
where 

W {e- (X, x), e § (X, x)} = ~ e + (X, O) e- (X, O) {m- (XD - -  m + (X2)}, b(X) =2~x 

it follows that the equality r-+(k) = 0 for ]%]~C is equivalent to the condition m*(X~) = 
m-(X ~) for Xz> c~- 

Since Eq. (I) can be rewritten in the form-y"+[q(x)--C2]y=(X~--C~)g, it follows that 

From here it follows that if rn +(~z)=rn?(x 2) for ~2>iC:, then rna+_c, (~--C 2):rn~_c,(%3-C s) 
for X ~- C ~ >I 0. 

Setting %~ =Xs--C s, we note that the function 

+ Imp_c, (~) Im X~ > 0; 

is analytic with respect to Xl everywhere outside some interval of the imaginary axis. Conse- 
quently, by Theorem 2, q(x)--C 2 = qo(x)EB(9). 

Thus, we have proved the following fact: if the reflection coefficients are finite: 
r+(~)-----r-(~)----0 for I~[>~C, thenq(x)=C~+qo(x), where qo(x)~B(~) .  
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A NEW PROOF OF DRASIN'S THEOREM ON MEROMORPHIC FUNCTIONS OF 

FINITE ORDER WITH MAXIMAL DEFICIENCY SUM. II 

A. E. Eremenko UDC 517.53 

This paper is the continuation of [i]. We start with some remarks. 

First of all, it is sufficient to prove the Fundamental Lemma under the assumption that 
Dj are domains. Indeed, let D/= U Die be the decomposition into connected components. We 
set k 

ui = ~ u~ , supp u~k ~ Djk, 
k 

i s  t h e  R i e s z  m e a s u r e  o f  t h e  f u n c t i o n   jk" Then ( 6 . 5 )  

for all i and n. The remaining conditions of the lemma are maintained. 

Thus, we assume in the sequel that Dj are connected and we number Dj, uj, pj by the same 
index 1 ~ ] ~ n .  

From the maximum principle for subharmonic functions there follows that the domains Dj 
are unbounded. 

The set of all Borel measures in C is partially ordered by the relation ~o 
family of measures ~z ..... v k there exists the least upper bound v Iv v2V "'" Vvk. 
(6.5) can be rewritten in the form 

~j ~ 2 ( ~  V " -  V ~). 
i 

Let v be a Borel measure in C and let A be a Borel set. 
v to A is defined in the following manner: V!A (E)=v(A ~ E) 

For a finite 
Condition 

( 8 . 1 )  

The restriction of the measure 
for each Borel set A c C. 

Translated from Teoriya Funktsii, Funktsional'nyi Analiz i Ikh Prilozheniya, No. 52, 
pp. 69-77, 1989. Original article submitted September ii, 1987. 
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Everywhere in the sequel, the closure and the boundary are considered in C. 

8. Proof of the Fundamental Lemma in a Special Case. In order to make clear the idea of 
the proof, first we assume that the domains D icC are Jordan domains. Let pjj be the re- 

striction of the measure Uj to the set D i ~ U  OD~, l~]~n, and 

F i k = ~ i l o o  i n o o ~ \ { = } ,  k=/=], 1 ~ ] ,  k ~ n .  

We n o t e  t h a t  t h e  s e t  of  p o i n t s ,  b e l o n g i n g  a t  once to  t h r e e  d i s t i n c t  Dj ,  i s  f i n i t e  ( s e e  Lemma 
6 be low) .  (The s i m p l i f y i n g  a s sumpt ion  about  t h e  J o r d a n  p r o p e r t y  of  t h e  domains has  been f o r -  
mu la t ed  f i r s t  of  a l l  f o r  t h i s . )  In  a d d i t i o n  ~ j (E)  = 0 f o r  any f i n i t e  s e t  E ~ C  s i n c e  u i ~ O .  
C o n s e q u e n t l y ,  

P i = ~  Fik, l ~ ] ~ n .  ( 8 . 2 )  

