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ESTIMATING THE CHARACTERISTIC E X P O N E N T S  OF POLYNOMIALS 

A. E. Eremenko and G. M. Levin 

1. We consider a polynomial f of degree d _> 2, and we denote its n-th iteration by fn .  The results of the theory 
of iterations that are used in the present article may be found in [1, 2]. 

A root of the equation f n z  = z is called a periodic point (with period n). The quantity X(z) = ~ log I(f~)'(z)l is 
the characteristic exponent of this point. When the Julia set of the polynomial f is connected, we have 

X(z) <_ 21ogd, (1.1) 

for any periodic point z, and this bound is sharp only when the Julia set is a line segment with z for its end [3]. In 
the present paper we obtain an upper bound for X(z) for arbitrary polynomials, as well as a lower bound for X(z) for 
the case in which the Julia set is totally disconnected. 

We set 

ul(z) = lim  tog§ 
. i  

(1.2) 
n--boo a ' "  

This limit exists and is a subharmonic function in C ([4] is a standard reference for the theory of subharmonic 
functions). The function u I is nonnegative and continuous on C.  It is harmonic and positive in the domain D = {z: 
f n z  --~,cr n --+ oo}, and u ! ( z )  = 0 in C \ D  = K. We have the functional equation 

u! o f = du!.  (1.3) 

The Riesz measure #1 of the function u! is concentrated in the Julia set J = OD = OK. This is the only probability 
measure in C that  has the following property: For any Borel set E C C on which the function f is univalent, we have 

d#! (E) = #!  ( fE ) .  (1.4) 

The measure #! is called the equilibrium measure or the measure of maximum entropy. 
Let Cl, c2 , . . . ,  ca-1 be all of the critical points (with zero derivative) of the polynomial f .  We set 

a = max{u(cj): 1 < j < d - 1}, (1.5) 

b - min{u(cj): 1 <_ j _< d -  1}. (1.6) 

The numbers a and b are natural parameters characterizing the degree of disconnection of the Julia set: a = 0 if and 
only if J is connected; on the other hand, J is a Cantor set (totally disconnected) if b > 0. We should also note the 
connection between the number a and mean of the characteristic exponent 

xl = f log I.f'l d, f 

We have 
d - 1  

X/ = l o g d +  E u j ( c j ) ,  
j = l  

so a < Xy - logd < (d - 1)a. In particular, X! = logd if and only if a = 0, i.e., J is connected. 
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T h e o r e m  1.1. l f  f ( z )  = z a q- c, c E C,  then 

X(z) < (d - 1)a + 21ogd < 2X1 (1.7) 

for any periodic point z. 

Let u be a subharmonic function, let/~ be its RSesz measure, and let z0 be some point at which u(zo) = O. We set 

f n(,-, u, = - < r } / ,  N ( r ,  u, = n ( t , , , ,  Uol dt 
- t 

Because u(zo) = O, the Jensen formula yields 

1 fo 2'~ N(r ,  u, zo) = ~ u(zo q- re iO) dO. 

We define the order of the measure/~ at the point z0 as follows: 

p = lim log N(r,  u, z0) = lim log n(r, u, z0) 
r-~--'5 log r r -,---5 log r 

It is easy to see that  the order of the measure/J is the same as the quantity 

p(u, z0) = lim(log maxu(z0 + reie)) / log r, 
~-~o  e 

so it can also be called the order of the function u at the point z0. 

T h e o r e m  1.2. For any polynomial f and any point zo E J ( f )  we have 

1 ad 
p(u I , zo) > - arcctg - - ,  

l r  l r  

where the number  a is given by formula (1.5). 

C o r o l l a r y  1.3. For any periodic point  we have 

X(Z) < r l o g d  (1.8) 
- arcctg a~" 

If a = 0, then (1.7) and (1.8) become precisely bound (1.1). For small a we have 

4adlog d + o(a), a --+ O. ~rlogd = 2 1 o g d +  rr 2 
arcctg 

Thus, for d < 8 and small a inequality (1.8) provides a stronger result than Theorem 1.1. 
For an arbitrary point z0 E J we define the (upper) characterstic exponent according to the formula 

X(zo) = lim l logl ( f~) ' (z0)[ .  
n --4 c~ n 

Recall that  a polynomial is said to be hyperbolic if the trajectories of all of its critical points are at tracted to 
attracting cycles. 

C o r o l l a r y  1.4. I f  f is a hyperbolic polynomial, then (1.8) is satisfied for any point z E J ( f ) .  

