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We consider a rational function R of degree d _> 2. We assume that the function R has a repellent fixed point ~, i. e. 

R(~) = ~, I R'(~)I  > 1. According to Poincar6's theorem [1, Chap. VII], there exists a unique function f, meromorphic in C 

and satisfying the equation 

f (~z) = R If (z)], ~ = R ' ( ; ) ,  (1) 

and the initial conditions f(0) = ~, f '(0) = 1. Equation (1) is called the Poincar6 equation and its solution f is called the 

Poincar6 function. It is convenient to write Poincar6's equation in the form of the commutative diagram: 

t[ f (2) 

Let R n be the nth iterate of the function R. In the classical works of Julia, Fatou, and Latt6s one has pointed out the 

close connection between the distribution of the values of the function f and the distribution of the roots of the equation 

Rn(z) = a. We shall continue the investigation of this connection, making use of the Nevanlinna theory of the distribution of the 

values of meromorphic functions [2, 3]. In particular, we shall give a new proof of the uniqueness of an invariant balanced 

measure of the function R and of the asymptotically uniform distribution of the roots of the equation Rn(z) = a with respect to 

this measure [4, 5]. The definition of a balanced measure and the precise formulation of the result are given in Sec. 5. 

All the facts regarding iterates of rational functions, used in this paper, can be found in [6, Chap. VIII]. 

1. Exceptional Values. By definition, the set E(R) of the exceptional values of a rational function R consists of those a E ~, 

such that the equation Rn(z) = a, n E N, have in totality a finite number of roots. In other words, the points a E E(R) have only 

a finite number of antecedents. As it is known, card E(R) _< 2. 

The rational function R and S are said to be conjugate if R o ~o = ~o o S for some linear fractional function ~o. If card 

E(R) = 2, then the function R is conjugate with z ~ z -+d. If card E(R) = 1, then R is conjugate with a polynomial of degree d. 

We denote by Epq) = {aE if: : f (z) ~ a, z E ~} the set of Picard exceptional values of the function f. If f is the 

Poincar6 function for R, then Ep(f) = E(R). In particular, f is entire if and only if R is a polynomial. 

We need one elementary lemma. 

LEMMA 1. If the equation R3(z) = a has a root of order d 3, then a E E(R). 

For the sake of  completeness, we give the proof of this lemma. 

Assume that the equation R3(z) = a has a root of order d 3, Then it has only one root. In this case the equation R(z) = 

a has a unique root a_  1 of order d and the equation R(z) = a_  1 has a unique root a_  2 of order d. Since also the equation 

R(z) = a_ 2 has a unique root d, we conclude that among the points a, a_l ,  a_  2 at least two are equal (since the total number of 

critical points of the function R, taking into account multiplicities, is equal to 2d - 2). From here it follows that a E E(R). 

2. The Nevanlinna Characteristics [2, 3]. For an arbitrary function f, meromorphic in C, we set 

N(r, a, ~ =  ~ .  log + -{- k log r, 
Ibf~<r 
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where the summation extends over all nonzero roots bj of the equation f(z) = a, taking into account multiplicities, while k is the 

order of  the value a at the point z = 0 (if f(0) ;~ a, then k = 0). Further, 

2zr 

'.f m (r, f) = m (r, co, t) ----- ~ 10g + I f (re  ~o) ] dO, 
0 

m(r,  a, : ) = m  r, , a ~ , ,  

7 ' ( r ,  r3 = m (r, f) + N (r, ~ , ,  f). 

The quantity T(r, f) is called the Nevanlinna characteristic of  the function f. By the order of the function f we mean the number 

p = lira sup log T (r, :)/log r. 

Nevanlinna's first fundamental theorem asserts that 

m(r ,  a, 1 " ) + N ( r ,  a, l) = T ( r ,  t ) - - l o g l f ( O ) - - a ] + ~ ( a ,  r), 

where I t (a ,  r) I - log + l a I + log 2. If f(0) = a, f'(0) ;~ 0, then log[ f(0) - a I has to be replaced by log[ f'(0) I. 

According to Nevanlinna's second fundamental theorem, for any mutually distinct values al, ..., a n ~ ~, we have 

~, re(r, al, ] ) < - 2 T  (r, V)+ Q (r, f; az . . . .  , a,,), 

Here Q is the remainder, small with respect to T(r, f). For functions of finite order we have Q(r, f) = O(log r), r --, oo. 

3. Valiron Exceptional Values of the Poincar6 Function. A value a E G is said to be exceptional in the Valiron sense for 

the function f if 

l im sup m (r, a,__.____._~h ~> 0. 
r -~  7" (r, f) 

The set of such exceptional values is denoted by Ev( f  ). Obviously, Ep(f) C Ev(f ). The set Ev( f  ) has always zero logarithmic 

capacity, but may have the power of the continuum [2, 3]. 

It is known that for a rational function R of degree d and for any meromorphic function f we have T(r, R o f) = dT(r, 

f) + O(1), r -* oo (see, for example, [3, Chap. 1]). From here and from (1) for the Poincar6 function we obtain 

T (I~,1 r, D = (d + o (1))T (r, D, r ~ oo, (3) 

and, in particular, f has finite order 

p = logd / log I ~ I 
(4) 

and normal type. This is Valiron's result [1, Chap. VII]. 

THEOREM 1. Assume that f and R are related by the Poincar6 equation. Then E v ( f  ) = E(R). 

Proof. First we note that if S is a rational function and bl, ..., bq are all the roots of the equation S(z) = a, where the 

root bj has order kj, then 
q 

re(r, a, S ~  ~ k im(r  , bl, f ) q - 0 ( 1 ) ,  r ~ o o .  