If the unordered pairs {i, k} and {j, p} do not coincide, then the Borel supports of the 
measures Uik and ~jp can be selected to be disjoint. Taking into account this circumstance, 
as well as (8.1) and (8.2), we obtain 

i,j=l i=1 /=1 /~, 

o r  

~,, f I '= |  1,1 i<] i < i  

We always have ~q + ~ii ~ 2 ( ~ q  V ~ii) 
from (8.3) there follows 

and equality is possible only if ~ij = Pji" 

(8.3) 

Therefore, 

(8.4) 

(8.5) 

From (8.4) there follows that the functions uj are harmonic in Dj. Further, it is easy 
to see that the closed support of the measure Uj coincides with ~Dj \ {~}o Therefore, from 
(8.4) there follows that the entire boundary of the domain Dj is covered by the boundaries of 
the other domains D i. Here we use again the assumption that the domains Dj are Jordan do- 

mains. Thus, 0 Di = C. The sphere is partitioned by curves, homeomorphic to a segment, into 

n simply connected domains Dj. The curves are called edges and their extremities are called 
vertices. A vertex is said to be odd if an odd number of edges converge to it. The set of 
odd vertices will be denoted by Q. The number of odd vertices is even. Indeed, if we sum the 
number of edges, converging to each vertex, then we obtain twice the total number of edges, 
i.e., an even number. Consequently, in this sum the number of odd terms is even. 

By a curve on a Riemann surface F we mean a continuous mapping [0, i] ~ F. Let F~C 
be a curve that does not pass through the vertices and it is transversally intersecting 
the edges. The number of the intersections with the edges is denoted by n(s The number 
of rotations of a closed curve F with respect to a point zE C is denoted by ind z r. 

LEMMA 2. For closed curves F we have 

n (s - -  ~ indz F (rood 2). 
z6Q 

Proof. By a small deformation we achieve that the curve F should have a finite number 
of self-intersections. We shall deform continuously the curve F, contracting it into the 
point z06 DI. The deformation is carried out in such a manner that the intermediate curves 
should have a finite number of self-intersections, a finite number of transversal intersec- 
tions with the interior points of the edges, and the points of self-intersection of the curves 
should not be at the vertices. When during the deformation process the curve passes through 
the vertex z so that the number ind z F varies by i, the number n(F) obtains an even increment 
if the vertex z is even, and an odd increment if z is an odd vertex. This proves the lemma. 

We consider a two-sheeted covering ~f the sphere C by some Riemann surface F, ramified 
exactly over Q. Such a covering ~: P-+C exists since Q contains an even number of points. 
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The covering z is unramified over the simply connected domains Dj and, therefore, each of them 
has exactly two preimages: Dj and Dj+n. Further we assume that all the considered curves 
intersect transversally the edges and do not pass through the vertices. Lifting the vertices 
to the surface F, we define n(F) for the curves F on F in the same way as above. Clearly, 

n (r) = n (~ (r ) ) .  ( 8 . 6 )  

The closed curve F~C is lifted to a closed curve on F if and only if it goes around the 
branch points an even number of times, i.e., if 

indzF~---O (rood 2). 
zEQ 

From here, taking into account (8.6) and Lemma 2, there follows that n(F) ~ 0 (mod 2) for all 
closed curves F on F. 

Now the domains Di, I ~ ] ~ 2n , can be divided into two classes in the following manner: 
Dj belongs to the k-th class (k = 0, i) if n(F) ~ k(mod2) for any curve F with origin in Dl 
and endpoint in Dj. This definition is correct since for closed curves on F we have n(F) 
0 (mod 2). Now we can lift the function uj to F by setting 

~i (z) = uj o ~ (z), z 6 bj  ; hj (z) = 0, z 6 F \ bj  ; 

UiWn(Z) = U ion(z),  z6 ml+n ; Ui+n(Z) = O, z6 F ~ mi+n, 
l ~ ] ~ n .  