The proof of Theorem 1.2 uses the following result from the theory of subharmonic functions; this result is also of 
independent interest. We set 

A(r, u, z0) = inf u(zo + re/e). 

T h e o r e m  1.5. Let u be a subharmonic function in the neighborhood of a point z0, u(zo) = O, and assume that  the 
order o f  the function u at the point  zo is p. Then 

. .  A(r, u, z0) 
lm - -  > r ctg rrp. 

n~0 n(r ,u ,  z0) - 

This theorem is overshadowed by the so-called cos rp  inequalities of the theory of entire and subharmonic functions 
(see, for example, [5-7]). Its proof is a modification of arguments of [6]. 

We now consider the case of a totally disconnected Julia set in which it is possible to obtain a uniform lower bound 
for the characteristic exponent. 
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T h e o r e m  1.6 .  
a < dkb < da. Then 

x(z) > ~ + a k ( d -  2)b 
- ( d - l ?  >_(d -1 )b  

for any periodic point z. 

Corollary 1.7. The Hausdorff dimension of the Julia set satisfies the inequality 

Let a and b be given by formulas (1.5) and (1.6), and assume that k is determined from the conditions 

(1.9) 

(d - 1) k log d log d 
HD(J) <_ a ~ - d ~ b  -< ( d -  1)b" 

In w we will prove the following asymptotic expressions for c ~ or for the family of functions f~ (z) = z n +c,  c E C: 

1 
a~ - b~ = ~ loglcl + o(1), (1.10) 

d-I 
x(z) = .... d loglcl+o(1),  (1.11) 

for any periodic point z = z0. It then follows immediately that bounds (1.7) and (1.9) are asymptotically sharp when 
c ~ oo, while (1.8) in the case under consideration differs from sharp by the factor logd. 

2. P r o o f  o f  T h e o r e m  1.1. We first prove (1.10) and (1.11). The polynomial fc has a unique critical point 0 of 
multiplicity d -  1. Thus, 

a~ = be : lim 1 l o g  + 1~(0)1 = d loglcl + ~ ~ l o g + l  + c . 
n--I.vo k = l  

When we let c go to cr we obtain (1.10). 
I f  Zl  " -  Zc is a periodic point with period n, then 

d z i=z~_  1 + c ,  i = 2 , . . . , n ;  zl = z n + c .  (2.1) 

It follows that  zi --+ ~ as c --+ ~ .  As a result, 

i = 1 -  ( z l . . .  z , )d-1  ~ 0, c~oo, 

so the modulus of at least one factor ( l+c / zd) ,  j = j(c), is small. We now find from (2.1) that  zi /z i-1 ~ 1, z , / z l  ~ 1, 

so Izil d ..~ [cl, c -+ ~ ,  1 < i < n. As a result, 

I L ( z d l  ~ I~l(d-t)/~, ~ -~ oo, 
i=1  

which proves (1.11). 
We can now complete the proof of Theorem 1. 
We have 

ac = lim 1 ,=oo F l~ I~(011" 

The function c ~ ac is continuous [8] and subharmonic in C. It is equal to zero on the set M = {c: J(fc)  is connected}. 
The complement U = C \ M is connected (by the principle of the maximum), and the function ac is positive and 
harmonic in U. Thus, dac is a Green's function for the domain U with a pole at oc. 

Fix a natural number n. It is easy to see that 

x.(c)  = max{x(z): Z z  = z} 

is a subharmonic function in C.  In virtue of (1.1), we have X,~(c) <_ 21ogd on the set M, and in the neighborhood of 
~ ,  by (1.10) and (1.11), we have X,~(c) < ( d -  1)ac + o(1). 
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Application of the principle of harmonic majorants to the domain U yields Xn(c) < 2 logd + (d - 1)at, i.e., (1.7). 
3. P r o o f  o f  T h e o r e m  1.5. Without loss of generality, we assume that z0 = 0. Furthermore, we assume that  u 

is a subharmonic function in C and we have 

u ( z )  = O ( l o g l z l ) ,  z -+  (3 .1)  

(any function that  is subharmonic on a compactum of C can be continued in C with property (3.1)). The function (1.2), 
to which we are preparing to apply Theorem 1.5, already has property (3.1). We obtain the following representation 
from (3.1) and u(0) - 0: 

u(z) = /log[1- dl~r (3.2) 

