
quantum affine algebras of type A~ (the Kats-Moody quantum algebras were introduced indepen- 
dently in [8, I]). 

The author thanks A. V. Zelevisnkii for useful advice. 
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A HYPOTHESIS OF LITTLEWOOD AND THE DISTRIBUTION OF VALUES 

OF ENTIRE FUNCTIONS 

A. ~. Eremenko and M. L. Sodin UDC 517.53 

For a function f, meromorphic in C, we denote by 0f the spherical derivative 0f(z) = 
If'(~)I/(1+If(~)l~). Let O(r)={~:l~l~}, and let me be Lebesgue measure in C. Following Little- 

wood [I], we consider the quantities ~(~)=sup II pf~m~,~N, where the upper bound is taken 
~ ~i)  

over all polynomials f Of degree n. We denote analogous quantities for rational functions by 
~(n). It follows from the Schwarz--Bunyakovskii inequality that 

~m~l < ~ ~ ~" ( II Ii - 
D(O D(~) 

The best known lower bounds were obtained by Hayman [2]: ~(,)>A~lo~n, $(,)>A~ Here and in 
the sequel the A k are absolute constants. In [I] it was conjectured that 

~ (.)< ~'/,-~ (I) 

for some ~ > 0. 

THEOREM I. ~ (~) = o (fD, . ~ ~. 

From the hypothesis (I) Littlewood derived a remarkable result, which may be stated thus: 
For an arbitrary entire function f of finite nonzero order an infinitely small portion S of 
the plane can be found such that for almost all w the roots of the equation f(z) = w lie in 
S, with a negligible exception. The analysis of elliptic functions in [2] shows that this 
assertion is invalid if entire functions are replaced by meromorphic functions. 

Example. f(z) = exp z. We can put S= {z+~:l~I>z~}. For an arbitrary w all the roots 
of the equation f(z)= w, with the exception of a finite number, belong to S. The set S has 
zero density, m~(S~D (7))= o(r~),r~. 
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THEOREM 2. Let f be an entire function of finite order, and let X(r) be its.proximate 
order. Then there exists a set S c C of zero density such that for an arbitrary w ~ C the 

relation n(r, w)= ns(r, w)+o(r~r)),r~ is satisfied. Here ns(r , w) is the number of roots of 
the equation f(z) = w in S ~D (r). 

The proofs of Theorems I and 2 are based on an elementary lemma from potential theory, 
a particular case of which is contained in [3, 4]. 

LEMMA. Let u ~ 0 be a subharmonic function and let p be its Riesz measure. Then (z: 
u(z) = 0} = E ~ L, where ~(E) = O, m2(L) = 0. 

As E we can take a set of points having the density of the set 

Proof of Theorem I. We assume that we can find an infinite set of numbers ~ and poly- 
nomials fn, deg~= n~ N~, such that 

I f  P~ drnz ~ A~ ]/'-~, n ~ N~. 
D(~) 

We consider the family of subharmonic functions ~(z) = ~iog ~-~l ]~ (~)~ 
A direct calculation shows that the Laplacian 

In particular, ~n(C) = I. 
disk ~ (r),r>O,n~N=~N~. 

~o. liminf Vn < +~. 

(2)  

with Riesz measures ~n ~ 

2 
A~ (z) = -~- ~ (~). (3) 

Selecting a subsequence, we can assume that ~n ÷ ~ weakly in each 
Two cases are possible 

Selecting a subsequence, N~~N~, we assume that v n ÷ u in the mean 
disk, n ~ Na . Applying the lemma to the function u ~> 0, we obtain three sets M, L, E such 
that u > 0 on M, p(E)=O,w~z(L)=O,D(1)=M~)L~IE.. We fix an ~ > O, sufficiently small. We 
select 6, 0 < 6 < ~, so that the set M = {z~D(1):u(z)~26} will possess the property m=(M\ 
M') < ~. Following this, we select a closed set E' ~ E so that the inequality rn=(E\E')<e 
is satisfied. It is obvious that ~(E') = 0; therefore, for sufficiently large n~Na, we have 

t~ (~') < ~. (4 )  

L e t  us  p u t  L ' = D ( I ) \ ( E '  [_J M'). Then 

m~ (L') < 2a. (5)  

From the convergence of v n ÷ u it follows that sets Ln can be found such that 

rn~(Ln)<~andv~( z )~ i~  for z ~ ' \ L ~ ,  n ~ N ~ .  ( 6 )  