On F we consider the function 

2n 

j=l 

where k(j) is the class of the domain Dj. The Riesz charge of this 6-subharmonic function is 
e q u a l  to  

2n 

.~ (--l?U)i~ i = y], (__I)#U)~i~. ( 8 , 7 )  
/=l i J  

Here ~j is the Riesz measure of the function pj on F, while Hji is the restriction of ~j to 

ODi N ab~{~}. If ~fi~0 , then the domains Dj and Di have a common edge on the boundaries 
and, consequently, belong to distinct classes. From (8.5) there follows that ~i= ~i~ and, 
therefore, the expression (8.7) is equal to 0 and the function v is harmonic in F~-'({~I). 

Now we make use of the condition (6.7), from where it follows that 

v(z) = O(l~ (z )  l)~+~, ~ ( z ) - +  oo, (8.8) 

v(z) = O ( l ~ ( z ) l )  ~-~, ~ ( z ) ~ O .  ( 8 . 9 )  

Let h be a multivalued analytic function on F such that v = Reh (the various branches of h 
differ by constant, purely imaginary terms). The derivative y = dh/d~ is a single-valued 
function on F~-t(~). From (8.8) there follows that this function is meromorphic on F. At 
each vertex on F there converge an even number >2 of domains Dj. Consequently, when the point 
z ! F goes around a vertex, the function v changes sign at least four times. From here it 
follows that the vertices, lying above a finite part of the plane, are zeros of the differ- 
ential dh and, moreover, the branch points of F over C are necessarily multiple zeros. The 
differential d~ has simple zeros at the branch points. Thus, the meromorphic function y 
has zeros at all the vertices and can have poles only above the point ~. From (8.8) there 
follows that the total order of poles does not exceed 2(~ - 1 + s). Further, from (8.9) 
there follows that the total order of zeros, projecting into O, is not less than 2(~ - 1 - s). 
There exists a unique integer k ~0 , satisfying the inequalities 2(%--I--8) ~k ~2(%--I + s). 
Consequently, the function y does not have other zeros besides those projecting into 0. In 
particular, there are no vertices besides 0 and ~. The function v has the form v(z)= Re(az~/2), 
where n =k@2, aC C, zE C . Clearly, in this formula n is exactly the number of domains Dj. 
The fundamental lemma has been proved under the a priori assumption that the Dj's are Jordan 
domains. 

9. Unattainable Boundary Points. The difficulty of the proof of the Fundamental Lemma 
in the general case is connected with the existence of unattainable boundary points on the 
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boundaries of the domains Dj, which cannot be excluded a priori. In the general case the 

proof will be the same as in Sec. 9, but some of its steps require additional justification. 

Let D ~ C be a domain. A point zn E OD is said to be attainable (from D) if there 
exists a curve F c D, ending at the point z 0. The set of attainable boundary points (a.b.p.) 
is a Borel set [2]. 

Assume that the domain D possesses a Green function. We fix a point ~0 E D and we con- 
sider the Green function with pole at z 0. We define it to be equal to zero outside D and we 
denote the extended function by g. The function g is subharmonic in C~Iz0} and continuous 
if the domain D is regular for the Dirichlet problem. The Riesz measure of the function g 
is concentrated on 8D and is nothing else but the harmonic measure at the point z 0 with 
respect to D [3, Chap. IX, Sec. 4]. For various choices of z 0 the corresponding harmonic 
measures are mutually absolutely continuous. 

LEMMA 3. Assume that the boundary of the domain D is regular.* Then the harmonic mea- 
sure of the set of unattainable points of 8D is equal to O. 

Proof. Assume that the lemma is false. Then there exists a closed subset K of the set 
of unattainable boundary points, whose harmonic measure is >0. 

Let v(z) be the infimum of the functions w(z), harmonic in D, continuous in D, and sat- 
isfying the conditions m (z) ~ 0 in D and ~ (z) >~ I on K. The function v is harmonic and bounded 
in D. By assumption, v(z) > 0 in D. On the other hand, from the regularity of the boundary 
~D there follows that v(z) is continuous and equal to 0 at the points z E OD~K. 