We set A(r, u) = A(r, u, 0), n(r, u) = n(r, u, 0), N(r,  u) = N(r, u, 0). Let 

v(z) = flog[1-  

where u is a measure that  is concentrated on a negative ray and has the computational function n(r, v) - n(r, u). It 
follows from the inequality log[1 - [u[[ < log[1 - u[ < log(1 + [u[), u E (7, that  A(r ,u)  > A(r,v) = v ( - r ) .  It is 
therefore sufficient to prove the theorem for the function v instead of u. We will need the following 

L e m m a  3.1 (on  P o l y a  p e a k  q). Let ~ be an increasing function, ~(0) = O, 

p lim log ~(r)  -- ~ < O 0 .  
~ 0  log r 

Then there exist sequences rk -+ 0, ek -+ 0, such that 

�9 (r) < ~(rt,) ~ (1 + eta), Ekrt, < r g ~; l r l , .  (3.3). 

If we substitute r -~ oo, rk --~ oo for r --+ O, rk -+ 0 in (3.3) and reverse the inequality, we obtain a well-known 
proposition that is frequently used in number theory and the theory of meromorphie functions of tinite order (for the 
proof,, see, for example, [9]). Our formulation can be reduced to the standard statement by using the substitution 
gJ(r) - 1/~(1/r).  Setting ~(r)  = N(r ,v)  in the lemma, we obtain a sequence of Polya peaks rk -+ 0 such that 

N(r,v) < N ( r k , v ) ( ~ ) P ( l  +ek), ekrk ~_r~_e'~lrk. (3.4) 

We now consecutively examine the subharmonic functions 

(3 .5)  Vk(Z) -- N(rk,V)" 

It is obvious that  

v~(z) = / l o g l l -  ~ dvk, (3.6) 

where the measures vk are defined thus: 
v(rkE) 

uk(E) = N(rk, v)" 

We have the relations ,) 
= ' (3 .7)  

N(rrk, .) (3.8) 
i ( r ,  vk) -- N(ra ,v)  " 

It now follows from the bound n(r, Vk) <_ N(re, vk) and (3.4) that the measures uk are uniformly bounded on compacta. 
Choosing a subsequence, we assume that  uk -+ u0 (convergence in the space conjugate to the space of continuous finite 
functions). 
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Then v~ --+ w0, where wo(z) = f l o g  1 - ~ dvo. The convergence v~ -+ w0 occurs in mean with respect to area in 

each compactum in C,  and also in mean with respect to the 1-measure on each compactum of R.  We have 

n(r, v~) --+ n(r, wo), N(r, vk) ='+ N(r,  w0). (3.9) 

It follows from (3.4) and (3.8) that 

N(r ,  w 0 ) < r  p, 0 < r < o o ,  N(1, w 0 ) = l .  (3.10) 

The theorem will be proved if we prove that 

For this we consider the auxilliary function 

wo(-1)  
n(1, w0) 
- - > _ r c t g r p .  (3.11) 

fo ~ 1 rei~ 7rprP wl(reie) = p2 log + - - ~  t p-1 dt = sin--C~ 101 _< r 

(the equation follows from Jensen's formula). We have 

n(r, Wl) -" pr p, (3.12) 

N(r,  wl) = r p, (3.13) 

w l ( - 1 )  = lrpctg rp. (3.14) 

Note that  the function N(r ,  w0) is convex with respect to logarithms. As a result, it follows from (3.10) that  N(r ,  w0) 
is differentiable at the point 1 and 

n(1,wo) = dldgrN(r, wo)lr=l - d(r") dl-i-og l __l =p- (3:15) 

We will now show that w0(-1)  >__ Wl(-1) .  Both of the functions w0 and wl are harmonic in the plane cut along 
a negative ray. We set 

wj(re i~ d~, O < O < ~r, j = O, 1. w;(re'~ = V .  o 

It is easy to see that the functions w~ are harmonic in the upper halfplane (w~ is a trivial special case of Baernstein's 
*-function; see, for example, [10, 11]). 

We have w~ (r) = w~ (r) = 0, r > 0, 

w~(-r)  = N(r, wo) < r p = N(r, wl) = w[(-r) ,  r > O, (3.16) 

in virtue of (3.10) and (3.13). It follows, by the Phragmen-Lindelof theorem, that 

w;(z) < w~(z), Imz > 0. (3.17) 

Furthermore, in virtue of (3.10) and (3.13), we have w~(-1)  = w~(-1) ,  which, together with (3.17), yields 

Ow~(ei~ > Ow~(ei~ I 
O0 o=~ - O0 o=~" 

But ~ o 0  e=~ = ~ w j ( - 1 ) ,  so w0(-1)  >_ w l ( - 1 )  = 7rpctg 7rp, which, together with (3.15), yields (3.11). 

