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1. Introduction. In [1], Drasin proved the following theorem: Let f be a meromorphic function of finite order p with 

the property 
V 8(a, [)=2. 
a(C 

Then the following assertions are true: 

1) 2p is a natural number _. 2; 

2) 8(a,f) = p(a) /p ,  a E (2, where p(a) is a nonnegative integer (this implies that the number of deficient values is no 

greater than 20); 

3) all deficient values are asymptotic. 

This theorem proves Nevanlinna's conjecture of 1929. The proof of Drasin's theorem is extremely complex and, in 

addition to Nevanlinna's theory, uses a diverse collection of technical devices, such as Ahlfors' theory of covering surfaces, 

quasiconformal mappings, etc. In [2] one of the authors proposed a shorter proof based on Nevanlinna's theory and potential 

theory. In addition to 1)-3), the following assertions were proved: 

4) T (r, f) ,-, : l  1 (r), r---~ oo , where l I is a continuous function with the property that 11(2r) - ll(r), r--> ~ ;  

5) 

{a:6(a,i)>O} 

log l(f-- a~ (re% I = nrO l, (r) [cos p (0 - -  I s (r)) [ -[- o (rot, (r)); 

uniformly with respect to 0 as r ~ oo, re i0 E C o. Here C O is the union of discs with centers at the points z k and radii r k such 
that 

V r~---o(R), R - + ~ ,  
Izkl<R 

while l 2 is a continuous function such that/2(cr) - 12(r) ~ 0 as r --, ~ uniformly with respect to c E [1,2]. 

We will show that assertions 1)-5) can be proved with potential theory alone, and we will obtain a more general result. 

In 1929 Nevanlinna conjectured that the deficiency relation 

Z 6(a, f)~<2 
aEC 

remains valid if the constants a are replaced by meromorphic functions a(z) such that T(r,a) = o(T(r,f)). In this case 6(a, f )  

denotes 6(0,f - a). This hypothesis was recently proved by Osgood [3]. The proof was substantially simplified by Steinmetz 

[4]. It is natural to attempt to generalize Drasin's theorem to "small" meromorphic functions. The authors' attention was drawn 

to this problem during a visit of Yang Lo to Khar'kov in 1988. The following is valid: 

THEOR EM 1. Let f be a meromorphic function of finite lower order, and let S be a set of no more than a countable 

number of meromorphic functions a with the property 

T ( r ,  a ) = o ( T ( r ,  D),  r . -+oo .  (1.1) 
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If  

~5 (a, f) = 2, (1.2) 
a{S 

then assertions 1)-5) are valid. Here 3) indicates that there exists a curve I" extending to o~ such that f(z) - a(z) --, 0 as z --, 

~ , z  E I'. 

Theorem 1 was proved in [5] for entire functions. 

We will not use the Osgood--Steinmetz theorem to prove Theorem 1. Our argument provides a new proof of  this 

theorem for functions f of  finite lower order.* An essentially new element is provided by Theorem 2 below, which replaces 

the fundamental theorem II and Osgood and Steinmetz' generalization. 

Before we state Theorem 2, we will recall some notation from [2]. The difference of  two subharmonic functions is 

called a &subharmonic function. In general, it is only defined quasieverywhere, i.e., inside some set of capacity zero. For a 

&harmonic function v we always set 

2al 1; 
v ( z ) = l i m 2 ~  v ( z + e d  o ) dO 

E~0 
0 

at all points z at which the limit exists. The natural order relation converts the linear space of  &subharmonic functions into 

a lattice (the join u v v = (u - v) + + v and meet u A v = u -- (u -- v) + of  6-subharmonic functions are subharmonic func- 

tions). The Riesz charge is defined for every subharmonic function. There is also a natural order in the charge space: /11 -> 

/12 if/11 - -  tZ2 is a (nonnegative) measure. The charge space with this order relation is a lattice: /11 v /12 = (/*1 - /12) + + 

/*2, where/1+ is the positive part in the Jordan decomposition of the charge/1. 

T H E O R E M  2. Let {Uk}k=1% oa <_ ~ ,  be nonnegative 6-subharmonic functions such that 

• u ~ = ~  uk. (1.3) 
k = l  k = l  

We assume that the Riesz charge/1k of  the function u k is uniformly bounded: /1k -- /1 for some measure/1 and all k. Then 

• 9 k ~ < 2 V  9k. (1.4) 
k = l  k = l  

Our exposition will proceed according to the following plan. In Paragraph 2 we will prove Theorem 1, using Theorem 

2 and the fundamental lemma of  [2, Part II]. In Paragraph 3 we will prove Theorem 2. 