Assume now that U is the unit circle and ~:U-+D is a uniformization of the domain D. 
From the regularity of 3D and from a theorem of Nevanlinna [5, p. 214 of the Russian edition] 
there follows that �9 is a function of bounded form. Consequently, ~ has radial limits a.e. 
on ~U. These radial limits are a.b.p, of the domain D. We consider the harmonic function 
v (~ (z)), z 6 U . It is bounded in U and has radial limits, equal to 0 a.e. on 3U. Consequently, 
v - 0. The obtained contradiction proves the lemma. 

LEMMA 4 [6]. Let v >I 0 be a 6-subharmonic function in an arbitrary domain G. We set 

E----{zEG:v(z) = 0}. Then the restriction of the Riesz charge of the function v to E is a 
nonnegative mesure. 

From Iversen's subharmonic theorem there follows that the point ~ is attainable from 
all the domains Dj [7, Sec. 4.6.5]. We denote by 80D j the set of the a.b.p, of the domain Dj. 

LEMMA 5. ~i(aDi~OoDi)=O. 
Proof. Let R > 0 be an arbitrarily large number. We consider the domain G=D! U IzE ~: 

Izi>2R 1 . The domain G is regular since each point zEOG is contained in some continuum 
K c 8G [8, Chap. IX, Sec. 3]. Let g be the Green function of the domain G with pole at ~, 
extended in C~G by taking it equal to zero. We select a constant C > 0 so that uj(z) < 
g(z), ]z] = 3R , and we apply Lemma 4 to the functions v = cg - uj in the domain D(0, 2R). We 
obtain that the measure ~zlo(0.R) is absolutely continuous with respect to the harmonic measure 

of the domain G. Since a point zEG, !z]<R is unattainable from G if and only if it is un- 
attainable from Dj, the assertion of Lemma 5 follows from Lemma 3. 

LEMMA 6. Let E be a set of points, attainable simultaneously from three or more domains 

Dj. Then E is finite and ~j(E) = 0 for all j, 1 ~<] ~<n. 

Proof. Assume that D~, D2, D~ have two common finite a.b.p, z' and z". Let F~D~ be 
simple curves, joining z' and z", I ~i ~<3. Then one of the three curves F i (Fz, say) lies 
in the interior domain of the closed Jordan curve formed by the two other curves (F2 and Fa, 
say) and the points z' and z". From here, by Jordan's theorem, taking into account that 
Ox n (F~ U F3 U [z', z"~)---- ~ , we obtain that the domain D I lies in the interior domain of the 
closed Jordan curve F2 U ]'3 U {z', z"} ; this is not possible since D l is unbounded. Thus, card • 
(OoD I ~ OoD 2 ~ aoD3)~< 2 (here we have taken into account that the point ~ is attained from all 
the domains Dj). The finitenes of the set E is proved. The second assertion of the lemma 
follows from the fact that u i>~O . In this case ~j(E) = 0 for any finite set E~C. 

We consider now the restrictions of measures 

~Zi = ~i Im/ U (aoDj ~ U OoDi) , 
t4:]  

�9 In fact, the regularity condition is redundant (see [4]). 
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pu=~jlooo~no~ !~<i, /~<n. 
From Lemmas 5 and 6 there follows that 

/'k-----~ p~i, l~<k~<n. (9.1) /'=i 
We can assume that the measures P'ik --~nd ~mp have nonintersecting Borel supports if the un- 
ordered pairs {i, k} and {m, p} do not coincide. Therefore, from (8.1) and (9.1) there 
follow the relations (8.3)-(8.5). In particular, the functions uj are harmonic in Dj (8.4). 
It is easy to see that uj are continuous in C. 

LEMMA 7. The harmonic measures on 3Dj are absolutely continuous with respect to the 
measure Wj. 

