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i. Without explanation we shall use the standard notations of the Nevanlinna theory 
of the distribution of the values of meromorphic functions (see, for example, [i]). In the 
classical theory of value distribution, as a measure for the nearness of a function f, mero- 
morphic in C, to the value a6C , one selects the quantity m(r, a, f), i.e., except for the 
factor i/2~, the norm i]in+If(reig) - a [-ii[ in the space L I of the function in+If - al-z , 
as a function of ~ e [0, 2~]. In the last 15 years norms in other spaces have also been used; 
the norm in the space L~ has a special importance. If M(r, f) = max{[f(z)[:[z[ = r}, then 
as the measure of the nearness of f to a one can take in+M(r, i/(f - a)) = L(r, a, f). In 
1969, with the aid of L(r, a, f), V. P. Petrenko has introduced the quantity 

(a, f) =lira L (r, a, f)/T (r, f), 
r ~  

called by him the deviation of the meromorphic function f relative to the number a. In a 
series of papers, V. P. Petrenko has investigated in detail the properties of ~(a, f), the 
fundamental results being summarized in [2]. The set {aCC~, f)>0} of R. Nevanlinna 
deficiency values will be denoted by EN(f), while the set {aEC~(a,f)>O} of positive devia- 
tions by EH(f). Directly from the definitions there follows 6(a, f) ~ ~(a, f) and, therefore, 
EN(f ) c EHif ). Petrenko has proved that, for meromorphic functions of finite lower order, 
EH(f) is at most countable and has proposed to elucidate whether for functions of finite 
lower order one has always EN(f) = EH(f); that this is not so for functions of finite lower 
order has been elucidated by Petrenko himself [2, Theorem 3.1.1]. In 1976, Grishin [3; 2, 
Theorem 3.1.1] has shown that for each 0, 0 ~ p < ~ there exists a meromorphic function f 
of order Q, for which 6(~, f) = 0 while $(~, f) > 0. Grishin's construction has been appre- 
ciably simplified [4; 2, Theorem 2.4.2]. Then one has constructed an example of a mero- 
morphic function f of any given order p, 0 < 9 < ~, for which EN(f) = #, while EH(f) is an 
arbitrary, at most countable subset of C [5]. Thus, one has obtained an answer to one of 
the questions of Petrenko [2, pp. 8 and 73]. It is natural to formulate the question of 
the complete description of the relationship between the sets EN(f) and EH(f) for mero- 
morphic functions of finite order 9 [6, No. 11.3]. If p = 0, then it is known that EN(f) 
and EH(f) consist of at most one point (according to Valiron's theorem [i, pp. 90 and 158] 
and Petrenko's theorem [2, Theorem 2.6.1], respectively). Together with Grishin's example 
(quoted above), this gives the complete description of the sets EN(f) and EH(f) for order 
zero. For a positive order the answer is given by the following theorem. 

THEOREM i. Let 0 < O < ~, E 1 c E 2 c ~, E 2 being at most countable. There exists a 
meromorphic function f of order 9, for which EN(f) = E I, EN(f) = E 2. 

In [7], it is proved that for meromorphic functions having the property 

T(2r, f )=O(T(r ,  [)), r ~ ,  (1.1) 

we always have EN(f) = E~(f). Thus, the inequality E N ~ EN(f) is connected with a definite 
nonregularity of the growth. Nevertheless, the functions f from Theorem i can be selected 
so that for them the lower order ~ be equal to the order O. 

In the examples of [3-5], the function f with EN(f) ~ EH(f) is meromorphic. There arises 
the question whether EN(f) ~ EH(f) is possible for entire functions of finite order [6, No. 
11.3]. For p ~ 1/2 for an entire function f it is known that EN(f) = {~} [i, p. 269] and 
EE(f) = {~} [i, p. 273]. For p > 1/2 the answer is the following. 

THEOREM 2. For each p, 1/2 < p < ~, there exists an entire function f of order 0 for 
which ~(0, f) = 0, ~(0, f) > 0. 
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Theorems 1 and 2 have been communicated by the authors in the note "Deficiencies and 
deviations of meromorphic functions of a finite order," Dokl. Akad. Nauk Ukr.SSR, No. i0, 
3-5 (1984). In a letter dated April 30, 1984, D. Drasin communicated to the authors that 
he and his student R. Gillespie have solved Problem 11.3 of [6], independently from the authors. 
Their examples are based on different ideas. 

