quantum affine algebras of type A4 (the Kats—Moody quantum algebras were introduced indepen-
dently in [8, 1]).

The author thanks A. V. Zelevisnkii for useful advice.
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A HYPOTHESIS OF LITTLEWOOD AND THE DISTRIBUTION OF VALUES
OF ENTIRE FUNCTIONS

A. E. Eremenko and M. L. Sodin UDC 517.53

For a function f, meromorphic in C, we denote by pf the spherical derivative pg(z) =
1F @1 /0+17@EP,. Let D= {z{z|<r}, and let my; be Lebesgue measure in C. Following Little-

wood [1], we consider the quantities ¢(r)=sup “ p;dmyn = N, where the upper bound is taken
, b
over all polynomials f of degree n. We denote analogous quantities for rational functions by

v(n). It follows from the Schwarz—Bunyakovskii inequality that

ot < v < ({§ amasup ([ ofam)'’* <z v,
. D) D(1)

The best known lower bounds were obtained by Hayman [2]: ¢ (n) > 4;logn, ¥ ("> 4,/ n. Here and in
the sequel the Ay are absolute constants. In [1] it was conjectured that

@ (n) < 4, n*® (1
for some a > O.
THEOREM 1. ¢ (n) = o (i n), n = oo.

From the hypothesis (1) Littlewood derived a remarkable result, which may be stated thus:
For an arbitrary entire function f of finite nonzero order an infinitely small portion S of
the plane can be found such that for almost all w the roots of the equation f(z) = w lie in
S, with a negligible exception. The analysis of elliptic functions in [2] shows that this
assertion is invalid if entire functions are replaced by meromorphic functions.

Example. f(z) = expz. We can put §={z+4iy:|y[>2%. For an arbitrary w all the roots
of the equation f(z) = w, with the exception of a finite number, belong to S. The set S has
zero density, m,(SND (1) = o (), r — oo.
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THEOREM 2. Let f be an entire function of finite order, and let A(r) be its proximate
order. Then there exists a set § C C of zero density such that for an arbitrary w € C the

relation n(r, w)=ng(r, w)+ o ("), r— o0 is satisfied. Here ng(r, w) is the number of roots of
the equation £(z) = w in § N D (.

The proofs of Theorems 1 and 2 are based on an elementary lemma from poteﬁtial theory,
a particular case of which is contained in [3, 4].

LEMMA. Let u 2 0 be a subharmonic function and let y be its Riesz measure. Then {z:
u(z) =0}=E( L, where u(E) = 0, mp(L) = 0.

As E we can take a set of points having the density of the set

Proof of Theorem 1. We assume that we can find an infinite set of numbers Ni and poly-
nomials fp, degfn =ne Ny, such that

S o dmy>A V7, ne Ny (2)
D

1)

. . . 4 s . .
We consider the family of subharmonic functions v, (z)=--log V1+17,@®F with Riesz measures Hp -
A direct calculation shows that the Laplacian

2
Bo, (0) = =0} (2). (3)
In particular, un(C) = 1. Selecting a subsequence, we can assume that gy > d weakly in each

disk D (r), r>0,n=N,CN;. Two cases are possible

1°. liminf vy < +e. Selecting a subsequence, Ny C N, we assume that v, -~ u in the mean
disk, n=N;. Applying the lemma to the function u 2 O, we obtain three sets M, L, E such
that u > 0 on M, p(E) =0, m({L)=0,D N)=M|JL{JE. We fix an € > 0, sufficiently small. We
select §, 0 < & < g, so that the set M ={z=D (1): u(2) > 28} will possess the property m, (¥ \
M') < e. Following this, we select a closed set E' C E so that the inequality me(E\E')<Ce
is satisfied. It is obvious that u(E') = 0; therefore, for sufficiently large » &N, we have

a (E) <. (4)
Let us put L =D 1)\ (E'U M'). Then
mg (L') < 2e. (5)
From the convergence of vy » u it follows that sets Lp can be found such that
me(Lp) < eandvn (3) >0 for ze& M '\ Ln, ne N, ) (6)
For an arbitrary measurable set T C D(1) the Schwarz—Bunyakovskii inequality yields
(o rr im g
T T
If in inequality (7) we put T=L'| L, , we obtain, by virtue of the relations (5) and (6),