2. Proof of Theorem 1. Without loss of  generality, we can assume that f(0) r ~ and 

from which it follows that 

N( r ,  D ~ T(r ,  [), r - +  0% (2.1) 

m (r, f) ----- o (T (r, D), r -,- 00. (2.2) 

This means that oo is not an exceptional value in the sense of  Valiron. We set T(t) = T(r,f) and define the order p* and the 

lower order p.  in the sense of  Polya: 

P* = sup {p : lim sup T (Br) } 
r , B - - ~  B P T  (r)  - -  o o  ; (2.3) 

p, = inf ~p : lira inf T (Br) } t r,B~= ~ =  0 . (2.4) 

*Our method can also be applied to arbitrary meromorphic functions. It makes it possible to obtain fundamental theorem II with 

small functions instead of  constants, although in the case of infinite order it is necessary to use a slightly stronger smallness 

condition than (1.1). See [6]. 
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We have the inequalities P* -< P < P*. Henceforth we will use O to denote the lower order of  the function f. Furthermore, 

we can show that it coincides with the order. It follows from the hypothesis of  the theorem that p,  < oo. For any X E Lo,,p*] 

there exists a sequence rj --, oo of  Polya peaks of  order X [7]. This means that for some sequence ej --, 0 we have 

T (rri) ~< ( I +  ej) r ~ T (rj), e t ~< r ~< 8~ ~. (2.5) 

We fix an arbitrary h E [p.,p*] and a sequence rj with the property (2.5). 

Consider the &subharmonic functions 
1 

v a = l o g l / _ _ a  I, a E S  

with Riesz charges v a. We define an operator Aj on the function v according to the rule Ajv(z) = v(rjz)/T(rj), and on the charge 

according to the rule Air  (E) = v ( r iE ) /T  (ri) , E ~ C. It is clear that operators defined this way commute with the Laplace 

operator, i.e., the function Ajv has charge Aju. According to the Anderson--Baernstein theorem [8], conditions (2.5) imply 

that the family of  &subharmonic functions {Ajva}j= 1 ~ is relatively compact in the following sense. We can choose a 

subsequence of  Polya peaks (which we again denote by rj) so that 

Aiua.-.+Ua~ (2.6) 

(2.7) 
A i v~ -'-~ >~, a E S , /- .+co 

where the u a are &subharmonic functions with Riesz charges/*a'  Convergence in (2.6) occurs in Lloc 1, i.e., in mean with 

respect to area on each compactum, as well as in mean with respect to angular measure on each circle. The convergence of 

the charges in (2.7) is weak. 

It follows from (2.2) that 

u ~ > 0 ,  a E S .  (2.8) 

We will show that (1.3) is satisfied. For any complex numbers x, a, and b we have 

I ~ - b l m i n { I x - - a ] ,  l x - - b l } .  I x - - a l  . l x - - b i  >--.--7---- ~ 

It follows that for a ~ b, a,  b E S, we have 

o n +  vb~< vogv~  + l o g l a - - b l - 1  + log2. 

If  we apply the operator Aj and permit j to go to ~ ,  we find, in view of (1.1), that u a + u b < u a v u b when a ~ b. This 

means that at each point no more than one function u a is different from zero. Thus, the functions u a satisfy condition (1.3), 

i.e., 

V u~ = V u~. (2.9) 
a(S afS 

Note that 
2 ~  

1 S  ua (re, O) dO = l i rnm(r% O, f - - a )  
i-+~ T (r)  (2.10) 

It now follows from (2.5) that 

and, in particular, in virtue of  (2.8), 

u~ (rd e) dO ~< r ~, 0 ~< r < o% 
0 

u~ (0) = 0, a E S .  

For any Borel a-finite charge ot we set n(r ,a)  = a({z; [ z [ _< r}), 
r 

N (r, ~) = ~ n (t, ~) at 
T '  g 

(2.11) 

(2.12) 
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if the integral converges absolutely. Let v(E) be the number of  poles of the function f with allowance for multiplicity on the 

set E C C. Then v is a (nonnegafive) Borel a-finite measure. 