The methods used here for the proof of Theorems 1 and 2 allow us to obtain also other 

results of interest. 

THEOREM 3. For each p, 1/2 < p < ~, there exists an entire function f of order p such 
that 6(0, f) > 0 and (i.I) is not satisfied. 

Kotman [9] has proved this theorem for p > I, giving at the same time a negative answer 
to a question raised by Hayman [i0, No. i. I0]. Theorem 3 closes this question completely 
since, as noted, for p ~ 1/2 one has necessarily 6(0, f) = 0. 

According to the mentioned communication of Drasin, he and Gillespie have proved Theo- 
rem 3 with 6(0, f) e 1/2 by another method. 

We shall consider the question of the dependence of the deficiencies of an entire func- 
tion of finite order on the selection of the origin, i.e., whether 6(0, f(z)) = 6(0~ f(z + 
h)), h ~ C. is always true. It is known [i, Chap~ IV, Sec. 6] that the deficiency may vary 
when passing from f(z) to f(z + h) for meromorphic functions of infinite order (Dugue, 1947), 
for entire functions of infinite order (Hayman, 1953), for meromorphic functions of finite 
order (Gol'dberg, 1954). Recently, Miles [ii] constructed an example of an entire function 
f of "very large finite order p," for which 0 = 6(0, f(z)) < 6(0, f(z + h)), h ~ 0. In 
Miles's example, the upper estimation of the order p is difficult because of the necessity 
of solving a cumbersome system of inequalities involving transcendental functions. Here 
we shall construct an example of a function, simpler than that of Miles, for which the order 
is relatively small. 

THEOREM 4. Let 5 < p < ~~ There exists an entire function f of order p such that 0 = 
6(0 ,  f ( z  -- 1 ) )  < 6 (0 ,  f ( z ) ) .  

If p < 3/2, then for an entire function the deficiency does not depend on the selec- 
tion of the origin [I, p. 232, Corollary 2]. The question is open for p ~ [3/2, 5]. 

We introduce some notations. By S we shall denote the class of subharmonic functions 
in C. if u e S, then B(r, u) = max{u(z): Izl = r}, A(r, u) = inf{u(z): Izl = r}. 

By em(X) and in mx we denote the m-th iterates of the functions exp x and inx. Further, 

i ~ If(O)[dO. I I / ( o )  II = 
0 

The symbol ~/Sn denotes the derivative in the direction of the interior normal to the boun- 
dary of a domain. By x + and x- we denote (Ix! + x)/2 and (Ixl - x)/2, respectively. 

2. Proof of Theorem i. Without loss of generality, we can assume that E 2 c C. Taking 
into account the result of [5], here we restrict ourselves to the case when E I ~ r For 
meromorphic functions f of finite lower order we have E~(f) c Ev(f), where Ev(f) is the set 
of exceptional values for f in the sense of Valiron [2, p. 52]. For any at most countable 
set E~ one knows examples of meromorphic functions f of order p, 0 < p < ~, for which 

EN(f) = Ev(f) = E I [i, pp. 161-166]. Then also E~(f) = E I. Therefore, the case E I = E 2 will 
not be considered. Thus, E l ~ r E=. We shall assume that 0 < p < 1/2. The general case 
is obtained at once if we note that for fl(z) = f(z n) we have 6(0, fl) = 6(a, f), I~(~, fl) = 
$(0, f), while the order of fl is equal to up, where p is the order of f, neN. 

LEMMA 2.1. There exists v ~ S such that: i) v(r) = B(r, v): = l(r), r e 0, ~(0) = 0; 
2) inX(r~ ~ p inr, r ~ ~; 3) there exist sequences (rn'#, (rn"), (Cn) such that ~ ' § ~, 
rn"/r n' ~, l(r) - cnrP , rn" ~ r ~ rn" , n ~ ~; 4)y(re i8) ~ k(r)cosp~, r ~ 0, i~[ ~ ~; 5) 
v(rei0) = (i + 0(1))%(r) cospS, 181 ~ ~, r + ~, rE U [r~, r~]; 6) there exist a sequence Rn, 

n=l 
rn-1" < R n < r n' and a sequence Yn + 0 such that for all re i8, 1 + (in 2Rn )-I ~ r/R n ~ 1 + 
2(in2Rn )-l, ~n ~ 181 ~ v, we have v(re i8) = o(%(r)), r + ~. 