Proof. Let &(O i . We select r > 0 so that O(z0, r)~Oi, and we setK----0D(z~, r). Let g 
be the Green function of the domain Dj with pole at z0, extended in C~Dj by taking it equal 

to zero. We select a constant C > 0 so that g(z)~<Cui(z), zElf. The application of Lemma 4 

with v = Cuj - g and 0----C~D(zo, r) concludes the proof. 

i0. Mutual Dispersion of the Domains D~ We consider n copies U:. 1~/~n, of the unit 
circle and we fix the conformal homeomorphisms ~Pi:U-+D/ such that the segments (-i, 0] c Uj 
should go into curves exiting at ~ (see the remark preceding Lemma 5). The radial limits 
of the function ~f are a.b.p, of the domain Dj. 

We show that the finite radial limits of the function ~P7 at the points x, yCT/=OU/, x=/= 
y, cannot coincide. Otherwise, we consider the curve y, consisting of the two radii through 
the points x, y. The curve F =~f(?i is a Jordan curve. The domain D, bounded by the curve 

F, does not intersect Dk for k ~ j since all D k are unbounded. On the other hand, inside D 
we have a part of 8Dj of positive harmonic measure. From Lemma 7 there follows that pjj(D) > 
0, which contradicts (8.4). 

We say that the domains D i and Dj are contiguous if there exist at least two common 
boundary points, attainable from both domains. Obviously, if ~ij=/=0, then D i and Dj are con- 
tiguous. We fix a number /, I ~ ] ~ n. Assume that the domain D i is contiguous to Dj. We 
consider the set X/e ~ Tj , corresponding to the finite a.b.p, of the domain Dj, which are 
simultaneously a.b.p, of the domain D i. We set 

b/~ = inf {0 @ ( - - ~ ,  z~) : e '~ C X/i};  
a:~ = sup {0 E (--z~,  ~) : e ~ E X:~}; 

Tit = (b/i, a/i) ~ T#  

The arc Tji is called the contiguity arc. 

We show that Done of the contiguity arcs Tji contains points in which the radial limit 
of the function ~/ is infinite. Otherwise, we wou• have points x, y, l, --a<x<y<l<a, 
with radial limits epi(eiX)=a , %(ei~)=o% cp/(ei0=b , and a and b are finite a.b.p, of the domain 
D i. We join a and b simple arcs ?I~Di, ~Di. The closed Jordan curve r=-fx U 72 U {a, b} divides 
the plane. The curve ~p~1(7~)divides Uj into two parts, one of which has on the boundary the point 
-I, while the other the point elY. The images of both of these domains are unbounded, which 
is not possible since one of these images lies in a domain bounded by the curve F. 

We show that the contiguity arcs Tji, Tjk do not intersect for i ~ k. If these two 
arcs would intersect, then we would find three points -~ < x < y < t < ~, such that there 
would exist finite, mutually distinct radial limits cp/(e~x) ---- a, ~/(d~)=b, ep/(dt)=c and, more- 
over, the points a and c would be attainable from one domain (Di, say), while the point b 
from another one (Dk, say). We join the points a and c by simple arcs in Dj and in D i. 
We obtain a closed Jordan curve, bounding a domain D, and b ~ D, since b ~ a, b ~ c. But 
the domain Dk, being unbounded, does not intersect D. We obtain a contradiction. 

We show that the contiguity arcs Tji , together with their endpoints, fill out the entire 
circumference Tj. Indeed, if the arc A c Tj does not intersect any of the contiguity arcs, 
then the finite radial limits of the function ~/ on A are not attainable boundary points for 
any of the domains Dk, k ~ j. Taking into account Lemana 7, we obtain a contradiction with 
(8.4).  