N (r, v) ---- N (r, [) ,-. T (r), r--)- oo. (2.13) 

In virtue of  (2.5), 

which implies 

N ( r r i ,  v) ~< 2 r ~ T ( r i ) ,  s i~<r~<sT '  , (2.14) 

n (rr i, v) ~< 2ear ~ T (ri), ei /e ~< r ~< (esi)-L (2.15) 

Condition (2.15) means that the family of  measures {Ajtz} is uniformly bounded on compacta, so, choosing a subsequence of 

Polya peaks if necessary, we can assume that 

It also follows from (2.15) that 

We will show that 

Aiv-.-~ p. -.~ O. 

n (r, Ix) ~< 2eXr n, 0 ~< r < oo. 

(2.16) 

(2.17) 

"N (r,Ajv)---~ N (r, ~t), ] - - , oo ,  0 <. r < oo. (2.18) 

Let e > 0. We have 

8 8 

~nft ,  ~t) ('n(t, Air)  dr_+ - IN(r, Ai,~)--N(r, p) l~<j t d t+ . l  t 
0 0 

r 

8 

The first term is no greater than 2eXk- le  x in virtue of  (2.17), and the second term is equal to 

N (e, Air)  = N (r i e, v ) /T  (r]) ~< 2e z 

in virtue of (2.14); also, the third term approaches zero as j --, 00 in virtue of  the weak convergence of (2.16). This proves 

(2.18). 

Now, let %(E) be the number of  poles of a @ S (with allowance for multiplicity) on the set E C C. It is clear that 

~ <  v + •  a E S .  (2.19) 

On the other hand, it follows from (1.1) and (2.5) that Aj% --, 0 as j ~ oo. If  we apply the operator Aj to inequality (2.19) and 

pass to the limit as j --, oo, we find, in view of  (2.7) and (2.16), that ]A a "~ /Z. Since (2.9) is satisfied, application of Theorem 

2 yields 

~a ~< 2 V ,~o , :  2r,. (2.20) 
a(S a(S 

We now use condition (1.2). We fix an arbitrarilly small e > 0 and choose a finite subset S' C S such that 

5'. 6(a, f ) : ~ 2 - - 8 .  
a(S'  

In view of (2.13) we have 

~, m (rr], O, f - -  a) ~ ( 2 - -  2s) T (rrt) >~ (2 - -  3e) N (rri, v) 
a(S '  

for fixed r and j --) o..  Dividing by T(rj) and passing to the limit, in view of (2.10) and (2.18), we find that 

2 ~  

a~S ~ 0 
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On the other hand, Jensen's formula and (2.12) yield 

2~ 
1 

S uo (reO) dO = N (r, ~). 
0 

Thus, 

Y~ N (r, uo) >/Y, N (r, ~ )  > (2 - -  38) N (r, ~). 
afS a~S' 

If  we permit c to approach zero, 

N (r, ~ )  > 2 N  (r, ~). 
aES 

Together with (2.20), this yields 

~ = 2 V ~ = 2~. (2.21) 
a(S a~S 

We will now show that all of  the functions u a are subharmonic and continuous. First of  all, the function w = ~ uo 
aES 

is subharmonic, since, in view of  (2.21), its Riesz charge is 2/x _> 0. Moreover, it follows from (2.21) that/x >_ /~a fbr a E 

S, so the function w a = w - 2u a is subharmonic. It is easy to see that ua(z) > 0 if and only if Wa(Z ) < 0. Since w a is upper 

semicontinuous, the set D a = {z: Ua(Z ) > 0} is open. Application of  the maximum principle to the function w a shows that all 

of  the connected components of  D a are singly connected. On this set D a we have Ub(Z) --= 0 for all b ~ a, so/x b I Da = 0, 

and it then follows from (2.21) that ~a IDa = 0. Thus, the function u a _> 0 is harmonic in D a and equal to zero outside D a. 

It follows that it is subharmonic and continuous. 

It now follows from the subharmonic form of the D'Anjou--Karleman--Ahlfors  theorem [9] that the set S is finite (and 

card S _< 2X). Moreover, the total number of  connected components of  the sets D a is also finite. We can now use the following 

Fundamental Lemma, which was proved in [2, Part II]. 