The theorem is proved. 
4. P r o o f  o f  T h e o r e m  1.2 a n d  C o ro l l a r i e s  1.3 a n d  1.4. To prove Theorem 1.2 we consider two cases: 
a) the point z0 is contained in a connected Julia-set component with more than one point. Then Air, u, z0) = 0 

1 1 ~4; for a subharmonic function u and sufficiently small r; by Theorem 1.5, we now have p >_ 7 > 7 arcctg 
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b) the point z0 is a comnnected component of the Julia set J. We set E0 = {z: u(z) <_ a}. The set E0 is connected, 
so a is the largest critical value of the function u. Let Ek be the connected component of the set f -k(Eo) containing 
the point z0. In other words, Et, is the connected component of the set {z: u(z) <_ ad -k} containing the point z0 (see 
(1.3)). It follows from (1.4) that 

i~(Ek) >_ d -k (4.1) 

(/J(E0) = 1, since supp/J = J C E0). Since z0 is the connected component of the set J, we have 

o o  

N = (4 .2)  
k=0 

Let Dr be a circle with center at the point z0 and radius r small enough for Cr = ODr to intersect E0. Let k(r) be 
the smallest natural number such that Ej,(r) C Dr (the existence of such a number is implied by (4.2)). It follows from 
(4.1) that 

u(Dr) _> #(Ek(r)) >_ d -k. (4.3) 

By the definition of the number k(r), the set Ek(r)-i is not contained in Dr. Since Ek(r)-i is connected and contains 
z0, it must intersect Cr, so 

A(r, u, zo) <_ ad -k+l. (4.4) 

It follows from (4.3) that n(r, u, z0) > d -~. Thus, for all sufficiently small r > 0, 

A(r, u, zo) < ad. 
- 

Application of Theorem 1.5 finishes the proof of Theorem 1.2. 
To prove the corollaries we will need 

P r o p o s i t i o n  4.1. Let Zo E J( f ) ,  and use rn(zo) to denote the radius of the largest disk centered at P zo that contains 
a univalent branch gn of the function f - "  with the property g~(fnzo) = zo. We assume that 

r(z0) = lim r,(z0) > 0. (4.5) 
r l - - +  Oo 

T ~ e n  
log d 

z o )  - x ( z o )  

(the upper characteristic exponent X(Zo) for any point zo E J( f )  is defined in w 

Proof .  The function g,~ is univalent in the disk {z: [z - f"z0[ < r(z0)}. According to the "distortion the- 
orem," half the disk {z: [ z -  r'zo[ < �89 can be mapped onto an oval with bounded distortion E~,, where 
t,, = diamEn • [(p)'z0[ -1 (the symbol • indicates that a variable is bounded above and below by positive absolute 
constants). By the definition of the characteristic exponent, 

lim l o g t , , - - X ( z o ) .  
r , . . -+ o o  n 

On the other hand, 
u(En),-,d , 

It follows that 

log t~(E,~) 
--+ - log d. 

n 

lim logtn _ X(zo) 
.~oo log #(En) logd" 

Because the function n(t, u, zo) is monotonic and log#(E,+l)  - logp(En) = O(1), it follows that 

log r _ X(z0) 
lim 
r~0 log n(r, u, zo) log d 
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o r  
p(u, zo) = lim log n(r, u, zo) _ logd 

r -~"--'6 log r X(zo)" 

We should note that  condition (4.5) is satisfied in two cases: 
a) f is an arbitrary polynomial and z0 is a periodic point; 
b) f is a hyperbolic polynomial and z0 E J( f )  is any point. 
Thus, Corollaries 1.3 and 1.4 follow from Theorem 1.2 and Proposition 4.1. 
5. P r o o f  o f  T h e o r e m  1.6 a n d  C o r o l l a r y  1.7. 
We will use the method of extremal lengths [12], and we denote the modulus of a family of curves r by M(F) - 

A(F) -1, where A is the extremal length. An immediate consequence of the definition of modulus is 

L e m m a  5.1. Let F be a family of pairwise disjoint curves filling a domain U, and let g: U ~ g(U) be a holomorphic 
mapping with two properties: 

