quantum affine algebras of type A_n^1 (the Kats-Moody quantum algebras were introduced independently in [8, 1]).

The author thanks A. V. Zelevisnkii for useful advice.

LITERATURE CITED

- 1. V. G. Drinfel'd, "Hopf algebras and the quantum Yang-Baxter equation," Dokl. Akad. Nauk SSSR, 283, No. 5, 1060-1064 (1985).
- 2. I. N. Bernshtein and A. V. Zelevinskii, "Representations of the group GL(n, F), where F is a local Archimedean field," Usp. Mat. Nauk, 31, No. 3, 5-70 (1976).
- J. D. Rogawski, "On modules over the Hecke algebra of a p-adic group," Invent. Math., 79, No. 3, 443-465 (1985).
- 4. G. Lusztig, "Some examples of square integrable representations of semisimple p-adic groups," Trans. Am. Math. Soc., 277, No. 2, 623-653 (1983).
- A. Borel, "Admissible representations of a semisimple group over a local field with vectors fixed under an Twahori subgroup," Invent. Math., 35, 233-259 (1976).
 H. Matsumoto, Analyse Harmonique dans les Systems de Tits Bornoloques de Type Affine,
- 6. H. Matsumoto, Analyse Harmonique dans les Systems de Tits Bornoloques de Type Affine, Lect. Notes in Math., Vol. 590, Springer-Verlag, Berlin-New York (1977).
- 7. M. Jimbo, RIMS Preprint No. 517, Kyoto Univ. (1985).
- M. Jimbo, "A q-difference analogue of U(g) and the Yang-Baxter equation," Lett. Math. Phys., 10, No. 1, 63-69 (1985).

A HYPOTHESIS OF LITTLEWOOD AND THE DISTRIBUTION OF VALUES

 $\psi(n)$. It follows from the Schwarz-Bunyakovskii inequality that

OF ENTIRE FUNCTIONS

A. E. Eremenko and M. L. Sodin

For a function f, meromorphic in C, we denote by ρ_f the spherical derivative $\rho_f(z) = |f'(z)|/(1+|f(z)|^2)$. Let $D(r) = \{z: |z| \leq r\}$, and let m_2 be Lebesgue measure in C. Following Littlewood [1], we consider the quantities $\varphi(n) = \sup_{j} \iint_{D(1)} \rho_j dm_2, n \in \mathbb{N}$, where the upper bound is taken over all polynomials f of degree n. We denote analogous quantities for rational functions by

$$\varphi(n) \leqslant \psi(n) \leqslant \left(\iint_{D(1)} dm_2 \sup_{j} \iint_{D(1)} \rho_j^2 dm_2 \right)^{1/2} \leqslant \pi \sqrt{n}.$$

The best known lower bounds were obtained by Hayman [2]: $\varphi(n) \ge A_1 \log n$, $\psi(n) \ge A_2 \sqrt{n}$. Here and in the sequel the A_k are absolute constants. In [1] it was conjectured that

$$\varphi(n) \leqslant A_3 n^{1/2-\alpha} \tag{1}$$

for some $\alpha > 0$.

<u>THEOREM 1.</u> $\varphi(n) = o(\sqrt{n}), n \to \infty$.

From the hypothesis (1) Littlewood derived a remarkable result, which may be stated thus: For an arbitrary entire function f of finite nonzero order an infinitely small portion S of the plane can be found such that for almost all w the roots of the equation f(z) = w lie in S, with a negligible exception. The analysis of elliptic functions in [2] shows that this assertion is invalid if entire functions are replaced by meromorphic functions.

Example. $f(z) = \exp z$. We can put $S = \{x + iy : |y| > x^2\}$. For an arbitrary wall the roots of the equation f(z) = w, with the exception of a finite number, belong to S. The set S has zero density, $m_2(S \cap D(r)) = o(r^2), r \to \infty$.

Physicotechnical Institute of Low Temperatures, Academy of Sciences of the Ukrainian SSR. Kharkov Institute of Radio-Electronics. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 20, No. 1, pp. 71-72, January-March, 1986. Original article submitted December 26, 1984.

UDC 517.53

<u>THEOREM 2.</u> Let f be an entire function of finite order, and let $\lambda(\mathbf{r})$ be its proximate order. Then there exists a set $S \subseteq C$ of zero density such that for an arbitrary $\mathbf{w} \in \mathbf{C}$ the relation $n(r, w) = n_S(r, w) + o(r^{\lambda(r)}), r \to \infty$ is satisfied. Here $n_S(r, w)$ is the number of roots of the equation f(z) = w in $S \cap D(r)$.

The proofs of Theorems 1 and 2 are based on an elementary lemma from potential theory, a particular case of which is contained in [3, 4].