L E M M A  1. Let {Da} be a set of pairwise disjoint open sets consisting of  a finite number of  singly connected regions, 

and let u a ~ 0 be a nonnegative subharmonic function with carrier in D a. Assume that the Riesz measure/~a of  these functions 

satisfies (2.21) and 

2:g 

u~ ( rd  ~ dO = ~0 (r~-~), r - , -  O, 
a(S 0 (2.22) 

where 0 < e < 1/4, card S < ~ .  Then there exist a natural number n _> 2, I n/2 - k [ 

such that 

= ua (re 'e) = c r "/2 cos 2 (0 - -  0,) . 
atS 

< 1/2 and a number 0 o E [,0,2~r] 

(2.23) 

The functions u a satisfy the conditions of  Lemma 1 ((2.22) is satisfied when e = 0 because of  (2.11)). Thus, (2.23) 

holds. We will now determine the constant c. Toward this end, we set r = 1 in (2.23) and integrate with respect to 0: 

2z~ 

c = ~  w ( d  e) dO. 
0 

We now use Jensen's formula, (2.21), (2.18), and (2.13), which yields 

2~ 2~ 

0 a(S 0 a(S 
N v) 

= 2 N  (1, 9) = 2 lira N (1, A / ~ )  = 2 lira (ri'  = 2 ,  
i ~  i _ . ~  T (r])  
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so that c = *'. 

We can summarize as follows: Let W n be the set of  all subharmonic functions of  the form 

w (re% 0o) = ~r  ~:2 cos ~ (0 - -  0o) , 0 ~< Oo < 2a. 

We have proved the following 

Proposi t ion 1. Let f b e  a meromorphic function satisfying condition (1.2), and let rj be a sequence with property (2.5). 

Then the set S is finite and for some subsequence of indices j we have (2.6), and 

a(S 

It follows from comparison of  (2.23) and (2.11) that 2X = n E N. Since the possible orders X of the Polya peaks fill 

the segment Lo,,p*], this interval must degenerate to a point, i.e., p ,  = p* = p = n/2. It follows from the definitions of  p ,  

and p* ((2.3) and (2.4)) that for any e > 0 there exist r o > 1 and t o > 1 such that 

T (tr) ~< to+~T (r), t >  to, r >  ro; 

T (tr) ~< to-~ T (r), t < to 1, tr > r o. 
(2.24) 

(2.25) 

These properties make it possible to replace (2.5) in the proof  of  Proposition 1. 

Proposit ion 2. Let f be a meromorphic function satisfying conditions (1.2), (2.24), and (2.25). For any sequence rj --, 

we define operators Aj as at the beginning of  the proof. Then A/[log']  ] -  a 1-1] -+ u~ , where w = V u, E W,. 

The proof  of  Proposition 2 is the same as that of  Proposition 1, with the following changes. Application of the 

Anderson--Baernstein theorem for the proof  of  (2.6) and (2.7) makes it possible to substitute conditions (2.24) and (2.25) for 

(2.5). Instead of (2.11), we obtain 

[r ~ r ~ l o 
f Ua (r# ~ dO ~< [ro-~, �9 <C to t 
0 

(2.26) 

from (2.24) and (2.25). The argument proving (2.16) and (2.18) requires some obvious changes. For example, the role of  

(2.17) is now played by the inequality 

[2eo-e rO-e, r <7 (toe)-:; 
n (r, ~t) ~</2eo+~ to+8, r > to. 

Finally, when Lemma 1 is applied, (2.26) is used instead of (2.11). 

In view of  (2.13), Proposition 2 implies that 

T (cOlT (r) ,,~ N (cr, f ) lN  (r, f) ~ cO 

as r --- ~ uniformly with respect to c E [1,2]. Setting T(r) = rOll(r), we obtain ll(cr) - l](r), which proves assertion 4) of 

Theorem 1. Assertion 1) was proved above. We will prove assertion 5), from which assertions 2) and 3) follow. 

Note that ~oc  1 is a metrizable space. Let dist denote some metric in this space. The set W n is compact in ~oc 1. We 

set 

and we will show that 

vt  (z)  = : ~. 
toz, (t----'-~ ~*~ss log ! ( / _  a) (tzl l 

dist (vt, Wn) --* 0, t--~ oo. (2.27) 

Assume that (2.7) is not satisfied. Then there exists a sequence ~ --, ~ such that dist(vtj,Wn) _> e > 0. Taking this sequence 

for rj, we now apply Proposition 2. We find that for some subsequence vtj --, w, where w E Wn, which is a contradiction. 