Proof. We set 
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G(re i~  O .~r  < oo, Iol ~ ,  

H ( r d  ~  re cos 20, 10 ]~<~ /4 ,  O < r < c o ,  

O, ~/4 ~ IOl~<~, 0-,.'= r < oo. 

It is easy to see that G e S, H e S. Let 

u (rd ~ = { CG (rei~ r > 3, 
max (CG (re~O), H (re io - -  1)}, r < 3, 

w h e r e  t h e  c o n s t a n t  C > 2 i s  s o  L a r g e  t h a t  f o r  r e [ 2 . 5 ;  3]  we h a v e  H ( r e  i 0  - L)  < C G ( r e i 0 ) .  
T h e n  u e S .  We s e t  

R~ = ea (n), A~ = R~ In R~, v (z) = ~, Aku (zlR,). 
k = l  

Since u(z) = 0 for Izl 1, it follows that this series reduces in each circle {z: R} 
to a finite sum and v e S. We show that for v the assertions of Lemma 2.1 hold. Statement 

i is obvious. Let r e [R n, Rn+l]. Then 

x(,.)= . tt )- I< k=l 

Since for sufficiently large n we have Rn/Rn_ : > 21+i/9, it follows that 

k (r) > A,~_1C {(r/R,,-1)P - -  20} > 0.5A~_1C (r/R,._,), ~ = 0.5Cr~ In R,~-I > rP. 

and, therefore, 

lira In ~, (r) 
tnr ~ P "  

If r e [Rn.2.5Rn] , then 

n--1 n - - I  

k (r) < ~ At~C (r/Rk) ~ + Anu (2.5) 4 Cr '~ ~ In R~ + u (2.5) R~ In R .  < (2C + u (2.5)) rP In r. 
k = l  k = l  

If r e [2.5Rn, Rn+l] , then 

). r) -.< ~ AkC (r/R~)P ~< 2CrP In R,, < 2Cr ,~ In r. 
k = l  

( 2 . 1 )  

Consequently, 

In X (r) 
l im  l---A-7- ~ P. 

From (2.1) and (2.2) it follows that 2 holds. 

For r e [Rn z, Rn+l] , 

n--I n - - I  
V AkC ((r/Rk)~ - -  29 ~ ~] CrP In R = - l  = o (to In R . ) ,  r - +  0% 
&.J 

k : t  k = I  

). (r) = (1 + o (1)) AnC ((r/Rn)P - -  2,9 = (I + o (1)) Cro In R . ,  r -+ co. 

We set r n 
(2.4) it 

= Rn 2, rn" = Rn+l, c n = CInR n. Then from (2.4) follows 3. 
follows that for r e [rn' , rn"], [8 I ~ ~, n ~ ~ we have 

v(re i~ = o ( r p l n  R.)  + A~CO(rd~ 

= (1 + o ( 1 ) ) A . C ( ( r / R . ) P - - 2 9 c o s p O  = (1 + o ( 1 ) ) k ( r ) c o s 0 0 ,  

From ( 2 . 3 )  

(2.2) 

(2.3) 

(2.4) 

and 
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i.e., 5 holds. 

For z = re i8, r a I, [81 ~ v, 18'I = Iarg (z - i) I S ~/4 we have 

H ( z -  1) = I z - -  1[ s cos 20' .< ( r -  1) 2 cos 20'/cos2Y = ( r -  1) 2 (1 - -  

- -  tgeO ') < (r - -  1)-' cos 0' < (r - -  1) 2 C O 8  p@ = B (r, H (z - -  1)) cos f i ,  

f o r  <_ I IB*Io <- ~ t h i s  i n e q u a l i t y  i s  o b v i o u s .  Now i t  i s  e a s y  t o  show t h a t  u ( r e  i o )  ; B ( r ,  
u )  c o s  08 ,  I -< ~ ,  a n d  t h e n  s t a t e m e n t  4 f o l l o w s .  