A similar reasoning shows that the points on Tji, in which there exist radial limits 
of the function ~/ , being a.b.p, of the domain Di, are dense in the arc Tji. 
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We supply the circumference Tj with a positive orientation. One has a natural monotone 
(changing the orientation to the opposite) mapping ~ji of a dense subset of the arc Tji to a 
dense subset of the arc Tij. This mapping takes the point e~ETj~ into the point eiYETij, if the 
corresponding radial limits are equal: ~pi(e~x)=~p~(ei~). We extend the indicated mapping to an 
arc homeomorphism. This can be done since the functions ~ji and ~]=~}7 i are strictly mono- 
tone. We paste together the circles Uj and Ui along the arcs Tji and Tij, identifying these 
arcs with the aid of the mapping ~ji. We carry this out for all pairs i, j for which the 
arcs Tij and Tji are defined. After pasting a finite number of punctures we obtain a compact 
oriented surface S. The topological imbeddings ~p-/-I:Di--~Ui~S are defined. On the surface S 
we have a net, consisting of the edges Tij = Tji and the vertices are the pasted punctures. 

A closed curve F c S is said to be admissible if it does not pass through the vertices, 
intersects transversally the edges a finite number of times, at each such point of intersec- 
tion xEF fl Tii there exist radial limits cpr ~pi(x) , and F form nonzero angles with Tij. An 

admissible curve F c S has an image in C a closed curve U ~i(P N Ui), which will be denoted by 
i 

~(P). Obviously, the admissible curves are dense in the set of all closed curves on S. 

We show that the surface S is homeomorphic to a sphere. If this is not so, then there 
exist two admissible curves F~, F 2, intersecting transversally at a unique point, not lying 
on an edge. Then the closed curves ~ (P0 and ~(P2) on the sphere intersect transversaliy at 
a unique point, which is not possible. Thus, S is a sphere. 

Let Q be the set of all odd vertices of the net. The number of such vertices is even 
(see Sec. 8). We consider an arbitrary vertex p. Let Fm be a sequence of admissible closed 
Jordan curves, converging to p and such that Pm+1 N Pm = ~), Fm+x separates F m from p. We de- 
note by K m that component of the set C~(Pm) which contains ?m+l. We have Km+l~l( m and, 

therefore, N /fm is a nonempty set, which we denote by K(p). The curves ~(F), where F c S 
m=l 

is an admissible curve, do not intersect with the sets K(p). For distinct vertices P, qES 
we have K(p) n K(q)-~ ~ �9 For each odd vertex q we select an arbitrary point ~p(q)~K(q). For 
any admissible curve F we have 

indqF ---- ind~q)~(F). (I0. I) 

We consider a two-sheeted covering ~: F-+C of the sphere C by some Riemann surface 

F, ramified exactly over the points ~(q), qCQ. Let DI ..... D2~ be the preimages of the domains 

D l ..... D n, and, moreover, ~-i (Di) =~)i U b~+i. The definition of the contiguity of domains on 

the Riemann surface F is exactly the same as in C. If the domains Di and Dj are contiguous, 

then also ~(D i) and ~(Dj) are contiguous, but the converse is not true. 

LEMMA 8. Let Di ...... l)& be a finite sequence and, moreover, Djk is contiguous to D&+ d 
1 ~< le ~< m, ]mq-1 = ]m. Then m i s  even .  

P r o o f .  Le t  n(L)&)--Dik �9 The domains  Dik and Dik+l  a r e  c o n t i g u o u s .  T h e r e f o r e ,  in  Uik 

t h e r e  e x i s t s  an a r c  ?k ,  j o i n i n g  t h e  p o i n t s  xET~ki~_ , and FET~k~+, and,  m o r e o v e r ,  t h e  f u n c t i o n s  

~i~ and ~ - ,  have  r a d i a l  l i m i t s  a t  t h e  p o i n t  x,  w h i l e  ~ and ~ + , a t  t h e  p o i n t  y .  We s e l e c t  t h e  

a r c  F k so t h a t  t h e  f u n c t i o n  %'~ s h o u l d  have  l i m i t  v a l u e s  a l o n g  F k a t  t h e  p o i n t s  x and y .  The 

s u c c e s s i v e l y  p a s s e d  a r c s  r k form an a d m i s s i b l e  c u r v e  F and,  m o r e o v e r ,  m = n ( r ) .  O b v i o u s l y ,  
t h e  c u r v e  ~(F), i s  l i f t e d  t o  t h e  Riemann s u r f a c e  F. T h e r e f o r e ,  

i n d ~  ~ (r) ~- 0 (rood 2). ( 10. 2) 