Relation (2.27) is therefore proved. 

Let  w t E W n be the element closest to v t. We will show that 

dist (w t, wct) --~0, l--+ oo, (2.28) 
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uniformly with respect to c C [1,2]. Assume that this is not so. Then 

dist (w"l, wcfli) >1 8 ~ 0 

for some sequences tj ~ ~ and cj E [1,2]. We have 

(2.29) 

w~itJ (z) = v~:t: (z) + o (1) = c 7  ~ vt: (c:z) + o (1) = 

= cT  ~ w tj (cj z) + o (1) = wt i  (z) + o (1), 

since c-Ow(cz) = w(z) for any w E W and c > 0. We have obtained a contradiction with (2.29), which proves (2.28). 

I f  w t = w(',~o(t)), it follows from (2.28) that 

I exp (i% (ct)) - -  exp (i% (t)) I --~ 0, t --~ co, 

uniformly with respect to c E [1,2]. In view of  (2.27), we can choose a continuous function 0o(t ) so that 

v, = :~, ( . ,  Oo (t)) + o (I),  Oo (cO = oo (t) + o (1), t - , -  co.  

This, together with V. S. Azarin's theorem on convergence of  subharmonic functions with respect to 1-measure [i0], yields 

assertion 5). 

3. P roof  of  Theorem 2. The proof is basically elementary. Condition (1.3) means that the functions u k have disjoint 

support, i.e., at each point no more than one of  these functions is nonzero. It follows that the charges ~k have Borel carriers 

that intersects no more than twice, from which (1.4) immediately follows. 

Carrying out this plan, however, is associated with certain technical difficulties resulting from the possible discontinuity 

of the functions u k and the complex mechanism of the sets {z: Uk(Z ) > 0}. 

We should note that it is sufficient to prove Theorem 2 for finite w. Indeed, (1.3) implies the same property for any 

finite set of  indices k. If, however, (1.4) is proved for any finite set of  indices, then (1.4) yields a limit, when we take into 

account that/z k ~ /x. We will thus assume that q = w < oo. 

An equivalent form of Theorem 2 that is of  independent interest is 

T H E O R E M  2' .  Let w 1 ..... Wq be subharmonlc functions, q _> 2, and let w be their join. We assume that for any i 
;e j we have 

w = wi V w]. (3.1) 

Then the function 

q o (3.2) 
h - . = w +  A we-~  ~ w k - - ( q - - 2 ) ~  

/e~l k = l  

is subharmonic. 

To derive Theorem 2'  from Theorem 2 we set u k = w - w k and denote the Riesz measure of  function W by/x. Since 

functions w k are subharmonic, we have/x > /zk, and, by (1.4), Y. !~ ~< 2~, i . e . ,  2w - -  ~, u~ = (q ~ 2) w - -  ~ wk = h is 

subharmonlc. 

Now we will derive Theorem 2 from Theorem 2'.  We set/z = Y ~ ,  v k = /z - / z  k _> 0. Let w be a 6-subharmonic 

function with Riesz charge/, .  We set w k = w - u k. The functions w k are subharmonic, since their Riesz charges are Uk" Now, 

(3.1) follows from (1.3). In particular, w is a subharmonic function, since it is the join of  subharmonic functions. Finally, (3.2) 
implies 

0 ~< IV, v~ - -  (q - -  2) Ix = Z (I x - -  ,uk) - -  (q - -  2) ,u = 2~ - -  Z ,uk, 

which is the same as (1.4). 

The statement of  Theorem 2 '  has an important advantage. It makes it possible to deal with continuous functions only. 

For any subharmonic function v we set ve(z) = max {v(~') : I ~" - z ] < e}. It is easy to see that the function v e is 

always continuous and subharmonic. In addition, the operation v --- v e commutes with taking joins. Assume that Theorem 2' 

is proved for continuous subharmonic functions. Let w 1 .... ,Wq be arbitrary subharmonic functions with property (3.1). Then 
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q 

w e = w :  V wj e for i ;e j, and we find that the function h e = w ~ q  - A w~ is subharmonic. I f  e - ,  0, then h e- - ,  h, 
k = l  

monotonically decreasing. Thus, h is a subharmonic function. This property was pointed out to the authors by V. S. Az~arin. 