We p r o v e  t h e  v a l i d i t y  o f  6 .  L e t  r = R n ( 1  + t / l n 2 R n ) ,  t r [ 1 ,  2 ] .  The  c i r c u m f e r e n c e  
{z: Izl = r/Rn} intersects the ray {z: arg(z - i) = ~/4} at the Point (r/Rn)ei]'(t). It is 
easy to compute that y(t) = v/4 - arcsin{/2(l + t/in2Rn)} -~. We set 7n = 7(2) = O((In 2 
Rn)-l), n § ~. Since y(t) <_ ~(2), t e [I; 2], for Yn -< Iol <- v, k _> n we have u(reiS/Rk ) = 
0. Therefore, 

v (rd ~ < V A~C (r/Ra)~ = (1 q- o (1)) Cr," in R , - ~  

~=~ (2 .5 )  
= (1 + o(1))CR,~ln R,,-~, n-~ ~ .  

On the other hand, for the considered r we have 

x (r) = v (r) > A~u (r/R~) = R~ In Rd = (In2R.) -2 > 10-4R~ In Rd(In2R~)< 

Since !nRn_ l = o(InRn/(in 2Rn)2), n ~ ~, from (2.5) and (2.6) follows statement 6. 

The following lemma is proved in [i, pp. 207-208]. 

LEMMA 2.2. 
p < i. Then 

LEMMA 2.3. 
~ ,  [0[  _< ~ .  

( 2 . 6 )  

Let X(r) be a nondecreasing, logarithmically convex function, whose order 

lim X (r q- 0 (in r))/X (r) = I. ( 2 7 ) 

L e t  X be  t h e  f u n c t i o n  f r o m  Lemma 2 . 2  a n d  l e t  v l ( r e  i 0 )  = t ( r ) c o s o S ,  0 _< r < 
Then  v 1 e S.  

Proof. Since 

vl  ( r d 9  = y, A~u (r/R~) cos ~0, 
I~=1 

it is sufficient to show that u(r) cosp8 e S. We have u(r) = 0 for 0 ; r ~ i, 

u(r)  = max { ( r - -  1) 2 , C ( r o - - 2 0 + } ,  1 < r <  3, 

u (r) = C (rP - -  20,  r > 3, 

But C(rP - 2P) +cos p8 E S and (r - !) 2 cos o8 ~ S for r > (I + ~)/4, since 

~ { ( r - - l ) 2 c o s p O }  = r - ~ ( 4 f i - - 2 r - - p 2 ) c o s g O  > r - 2 ( 4 r 2 - - 2 r - - 4 - 1 ) c o s p O > O ,  ( 2 . 8 )  

w h i l e  t h e  s u b h a r m o n i c i t y  i n  t h e  n e i g h b o r h o o d  o f  t h e  n e g a t i v e  r a y  c a n  b e  e a s i l y  v e r i f i e d .  T h u s ,  
u ( r ) c o s 0 8  e S.  

Definition. We say that a set E c C belongs to the class (o) if it is covered by circles 
with a finite sum of the radii. 

We denote by Sp(8), 0 < 0 < 1/2, the 2~-periodic function $9(8) = cos 08 for IGI ~ ~. 

LEMMA 2.4. Suppose that the conditions of Lemma 2.1 hold. There exist entire functions 
F and G and E ~ (o) such that 

l n M ( r ,  G ) ~ I n M ( r ,  F ) ~ > , ( r ) ,  r-+ co, 

In E G (rd ~ I ~ Sp (0)), (r), re i~ ~. E,  r -+ 0% 

( 2 . 9 )  

(2 .~0)  
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In ]G (rd ~ ] < (1 + o (1)) S~ (0) k (r), r ~ co, 

In IF (rd~ [ < (1 + o (1)) Sa (0) ;~ (r), r ~ oo. 
(2.11) 
(2.12) 

There exist sequences (Pn), (qn), n e no, Pn e [Rn(l + (in2Rn)-I, Rn(l + 2(in2Rn)-l], 
qn e [rn' , rn"], r n' = O(qn) , qn = ~ n ~ ~, such that the neighborhoods {z: Izl= Pn} 
and {z: Iz] = qn} do not intersect with E and 

In ] F (p,,dD ] = o (;~ (P,0), ~',, < ]0 ] < ,:, n --,- w ,  

In IF  (q,,ei~)[ ~ Sp (0) ~. (q,O, n -+ co. 