SS pfn dmg < (38 SS p?n dmg)ll2 < V3Ean, neNa

n D)

Choosing T = E' in inequality (7) and applying relations (3) and (4), we obtain

($or, ams < (@anp, @<y, N (9

We note now, by virtue of inequalities (6), that the image of the set M'\ 1, under the action
of the function fy has a spherical area not exceeding 2mnexp (—2n8) (taking multiplicity into
account). Applying inequality (7) with T = M'\Lp, we obtain

SS pfn dmy < (@e2nn exp (— 2n6))1/2= o(l), n=N,.
1\1'\1'_"

Adding this relationship to inequalities (8) and (9), we obtain a contradiction with inequal-
ity (2).
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2°. wvp *> +», Then, for sufficiently large n=N,, we have vp(z) 2 1 for z2eD (1) \ Ln,
where mz(Lp) + 0. We then reason as we did in 1°.

This completes the proof of the theorem.

Conjecture. Let 0 € u < 1 be a subharmonic function in D(1). For arbitrary € > 0 we
have {z: u (z) <&} = L, U £, , where p () < A5§5, my (L) < 4% , with some absolute conmstant g > 0.

The proof of Theorem 1 shows that this conjecture would imply the inequality (1) with
o < 8/2.

The authors wish to thank V. S. Azarin, S. U. Favorov, and A. L. Vol'berg for a useful
discussion of this paper.
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DYNAMICS OF THE CALOGERO—MOSER SYSTEM AND THE REDUCTION OF
HYPERELLIPTIC INTEGRALS TO ELLIPTIC INTEGRALS

A. R. Its and V. Z. Enol'skii UDC 517.946

We consider the algebraic curve C = (a, A),

A — 3AP (@) — ¥ (@) =0, §7? =4 — o, — g5, (1)
the three-sheeted covering torus M=%, ¥) [2],m:C— M. The curve (1) represents one of the
curves #, , introduced by Krichever [1]: det |L —AiE|= 0, Ey; = 8ij, Ly = (8ij — 1) Dy 8imi/2, @y =
©zi—z @) b j=1n. 0 ®(z; a)= 0z —a)exp{{(a)z}/ o(z) 6(a) , whose coefficients I1,...,In are
the motion integrals of the Calogero—Moser system

n
1 glg+1
H=Z—z“y?—28"w Ei=0— 2 n=(—z”‘)" geb. 2
i=1 7= :

if the quantities Ij(x, y), j = 1,...,n, are defined on the locus £, [3],

2, ={W)ly;=0,i=1,..,n}x1, ln={(z)|j§@;j=o,i=1,...,n}

[i.e., on the set of fixed points of (2)], then for n = 3 the curve %, has the form (1).
LEMMA. The curve C is birationally equivalent to the curve C = (z, w),
w? = (2% — 3g,) (z -} 3ey) (2 + 3ey) (z + 3eg). (3)

Proof. The curve C has genus g = 2 (the number of branchings of my is equal to two)
and therefore it is hyperelliptic. In the neighborhoods of the points at infinity 2;e=C,
j =1, 2, 3 (situated over a = 0), the expansion of A(a) has the form A=1j/a+aV gl2+ 0 (a3),
A= — 2o} 03 gaf36+ 0 (2%) , respectively. Therefore, the meromorphic function of second order z =
(\* — ¥ (@))/3 establishes on C a canonical hyperelliptic structure (the point P3 is a Weierstrass
point). The asserted birational equivalence of the curves (1) and (3) follows from the equal-
ity , ‘

P = (/27 + gs) (%3 — g™ (4)

which is proved by imserting z into (1). The equality (4) gives the covering sy C - M,
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