<u>LEMMA.</u> Let $u \ge 0$ be a subharmonic function and let μ be its Riesz measure. Then $\{z: u(z) = 0\} = E \cup L$, where $\mu(E) = 0$, $m_2(L) = 0$.

As E we can take a set of points having the density of the set

<u>Proof of Theorem 1.</u> We assume that we can find an infinite set of numbers N_1 and polynomials f_n , deg $f_n = n \in N_1$, such that

$$\iint_{D(1)} \rho_{j_n} dm_2 \ge A_4 \sqrt{n}, \quad n \in \mathbb{N}_1.$$
⁽²⁾

We consider the family of subharmonic functions $v_n(z) = \frac{1}{n} \log \sqrt{1 + |f_n(z)|^2}$ with Riesz measures μ_n . A direct calculation shows that the Laplacian

$$\Delta v_n(z) = \frac{2}{n} \rho_{f_n}^2(z).$$
(3)

In particular, $\mu_n(\mathbf{C}) = 1$. Selecting a subsequence, we can assume that $\mu_n \rightarrow \mu$ weakly in each disk $D(r), r > 0, n \in \mathbb{N}_2 \subset \mathbb{N}_1$. Two cases are possible

1°. liminf $v_n < +\infty$. Selecting a subsequence, $N_3 \subset N_1$, we assume that $v_n \rightarrow u$ in the mean disk, $n \in N_3$. Applying the lemma to the function $u \ge 0$, we obtain three sets M, L, E such that $u \ge 0$ on M, $\mu(E) = 0, m_2(L) = 0, D(1) = M \cup L \cup E$. We fix an $\varepsilon \ge 0$, sufficiently small. We select δ , $0 < \delta < \varepsilon$, so that the set $M = \{z \in D \ (1): u \ (z) \ge 2\delta\}$ will possess the property $m_2(M \setminus M') < \varepsilon$. Following this, we select a closed set $E' \subseteq E$ so that the inequality $m_2(E \setminus E') < \varepsilon$ is satisfied. It is obvious that $\mu(E') = 0$; therefore, for sufficiently large $n \in N_3$, we have

$$\mu_n\left(\mathcal{E}^{*}\right) < \varepsilon. \tag{4}$$

Let us put L' = D (1) $\setminus (E' \cup M')$. Then

$$m_2(L') < 2\varepsilon. \tag{5}$$

From the convergence of $v_n \not \rightarrow u$ it follows that sets L_n can be found such that

 $m_2(L_n) < \varepsilon \text{ and } v_n(z) \ge \delta \text{ for } z \in M' \setminus L_n, \quad n \in \mathbb{N}_3.$ (6)

For an arbitrary measurable set T \subset D(1) the Schwarz-Bunyakovskii inequality yields

$$\iint_{T} \rho_{f} dm_{2} \leqslant \left(m_{2}T \iint_{T} \rho_{f}^{2} dm_{2}\right)^{1/2}.$$

$$\tag{7}$$

If in inequality (7) we put $T = L' \cup L_n$, we obtain, by virtue of the relations (5) and (6),

$$\iint_{L'\cup L_n}\rho_{j_n}\,dm_2\leqslant \left(\Im\epsilon \iint_{D(1)}\rho_{j_n}^2\,dm_2\right)^{1/2}\leqslant \sqrt{\Im\epsilon\pi n},\quad n\in\,\mathbf{N}_3$$

Choosing T = E' in inequality (7) and applying relations (3) and (4), we obtain

$$\iint_{E'} \rho_{f_n} dm_2 \leqslant (\pi^2 n \mu_n (E'))^{1/2} \leqslant \pi \sqrt{n\varepsilon}, \quad n \in \mathbb{N}_3.$$
(9)

We note now, by virtue of inequalities (6), that the image of the set $M' \setminus L_n$ under the action of the function f_n has a spherical area not exceeding $2\pi n \exp(-2n\delta)$ (taking multiplicity into account). Applying inequality (7) with $T = M' \setminus L_n$, we obtain

$$\iint_{M \searrow L_n} \rho_{j_n} dm_2 \leqslant (\pi \cdot 2\pi n \exp\left(-2n\delta\right))^{1/2} = o(1), \quad n \in \mathbb{N}_3.$$

Adding this relationship to inequalities (8) and (9), we obtain a contradiction with inequality (2). 2°. $v_n \rightarrow +\infty$. Then, for sufficiently large $n \in N_2$, we have $v_n(z) \ge 1$ for $z \in D(1) \setminus L_n$, where $m_2(L_n) \rightarrow 0$. We then reason as we did in 1°.

This completes the proof of the theorem.