For an arbitrary measurable set T ~ D(1) the Schwarz--Bunyakovskii inequality yields 

fi Pfdm~<(mzTII p'dm'~)' ~/~ • (7)  
T T 

If in inequality (7) we put ~= L'~J L~ , we obtain, by virtue of the relations (5) and (6), 

f i  P f = d m ' ~ ( 3 a l l  = "  \~/2~ P/n arnz) % K~"~-'~, n ~ N~. 
L ' ~ L  n /)(1) 

Choosing T = E' in inequality (7) and applying relations (3) and (4), we obtain 

If dm.  < n 
E" 

(9) 

We note now, by virtue of inequalities (6), that the image of the set M' \Ln under the action 
of the function fn has a spherical area not exceeding 2~nexp (--2n~) (taking multiplicity into 
account). Applying inequality (7) with T = M' \Ln, we obtain 

II P~ndmz ~< (a .2nnexp  (-- 2n5))~/~----- o(t) ,  n ~ Na. 
M ' \ L  n 

Adding this relationship to inequalities (8) and (9), we obtain a contradiction with inequal- 
ity (2). 
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2 ° • Vn ÷ +=o. Then, for sufficiently large u~N= , we have Vn(Z) ~ I for ~D(I)\L~, 
where ma(Ln) ÷ 0. We then reason as we did in I ° 

This completes the proof of the theorem. 

Conjecture. Let 0 ~ u ~ I be a subharmonic function in D(1). For arbitrary g > 0 we 
have {~: ~(~) < ~ = L~ ~ ~, where ~(~)~ ~, m~(L~)~ ~ , with some absolute constant B > 0. 

The proof of Theorem I shows that this conjecture would imply the inequality (I) with 
~ < B/2. 

The authors wish to thank V. S. Azarin, S. U. Favorov, and A. L. Vol'berg for a useful 
discussion of this paper. 

1. 

2. 
3. 
4. 

LITERATURE CITED 

J. E. Littlewood, J. London Math. Soc., 27, No. 4, 387-392 (1952). -- 

W. K. Hayman, J. d'Analyse Math., 36, 75-95 (1979). 
B. @ksendal, Am. J. Math., 9--4, 331-342 (1972). 
B. ~ksendal, Pac. J. Math., 95, 179-~92 (1981). 

DYNAMICS OF THE CALOGERO-~MOSER SYSTEM AND THE REDUCTION OF 

HYPERELLIPTIC INTEGRALS TO E~LIPTIC INTEGRALS 

A. R. Its and V. Z. ~nol'skii UDC 517.946 

We consider the algebraic curve C = (~, ~), 

~3 _ 3~ (=) -- ~t (=) = 0, ~r~ = ~3 _ g2~ -- g3, ( I ) 

the three-sheeted covering torus ~f=(~,~t) [2],~:~-~f. The curve (~) represents one of the 
curves ~ , introduced by Krichever [~]: det ~L--~E~= 0. E~= ~O, L~= (~--i) ~.~+8Oy~/~ , ~ =  

~ (~ _ ~; ~), ~, ~ = ~ ..... n, ~ (~; ~) = ~ (~ -- ~) ~p {~(~) ~/ ~ (~) ~ (~) , whose coefficients Ii .... ,In are 
the motion integrals of the Caloger~oser system 

--~' I ~ --~'~' P~=P(~--~)' ~= ~(g+l) (2) 
H= ~-- . . " 2 ' g~" 

~=I ~ 

if the quantities lj(x, y), j = ~,...,n, are defined on the locus ~ [3], 

~ = ~);~ = 0, ~ = ~ ..... ~; ~ ~, ~ = {(~); .~ ~$~ = 0, ~ = ~ .... , ~> 

[i.e., on the set of fixed points of (2)], then for n = 3 the curve ~'~ has the form (~). 

LE~. The curve C is birationally equivalent to the curve ~ = (z, w), 

~ = (~ -- ~) (~ + 3~) (~ + ~) (~ + 3~). (3) 

Proof. The curve C has genus g = 2 (the number of branchings of ~M is equal to two) 
and therefore it is hyperelliptic. In the neighborhoods of the points at infinity P~ ~ C, 
j = ~, 2, 3 (situated over ~ = 0), the expansion of %(~) has the form %=~/=~=~+O(=~), 
%=~2/~+=~/36+O(=~), respectively. Therefore, the meromorphic function of second order z = 
(~--~(=))/~ establishes on C a canonical hyperelliptic structure (the point P~ is a Weierstrass 
point). The asserted birational equivalence of the curves (~) and (3) follows from the equal- 
ity 

~ = (~/2? + ~) (~/~ -- ~,)-~, (4) 

which is proved by inserting z into (~). ~ The equality (4) gives the covering ~: ~ ~ 
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