(i) if71,72 E F, 3'1 ~ 3'2, then g(71) M g(7~) = {~; 
(ii) g: 7 "+ g(7) is a covering of  degree no greater than N. 
Then M(r) > M(g(r))/N. 
We label the critical points cl, c2 , . . . ,  c~_1 of the polynomial f so that  u l > us >_ . . .  > u~_l, where ui = u! (c,.), 

and, in particular, ua = a, u~-I = b. 
We can assume that  dtui r uj, i ~ j, l E Z.  If we can prove the theorem for this case, we can obtain the general 

case from the continuity of the mappings (z, f )  ~+ ul(z) and (z, f )  ~-+ X(Z). 
It follows from this assumption that  each component of the level curve L(p) -- {z: u(z) - p} is either a simple 

closed real analytic curve, or a figure-eight shaped curve (which occurs when p = u~d -l, l E Z+). 
The Batcher function [2, 8] conformally maps the annulus {z: Ul < u(z) < dul} onto the annulus {z: e" '  < ]z[ < 

e du l  }, SO 

M(r0) = (d-  1)u~ ' (5.1) 

where F0 = {/(p):  ul < p < dul}. 
Let z E J and n E N .  We use ['n = Fn(z) to denote the set of components of the level lines L(p), u l / d  n < 

p < wild n- l ,  that  include the point z. We now find a lower bound for M(rn(z)) .  Note that  for any singly-connected 
domain V bounded by a component of the level line L(p), the mapping f :  V -+ f (V)  is an N-sheeted branching 
covering, where N - 1 is equal to the number of critical points of the function f in V. As a result, the M(Fn) are 
equal when n >_ k, where k E N is given by the condition 

u~d -k < ua-~ < uld -k+l 

(i.e., k is consistent with the conditions of Theorem 1.6). 
The family Fk splits into two parts: the curves 7p C Lp that  include the critical point Cd-1 (if Ud-1 < p < uld-k+l),  

and the curves that  do not include critical points (if uld -k < p < ud-1). The function fk maps rk onto r0. It follows 
from (5.1), Lemma 5.1, and the properties of extremal lines that  

M(rk)>~ ~_-T)T_ ~ + ( d - l )  k ] (5.2) 

Now, let z0 be a periodic point with period m, A = (fro)' x (z0), X(Zo)= ~ l o g  Iml, 

rn-1  

r = (.J r . + l ( z 0 )  (5.3) 
i=O 

The curves of the family F separate boundary components of the annulus K, which is bounded by certain curves 
71 C L(ad -'~-m) and 7~ C L(ad-").  Since the family Fi is pairwise disjoint, we have, in view of (5.2), 

m a + d k ( d -  2)b 
M(K) > M(r )  >__ ~ ( d -  1) k (5.4) 

(M(K) is the modulus of the annulus K [12]). 
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We now obtain an upper bound for M(K). If n is large, the annulus K lies in a small neighborhood of the 
point z0. By Schroder's theorem [2], there exists a holomorphic change of coordinates in the neighborhood of the 
point z0, ( = r r = 0, that linearizes the transformation fro. We set K ~ = r The mapping ( ~-~ A- l (  
transforms the outer boundary component of the annulus K* into the inner. If we choose a conformal metric with 
density p(() = (2rrl(l) - t  in the annulus, we find that the length of closed curves separating the boundary components 
is no less than 1, and the area of the annulus in this metric is no more than (2~r) -1 loglA t. As a result, the extremal 
length is larger than or equal to 21r(log IAI) - t  and 

1 
M(K) = M(K*) <_ ~ log JA I. 

Together with (5.4), this relation proves Theorem 1.6. 
In order to derive Corollary 1.7, we note that the polynomial [ is hyperbolic if b > 0. In order to compute the 

Hansdorff dimension of the Julia set of a hyperbolic polynmial, we can use a thermodynamic formalism [13, 14]. 
We set 

P(t) = lim llog E l([~)'(z)Ft' t e R, (5.5) 
n-d-co n 

zEPer~ 

where Pern is the set of points with period n. The limit in (5.5) exists and is called pressure. The function t ~ P(t) 
is a strictly decreasing function and has a unique zero at the point t = HD(J) > 0. It follows from Theorem 1.7 that 
l(fn)'(z)l > e ~x for any point z E Pern, where )C satsifies (1.9). It thus follows that P(t) < logd- t;~, which implies 
the desired bound for HD(J). 
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