Thus, it is sufficient to prove Theorem 2 for continuous functions. 
We now introduce some notation. Let D be a bounded open set. We say that a point z o E C\D is reachable from D 

if there exists a curve 3'(t): 0 _< t _< 1 such that 3'(0 E D, 0 < t < 1 and 3,(1) = zo. The set of  points that are reachable from 

D is a Borel set [ l l l .  We define the function GD(Z,~') as follows: if z and ~" are elements of  the same connected component of 

the set D, then GD(Z,~" ) is the Green 's  function of this component with pole at ~'; otherwise GD(Z,~') = 0. The function z --, 

GD(Z,~" ) defined in this way is subharmonic in C\{~'}. Its Riesz measure wo(L ' )  is called the harmonic measure with respect 

to D at the point s ~. 
L E M M A  2. Let E* is the set of  points not reachable from D. Then r = 0, ~" E D. 

This is a known result (see, for example, [12]). The clearest proof  is based on a probabilistic interpretation of the 

harmonic measure: r is the probability that a Brownian particle leaving the point ~" first leaves D through the set E. 

L E M M A  3. Let v be continuous c3-subharmonic function, D = {z: v(z) ~ 0}, and let E* be the set of  points that 

cannot be reached f rom D. I f  v is the Riesz charge of the function v, then its restriction to the set E* is equal to zero: v I E* = 

0. 
Proof.  It is sufficient to prove the lemma for a finite function v, so that for any R > 0 and any ~3-subharmonic function 

v there exists a finite 8-subharmonic function v R such that v(z) = VR(Z), I z I < R. 
We can assume that D is a domain. Indeed, if {Dj} is the set of  all connected components of  D, we set 

I v (z), z E Di 
v i ( z ) = ( O ,  z q D / .  

Having proved the lemma for the functions vj, we can now prove it for the general case. 

Thus, let v be a finite continuous ~-subharmonic function and let D = {z: v(z) ;e 0} be a domain. Then v is the Green 

potential 

o(z) = - -  S Go (z, ;) dr;,  zE C. (3.3) 
D 

(Representation (3.3) holds everywhere in C in virtue of  our stipulation concerning Green's  function.) Moreover,  

GD (z, ~) = S log l z - -  t[ oJo (~, dr) - -  log I z - -  ~l. 
C 

Substituting this expression into (3.3) and applying the Frobenius theorem, we obtain 

o (z) - f log l z - -  ; t d v ; - -  ~ log l z - -  ;I dccr 
D C 

(3.4) 

where the charge o~ is defined by the expression 

~z (E) = S cod (~, E) dv;, E ~ C. 
D 

In particular, ec(E) = 0 for any E C E* in virtue of  Lemma 2. Now, it follows from representation (3.4) that the restriction 

of the Riesz charge of the function v to E* is equal to zero. The lemma is proved. 
L E M M A  4. Let {Dj}j=lq be a set of  pairwise disjoint open sets in C. Then the set of  points reachable simultaneously 

from three different Dj is no larger than countable. 
Proof .  It is sufficient to prove the following: if B l, B 2, and B 3 are pairwise disjoint domains, the set of  points 

reachable simultaneously from all three domains Bj consists of no more than two points. Assume that this is not so. Then there 

exist three different points Zl, z2, and z 3 that are reachable from B1, B2, and B 3. We choose points w i E Bi, i _< i _< 3. Each 

point w i can be connected by three disjoint curves belonging to B i to the points z 1 , z 2, z, 3. The union of all of  these curves and 

the points w i and z i forms a graph K3, 3 that can be imbedded in the plane, which, as we know, is impossible. The contradiction 

proves the lemma. 
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Now we can finish the proof of Theorem 2. Let D k = {z: Uk(Z ) > 0}, and let Dk* be the union of D k and the set of 

all points reachable from D k. Then, by Lemma 3, the charge/z k is concentrated on Dk* , i.e., /Xk(E ) = 0 for any E C C\Dk*. 
By Lemma 4, the set X of points contained in three or more Dk" is no larger than countable. Since u k is continuous, /Xk(E ) = 

0 for all E C X. Thus, the charges #k have Borel carriers Dk*\X that intersect no more than twice. This, together with the 

inequality v 1 + v 2 <_ 2(v 1 v v2), which is valid for all charges, implies (1.4). The theorem is proved. 
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