pi} \tag{5.1}
\end{equation*}
$$

where $\Gamma_{0}=\left\{L(\rho): u_{1}<\rho<d u_{1}\right\}$.
Let $z \in J$ and $n \in N$. We use $\Gamma_{n}=\Gamma_{n}(z)$ to denote the set of components of the level lines $L(\rho), u_{1} / d^{n}<$ $\rho<u_{1} / d^{n-1}$, that include the point z. We now find a lower bound for $M\left(\Gamma_{n}(z)\right)$. Note that for any singly-connected domain V bounded by a component of the level line $L(\rho)$, the mapping $f: V \rightarrow f(V)$ is an N-sheeted branching covering, where $N-1$ is equal to the number of critical points of the function f in V. As a result, the $M\left(\Gamma_{n}\right)$ are equal when $n \geq k$, where $k \in N$ is given by the condition

$$
u_{1} d^{-k}<u_{d-1}<u_{1} d^{-k+1}
$$

(i.e., k is consistent with the conditions of Theorem 1.6).

The family Γ_{k} splits into two parts: the curves $\gamma_{\rho} \subset L_{\rho}$ that include the critical point c_{d-1} (if $u_{d-1}<\rho<u_{1} d^{-k+1}$), and the curves that do not include critical points (if $u_{1} d^{-k}<\rho<u_{d-1}$). The function f^{k} maps Γ_{k} onto Γ_{0}. It follows from (5.1), Lemma 5.1, and the properties of extremal lines that

$$
\begin{equation*}
M\left(\Gamma_{k}\right) \geq \frac{1}{2}\left(\frac{d^{k} u_{d-1}-u_{1}}{(d-1)^{k-1}}+\frac{d u_{1}-d^{k} u_{d-1}}{(d-1)^{k}}\right) \tag{5.2}
\end{equation*}
$$

Now, let z_{0} be a periodic point with period $m, \lambda=\left(f^{m}\right)^{t} \times\left(z_{0}\right), \chi\left(z_{0}\right)=\frac{1}{m} \log |\lambda|$,

$$
\begin{equation*}
\Gamma=\bigcup_{i=0}^{m-1} \Gamma_{n+1}\left(z_{0}\right) \tag{5.3}
\end{equation*}
$$

The curves of the family Γ separate boundary components of the annulus K, which is bounded by certain curves $\gamma_{1} \subset L\left(a d^{-n-m}\right)$ and $\gamma_{2} \subset L\left(a d^{-n}\right)$. Since the family Γ_{i} is pairwise disjoint, we have, in view of (5.2),

$$
\begin{equation*}
M(K) \geq M(\Gamma) \geq \frac{m}{2 \pi} \frac{a+d^{k}(d-2) b}{(d-1)^{k}} \tag{5.4}
\end{equation*}
$$

($M(K)$ is the modulus of the annulus K [12]).

We now obtain an upper bound for $M(K)$. If n is large, the annulus K lies in a small neighborhood of the point z_{0}. By Schroder's theorem [2], there exists a holomorphic change of coordinates in the neighborhood of the point $z_{0}, \zeta=\psi(z), \psi\left(z_{0}\right)=0$, that linearizes the transformation f^{m} : We set $K^{*}=\psi(K)$. The mapping $\zeta \mapsto \lambda^{-1} \zeta$ transforms the outer boundary component of the annulus K^{*} into the inner. If we choose a conformal metric with density $\rho(\zeta)=(2 \pi|\zeta|)^{-1}$ in the annulus, we find that the length of closed curves separating the boundary components is no less than 1 , and the area of the annulus in this metric is no more than $(2 \pi)^{-1} \log |\lambda|$. As a result, the extremal length is larger than or equal to $2 \pi(\log |\lambda|)^{-1}$ and

$$
M(K)=M\left(K^{*}\right) \leq \frac{1}{2 \pi} \log |\lambda| .
$$

Together with (5.4), this relation proves Theorem 1.6.
In order to derive Corollary 1.7, we note that the polynomial f is hyperbolic if $b>0$. In order to compute the Hausdorff dimension of the Julia set of a hyperbolic polynmial, we can use a thermodynamic formalism [13, 14].

We set

$$
\begin{equation*}
P(t)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{z \in \operatorname{Per}_{n}}\left|\left(f^{n}\right)^{\prime}(z)\right|^{-t}, \quad t \in \boldsymbol{R}, \tag{5.5}
\end{equation*}
$$

where Per_{n} is the set of points with period n. The limit in (5.5) exists and is called pressure. The function $t \mapsto P(t)$ is a strictly decreasing function and has a unique zero at the point $t=\mathrm{HD}(J) \geq 0$. It follows from Theorem 1.7 that $\left|\left(f^{n}\right)^{\prime}(z)\right| \geq e^{n \chi}$ for any point $z \in \operatorname{Per}_{n}$, where χ satsifies (1.9). It thus follows that $P(t) \leq \log d-t \chi$, which implies the desired bound for $\mathrm{HD}(J)$.

References

1. H. Brolin, "Invariant sets under iteration of rational functions," Ark. Mat., 6, 103-144 (1965).
2. A. É. Eremenko and M. Yu. Lyubich, "The dynamics of analytic transformations," Algebra i Analiz, 1, No. 3, 1-70 (1989).
3. A. É. Eremenko and G. M. Levin, "On the periodic points of polynomials," Ukr. Mat. Zhurn., 41, No. 11, 1467-1471 (1989).
4. W. Hyman and P. Kennedy, Subharmonic Functions [Russian translation], Moscow (1980).
5. M. Essen, The $\cos \pi \lambda$ Theorem, Springer-Verlag, 1975.
6. A. É. Eremenko, M. L. Sodin, and D. F. Shua, "On the minmum modulus of an entire function on a sequence of Polya peaks," Teoriya Funktsii, Funktsional. Analiz, i Ikh Prilozh., No. 45, 26-40 (1986).
7. I. V. Ostrovskir, "On some asymptotic properties of entire functions with real negative zeros," Uch. Zap. Khar'k. Univ., 120, 23-32 (1986).
8. A. Douady and J. Hubbard, "Etude dinamique des polynômes complexes," Publ. Math. d'Orsay, 1984-02, 1985-02.
9. D. Drasin and D. Shea, "Polya peaks and oscillation of positive functions," Proc. Am. Math. Soc., 34, 403-411 (1972).
10. A. Baernstein, "Proof of Edrei's spread conjecture," Proc. London Math. Soc., 26, 418-419 (1973).
11. J. M. Anderson and A. Baernstein, "The size of the set on which a meromorphic function is large," Proc. London Math. Soc., 26, 518-539 (1978).
12. L. Ahlfors, Conformal Invariants, McGraw-Hill, New York (1973).
13. R. Bowen, "Hausdorff dimension of quasi-circles," Publ. Math. IHES, 50, 259-273 (1979).
14. D. Ruelle, "Repellers for real analytic maps," Ergodic Theory and Dynamical Systems, 2, No. 1, 99-107 (1982).