Conjecture. Let $0 \le u \le 1$ be a subharmonic function in D(1). For arbitrary $\varepsilon > 0$ we have $\overline{\{z: u(z) < \varepsilon\}} = L_{\varepsilon} \cup E_{\varepsilon}$, where $\mu(E_{\varepsilon}) \le A_{5}\varepsilon^{\beta}$, $m_{2}(L_{\varepsilon}) \le A_{5}\varepsilon^{\beta}$, with some absolute constant $\beta > 0$.

The proof of Theorem 1 shows that this conjecture would imply the inequality (1) with $\alpha < \beta/2$.

The authors wish to thank V. S. Azarin, S. U. Favorov, and A. L. Vol'berg for a useful discussion of this paper.

LITERATURE CITED

1. J. E. Littlewood, J. London Math. Soc., <u>27</u>, No. 4, 387-392 (1952).

2. W. K. Hayman, J. d'Analyse Math., 36, 75-95 (1979).

3. B. Øksendal, Am. J. Math., 94, 331-342 (1972).

4. B. Øksendal, Pac. J. Math., 95, 179-192 (1981).

DYNAMICS OF THE CALOGERO-MOSER SYSTEM AND THE REDUCTION OF HYPERELLIPTIC INTEGRALS TO ELLIPTIC INTEGRALS

A. R. Its and V. Z. Enol'skii

We consider the algebraic curve $C = (\alpha, \lambda)$,

$$\lambda^{3} - 3\lambda^{0}(\alpha) - \delta^{\prime}(\alpha) = 0, \quad \delta^{\prime 2} = 4\delta^{3} - g_{2}\delta - g_{3}, \tag{1}$$

UDC 517.946

the three-sheeted covering torus $M = (\mathscr{F}, \mathscr{F}')$ [2], $\pi_M: C \to M$. The curve (1) represents one of the curves \mathscr{H}_n , introduced by Krichever [1]: det $||L - \lambda E|| = 0$, $E_{ij} = \delta_{ij}$, $L_{ij} = (\delta_{ij} - 1) \Phi_{ij} + \delta_{ij}y_i/2$, $\Phi_{ij} = \Phi(x_i - x_j; \alpha)$, $i, j = 1, \ldots, n, \Phi(x; \alpha) = \sigma(x - \alpha) \exp\{\zeta(\alpha) x\} / \sigma(x) \sigma(\alpha)$, whose coefficients I_1, \ldots, I_n are the motion integrals of the Calogero-Moser system

$$H = \sum_{j=1}^{n} \frac{1}{2} y_j^2 - \sum_{i \neq j} \mathfrak{F}_{ij}, \quad \mathfrak{F}_{ij} = \mathfrak{F}(x_i - x_j), \quad n = \frac{g(g+1)}{2}, \quad g \in \mathbb{N}.$$
 (2)

if the quantities $I_{j}(x, y)$, j = 1, ..., n, are defined on the locus \mathscr{L}_{n} [3],

$$\mathcal{L}_n = \{(y) \mid y_j = 0, \ j = 1, \dots, n\} \times I_n, \quad l_n = \{(x) \mid \sum_{j \neq i} \mathcal{B}'_{ij} = 0, \ i = 1, \dots, n\}$$

[i.e., on the set of fixed points of (2)], then for n = 3 the curve \mathcal{K}_n has the form (1).

LEMMA. The curve C is birationally equivalent to the curve $\hat{C} = (z, w)$,

$$w^{2} = (z^{2} - 3g_{2})(z + 3e_{1})(z + 3e_{2})(z + 3e_{3}).$$
(3)

<u>Proof.</u> The curve C has genus g = 2 (the number of branchings of π_M is equal to two) and therefore it is hyperelliptic. In the neighborhoods of the points at infinity $P_j \in C$, j = 1, 2, 3 (situated over $\alpha = 0$), the expansion of $\lambda(\alpha)$ has the form $\lambda = 1/\alpha \pm \alpha \sqrt{g/12} + O(\alpha^3)$, $\lambda = -2/\alpha \pm \alpha^3 g_2/36 \pm O(\alpha^5)$, respectively. Therefore, the meromorphic function of second order $z = (\lambda^2 - \sqrt[6]{\alpha})/3$ establishes on C a canonical hyperelliptic structure (the point P₃ is a Weierstrass point). The asserted birational equivalence of the curves (1) and (3) follows from the equality

 $\mathscr{V} = (q^3/27 + g_3) \ (z^2/3 - g_2)^{-1}, \tag{4}$

which is proved by inserting z into (1). The equality (4) gives the covering $\pi_{M}: \hat{\mathcal{C}} \to M$.

Leningrad State University. Institute of Theoretical Physics, Academy of Sciences of the USSR. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 20, No. 1, pp. 73-74, January-March, 1986. Original article submitted December 24, 1984.

62