From ( 1 0 . 1 ) ,  ( 1 0 . 2 )  t h e r e  f o l l o w s  t h a t  

inG r ~ 0 (rood 2). 
qEQ 

T h e r e f o r e  t h e  number m = n( r )  i s  even by v i r t u e  o f  Lemma 2. 

11. C o n c l u s i o n  of  t h e  P r o o f .  I t  r ema ins  t o  r e p e a t  t h e  a rgumen t s  o f  Sec .  8. We l i f t  
t h e  f u n c t i o n s  uj  t o  F and we o b t a i n  subharmonic  f u n c t i o n s  g j  w i t h  s u p p o r t s  in  Dj .  We p a r -  
t i t i o n  t h e  domains Dj i n t o  two c l a s s e s  ( 0 t h  and l s t )  so t h a t  c o n t i g u o u s  domains s h o u l d  b e l o n g  
t o  d i s t i n c t  c l a s s e s .  Th i s  can be done by v i r t u e  o f  Lemma 8. We d e n o t e  by k ( j )  t h e  c l a s s  
o f  t h e  domain Dj and we s e t  

3402 



2n 

v = ~] (--1)k(J~ ~i .  
f= l  

The R i e s z  c h a r g e  o f  t h i s  f u n c t i o n  i s  e q u a l  t o  .~. ( - -1)kO~i  ~ . T h i s  sum i s  e q u a l  t o  0 s i n c e  

contiguous domains belong to distinct classes and ~j~----~ii by virtue of (8.4). Thus, v is a 
harmonic function, while the domains Dj are bounded by piecewise analytic curves. The rea- 
soning from Sec. 8 with the use of (8.8), (8.9) shows that 

v (z) = Re az "/2, a 6 C,  z c C ,  

n> 2 is a natural number. The fundamental lemma is proved. 
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PAIRS OF REGULARIZABLE INVERTIBLE OPERATORS WITH A 

NONREGULARIZABLE SUPERPOSITION 

M. I. Ostrovskii UDC 517.982 

Let X and Y be Banach spaces. The set of continuous linear injective operators, acting 
from X into Y, will be denoted by L0(X, Y), while in the case X = Y, simply by L0(X). Clearly, 
for A E i0(X,Y) there exists an inverse operator A -I which, in general, is not defined on all 
of Y but only on the range of the operator A, and need not be continuous. In the theory of 
ill-posed problems, from these operators one isolates the subclass of regularizable opera- 
tors. 

Definition 1 [I~ p. 179]. Let A6L0(X, Y). A sequence of mappings Rn:Y-+X (nEA r ) is 
said to be a regularizer for the operator A -l if for each xEX we have the relation 

lira sup { I] x - -  Rn y II : y 6 Y ,  H y - -  A x  II ~ 1/n} = O. 

If the operator A -l has a regularizer, then it is said to be regularizable. 

Definition 2. We shall say that a Banach space X has the property of the regular- 
izability of superpositions (denoted X E RS ) if for any A, BEL0(X) , from the regularizability 
of A -I and B -I there follows the regularizability of (BA) -l. 

In [2] it is proved that ~ 6 RS. On the other hand, it is known [i, p. 193] that in a 
quasireflexive Banach space (i.e., a space, whose canonical image in the second conjugate 
space has a finite codimension), for any A E L0(X) the inverse opertor A -I is regular and, 
consequently, all the quasireflexive spaces possess the RS property. 

This paper is devoted to the further investigation of the RS property. 

Translated from Teoriya Funktsii, Funktsional'nyi Analiz i Ikh Prilozheniya, No. 52, 
pp. 78-88, 1989. Original article submitted November 2, 1987. 
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