There exist functions ~I and ~2, ~,(r) + 0 and ~=(r) + 0 for r ~ ~, such that 

( 2 . 1 3 )  

(2.14) 

l n l F ( r e ~ , ~ r ) ) l ~ ( r ) ,  r ~ ~ ,  (2.15) 

l n ]G(rd~ ,~ ' ) l~k ( r  ), r ~ .  ( 2 . 1 6 )  

Proof. Here and in the sequel we shall use the following theorem of Yulmukhametov [12]. 

THEOREM Y. Let u e S, B(r, u) = O(rP), r § ~, p < ~. Then there exist an entire func- 
tion f and E e (o) such that 

have 

lu ( z ) - -  In It(z)II = o O n ~ l z D  z ~ ~ ,  z ~ .  (2.17) 
By Theorem Y one can find entire functions F and G for which outside some E ~ (o) we 

]v ( z ) - - l n l F  (z)ll = O ( l n 2 l z ] ) ,  z ~ ~ ,  z~ E, (2.18) 

[V l (Z ) - - l n lO( z ) l  { = O(ln~lzl) ,  z - ->-~ ,  z ~ E .  ( 2 . 1 9 )  

From (2.19) there follows at once (2.10), while from (2.18) and property 5 of Lemma 2.1 we 
obtain (2.14). From (2.18) and (2.19) it follows that (2.9) holds first for r ~ El, where 
E I = {r > 0: ~ re i0 �9 E}. Since E I �9 (o), by virtue of the monotonicity of inM(r, G), 
inM(r, F), and l(r) and Lemma 2.2, relation (2.9) is satisfied for r + ~ without restrictions. 
From E �9 (o), Lemma 2.2, (2.10), and the principle of maximum modulus there follows (2.11). 
From the same considerations and property 4 of Lemma 2.1 we obtain (2.12). Since Rn(l + 2/ 
in 2Rn) - Rn(l + i/in 2Rn) > {Rn(l + 2/in 2Rn)} z/2, from property 6 of Lemma 2.1 and (2.18) 
there follows (2.13). From (2.9), (2.11), and (2.12) there follow at once (2.15) and (2.16). 

Lemma 2.4 is proved. 

We proceed now directly to the proof of Theorem I. We select a sequence (ak), k �9 Z, 
so that a_k =ak, El = {a2m: m eZ+}, E2\EI = {a2m+1: m EZ+}. We select a sequence O k + 4, 
k + +~, such that O_ k = -Ok, 0 o = O, Ok+ I - O k + O, 0 ~ k + +~, e2k+l = (02k + 02k+2)/2" We 
set Hk={G, k = 2 m ,  

F, k = 2 m + l ,  

where the entire functions G and F are constructed in Lemma 2.4. 

c k > O, c_ k = Ck, such that ~ ok< ~176 ~ cklakI< ~176 Let 

We select a sequence (Ck), 

f~ (z) = ~ ck (ak ~ a i )  Hk (ze-t~ 
k*f 

gj (z) = ~ ckHk (ze-i~ 
k,i  

The following lemma is derived in [5, pp. 202-203] from Cartan's identity [i, p. 33]. 

LEMMA 2.5. Assume that there are given an arbitrary sequence (Rq) of numbers and an 
arbitrary sequence (fk) of meromorphic functions. Then the set 
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E = { 0 ~ [ - - ~ ,  ~] :Vk,  q > ~ l  

m (Ro, (f~ - -  eeO) -~) < 2 ' + 0 + ~  In 2} 

i s  n o t  e m p t y .  

A p p l y i n g  t h i s  lemma, we c o n c l u d e  t h a t  t h e r e  e x i s t s  a number  ~ ~ [0 ,  
a l l  j e Z ,  n e A t  we h a v e  

2v]  such that for 

m (p~, e'L [~) ~< 21/'i+~+~= !n 2. ( 2 . 2 0 )  

Assume further that 

~ (z) = ~ c~adt~ ( z e -~ )  -- e ~, 

c o  

9~ (z) = ~ c~H (ze-~O~), f (z) = ~ (z)l% (z). 

From here, by virtue of ( 2 . 9 ) ,  for r -~ ~ we have 

T(r ,  f ) . .<T(r ,  , + i ) + T ( r ,  ~b~ )+O(1 )~< lnM(r ,  ~ i ) + l n M ( r ,  r  ( 2 . 2 1 )  

Let k(O) = sup{S0(0 + Om): m ~Z}. It is easy to see that for all 8<~ [0, ~) U (~, 2~) 
in the definition of k(O) one can take max instead of sup, 0 < k(0) I, k(e m) = i, m ~Z, 
k(n) = i. The continuous function k has angular points at em+ z' = (0 m + 8m+i)/2. We set 
p~m+i(r)=~(r), ?2m (r) ---- ~2 (r), m~Z, where ~ and ,~2 are taken from (2.15) and (2.16). 

We show that $(aj, f) > 0. We have 

fi (z) -- e '~ 
f (z) - a,  = - -  gi (z) + QH i (ze-i~ " ( 2 . 2 2  ) 

From (2.11) and (2.12) if follows that for r + ~ we have 

i[i (re"(~ i < exp {(~i + o (1)) k (r)}, 

I gi (rei(~l+~P)))[ ~< exp {(c~i + o (1)) k (r)}, 

where wj = max{Sp(Oj - 8m): m ~Z\{j}} = max{Sp(e i - ei_i) , So(O j - 0j+1)}, 0 < mj < i. 
the other hand, by virtue of (2.15) and (2.16) we ~ave 

]ejHj (rd~P~) I > exp {(1 + o (1))), (r)), r - ~  ~ .  

From ( 2 . 2 2 )  we o b t a i n ,  t h e r e f o r e ,  t h a t  ( r  § =) 

On 

If (rd(~162 - -  aii -.< exp {(o i - -  1 + o (1)) k (r)}, 

L (r, aj, f) > (1 - -  ~ i  + o (1)) X (r). 

Together with (2.21), this yields ~(aj, f) e (i - wj)/2 > 0. 

Now we prove that 6(a2k, f) = 0. We set j = 2k and we select N = Di, 0 < D < 9j+l' - 

b y  ( 2 . 1 0 )  
0j for j e 0 and 0 < q < 0 i - 0j_ z' for ~ < 0. We consider the angle Wj "= {z: 0j' 

_ 0 l i argz < j+z_ -q}. Let E = {z: ze-i0j E}, where E is a set from (2.10). Then 
for z re i0 e Wj\EJ, r ~ , we have 

[Hi (ze-i~ [ > exp {(S o (0 -- 0i) + o (1)) k (r)}. 

L e t  

(2.23) 

~1 (0) =: m a x  {S  o (0 - -  0~) : m E Z ~ { j } }  = max  {S o (0 - -  0 i _ 0 ,  

so ( % :  - -  o)}, o) + ~ 4 o ~< o)+~ - -  ~. 

It is easy to see that 

maxI~i(0)--&(0--0j):0~+~<~<0i+1--~} = 

= max {~i (0) -- Sp (0 -- 0i) : 0 ----- 0 i @ ~], 0 ~- 0]§ -- ~} = -- ~ (]) < 0. 
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From (2.11) and (2.12) it follows that for z = rei8 e Wj, r + ~, we have 

l fJ (z) l < exp {(~j (6) q- o (1)) k (r)}, ( 2 . 2 4 )  

] g/(z) I < exp {(~i (0) + o (1)) k (r)}. ( 2 . 2 5 )  

From (2.22)-(2.25) we obtain that for z = re i8 E Wj\EJ we have 

I f ( z ) - -a l]  < exp {(~i (O) - -  Sp (0 - -  0~ + o(1))k(r)} ~ exp {(--7(J) + o(1))k(r)}, r ~  ~ .  ( 2 . 2 6 )  

Together with (2.21) this gives 

From ( 2 . 2 6 )  it follows also that for r § ~ we have 

T(r, ~) >re(r ,  ao, [) + 0(1) > (L + o ( 1 ) )  ~(r), L >0 (2.27) 

From ( 2 . 2 1 ) ,  ( 2 . 2 7 )  and p r o p e r t y  2 in  Lemma 2 .1  i t  f o l l o w s  t h a t  l n T ( r ,  f )  ~ p l n r ,  r + ~. 

Now we show t h a t  6 (a~k ,  f )  = 0. We s e t  j = 2k + 1 and we f i x  q, 0 < 0 < ~ /2 .  Le t  
k 0 > 0 be such that 02k0_ ~ ~ ~ - ~ < Ozk0+l, Sum = {z = Pnei0: 82m_ ~ + ~' ~ 8 ~ 82m+~ + q'}, 

where Pn is taken from (2.13), while N' = ~/2(2k 0 + i). On Snm\E 2m, by virtue of (2.10), 
(2.11), and (2.13), we have (z = re i8 ~ Snm\E =m) for n + 

1 H ~ ( z e - ~ )  i > exp {(Sp (0 - -  02~) + o (I)) X (pn)}, 

1~2~ (z) I < exp {(hem (0) + o (I)) k (pn)}, 
Ig2  (z) l < exp {(h2  (0) + o(I)) 

where h2m(@) = max{S9(@ - 02k): k eZ\{m}} ~ SO(@ - @2m) - Km, Km > 0. From here and from 

(2.22) it follows that on U (Snm~ E2m) the function f tends uniformly to a2m for r = 
n=l 

Izl + ~ and, consequently, in +If(z) - ajl -l = 0(I) for r + ~. Let 

l ~ =  { z : l z l = p , } ~  U (Snm~E~") �9 
tn~--ko 

Then 

m(p,,  a i, f ) =  ~ m+lf (p /a )_~j  I a 0 §  

1 ! ln+ [ q2 (pnetO) [ dO + ~_s In + 1 = It]. ao + o 

3~ q ~  

(1 + o (1)) X (po) + 0 (2 ~) -- ~ (1 = ~  

( 1 ) < ~ ( l + o ( 1 ) ) X ( p ~ ) + m ( p n ,  g% fi)= 

+ o ( 1 ) )  

by virtue of (2.9) and (2.20) since in l(pn) = (i + o(i))9 in Pn ~ (i + o(1))p in R n = (i + 
o(1))9e2(n). From (2.27) and the arbitrariness of n > 0 it follows that 6(a2k+z , f) = 0. 

It remains to show that $(a, f) = 0 for a ~ E 2. First we establish that 6(a, f) = 0 
for a ~ E 2. The segment [--~ + N, ~ - q], q < 1/3, contains a finite number of points @m'" 
We cover each of these points by an interval so that the total length of these intervals 
should not exceed q. The complement with respect to [-m + q, ~ - N] of the union of these 
intervals consists of a finite number of segments @j, Jm ~ J ~ J2, @j c [8~_~', 8~']. Making _ _ J ~  J 
use of (2.10), (2.14), and (2.22), we show, in the Name way as above, that f(qnei@) tends, 
uniformly with respect to 8 e @j, to aj when n + ~, Jz ~ J ~ J2. Therefore, 

]n+ff(q~gB)--a[-l=O(1), n~, 0E U @j. 

I f  
]'2 

S = [--~, ~ ] \ . U  Oi, 
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then mes S .< 3n. Making use of the theorem of Edrei and Fuchs [i, p. 58], we obtain 

1 f In+- 1 1 T m(q~, a, [ ) = 2 ~ g  [f(qneU)_a] d 0 + O ( l )  . .<K~ln3~ (2q~, / ) + 0 ( 1 ) ,  K = c o n s t > 0 .  ( 2 . 2 8 )  

Fo r  r e [ r n ' ,  r n " / 2 ] ,  by v i r t u e  o f  p r o p e r t y  3 o f  Lemma 2 . 1 ,  ( 2 . 2 1 ) ,  and ( 2 . 2 7 ) ,  f o r  
r + co we have  

r (2r, [) < (2 ,-}- o (I)) k (2r) = (1 q- o (1)) 2 ,~+'&r' = 
= (1 q-o(l))2o+D.(r) ~< (1 q-o(1))2 ,~+lL-lT(r ,  [1. ( 2 . 2 9 )  

In particular, (2.29) is valid for r = qn and from (2.28) for n § ~ we obtain that 

I 
ra (qn, a, f) -.< (1 + o (1)) K2~+IL-I~ In ~ T (q~, [). ( 2 . 3 0 )  

T a k i n g  i n t o  a c c o u n t  t h a t  q can  be s e l e c t e d  a r b i t r a r i l y  s m a l l ,  we o b t a i n  6 ( a ,  f )  = 0,  a ~  E 2. 

By v i r t u e  o f  ( 2 . 2 9 )  we h a v e  

T(2r, r )=O(T( r ,  f)), r6 ~J [r2, r~2], r ~ ,  
,'Z=I 

while by (2.30), m(qn , a, f) = o(T(q n, f)), r n' = O(qn), qn = ~ n § ~. By a theorem 
of one of the authors [7], we have then ~(a, f) = O. Theorem i is entirely proved. 
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