In fact, it is sufficient to prove this relation for a = oo, b], ..., bq E C. Then 

and we have 

q 

] S (w) 1 < K( ~ i w - -  b: I -kj + 1), 

q 

m (r, oo, S .  t) ~< ~ m (r, oo, ( f - -  bi)-~i) q-. 0 (1) -~ 
1=1 

q 

= ~ k im(r ,  bj, ~ ) + 0 ( 1 ) .  
l - t  
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Now we apply Lemma 1. If a ~ E(R), then the order of the roots of the equation R3n(z) = a does not exceed (d 3 - 1) n. 

From (1) there follows that f(;t3nz) = R 3n o f(z), n ~ N. Therefore, 

n ' , t ~ ,  m ( r , a , / ) ,  ~ ( d 3 - - 1 ) m ( i - T - ~  b, / 
b:R3n(b)=a 

where the sum is taken over all the distinct roots of the equation R3n(z) = a. From here, by the second fundamental theorem 

and taking into account (3), we conclude that 

re(r, a, f )~<(2+o(l) ) (d  S -1)nT(~ ,  I" ' / ) =  

= ( 2 + o ( 1 ) ) ( ~ ) " T ( r ,  ]), r-+-oo. 

Selecting the number n arbitrarily large, we obtain m(r, a, f) = o(T(r, f), r - ,  co. 

We have proved that Ev( f  ) C Ep(f). The converse inclusion is obvious. Theorem 1 is proved. 

We mention that, by a similar method, N. Yanagihara [7] has proved earlier that the function f has no Nevanlinna 

deficiency values, different from E(R), i.e. 

l iminfm(r,  a, ~/T(r, / ) = 0  

for all a E :~ \  E(R). 

4. The Equidistribution of the Preimages of Measures. Let f be an arbitrary meromorphic function and let ,u be a 

measure in ~ ~ We lift the measure/z with the aid of the function f, setting for an arbitrary bounded Borel set X C C 

(f*~) (X) = I n (a, X) d~a, (5) 

where n(a, X) is the number of the roots of the equation f(z) = a, belonging to X (multiplicities included). The locally finite 

measure f'/~ will be called the preimage of the measure/~ under the action of f. Obviously, the operator f '  is linear. For example, 

if/* = 6 a is the unit atomary measure, concentrated at the point a E ~., then f*6a(X ) = n(a, X). 

In the sequel we investigate in this section meromorphic functions of finite order p and normal type, i.e., 

T (r, [) = 0 (rP), r ~ o o .  (6) 

Let W be the conjugate space of the space of continuous finite function in C (i.e., W is the space of locally finite charges 

in C), provided with the topology of weak convergence. We denote by lJlo c the space of locally summable functions in C with the 

topology of  mean convergence on each compactum. The subharmonic functions are contained in ~oc and we consider the dense 

subspace 6SH C ~1oc, consisting of  differences of subharmonic functions. The Laplace operator extends to a linear operator A: 

6SH --, W, possessing the following continuity property: if u t --- 0, u t ~ 6SH, t ~ 0% and the variations of the charges Au t are 

bounded on compacta, uniformly with respect to t, then Au t --, 0. 

Following V. S. Azarin [8], for each t ~ C we define the linear operators Lt: 6SH ~ c3SH, Tt: W ~ W by the formulas 

Ltu (z) = It 1-o u (re), (Try) (X) =- I t 1-0 v (iX). 

Then TtA = AL t for all t E C. 
The measures Pt, P2 E W are said to be p-equiclistributed if the charge v =/~1 - /~2  satisfies the condition TrY --, 0, t --- 

co. 

Remark. If f is a meromorphic function of finite order p and normal type, then for any probability measure ke in if: we 

have f*/t(D(0, r)) = O(rP), r --, co (7), where D(a, t) = {z: I z - a I < t}. We prove (7). We shall assume that the integrals 

logli(0)--ald~a, ~ log+lald~ 
E 

are finite; otherwise, we perform the transformation 

1 
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with suitable ~, w E C. Now, making use of  (5), (6) and Nevanlinna's first fundamental theorem, we obtain 

f*~(D(O, r ) ) = ~  l*6a(D(O , r))d~t a ~<~ N(er ,  a, ~)dlx ~ ~ .T(er ,  D q - O ( 1 ) = O ( r o ) ,  r--~co. 

From (6) and (7) there follows that the family of  functions {L t log [ f [ } I t I >-1 C 6SH and the family of  measures {Ttf*/~} [ t [ >- 1 C W 

are precompact in 6SH and W, respectively. 

THEOREM 2. Let f be a meromorphic function of order p and normal type and let/aj be probability measures in ~ff. 

such that/zj(Ev(f)) = 0, j = 1, 2. Then the m e a s u r e s  f'*ft 1 and f*/z 2 are p-equidistributed. 

This theorem is a weakened variant of a result of  one of  the authors, communicated in [9], in which instead of 

#j(Ev(f)) = 0, j = 1, 2, one requires only that pj({a}) = 0, j = 1, 2, for each point a ~ E v ( f  ). 

For the proof of  Theorem 2 we require the following. 

LEMMA 2. For any meromorphic function f there exist constants r 0 and C such that m(r, a, f) _< T(r, f) + C, a ~ i C, r __ 

r 0. 
Proof. For the sake of simplicity, we restrict ourselves to the case when f'(0) ~ 0. (In the sequel, Theorem 2 and Lemma 

2 are used only in this case). We select numbers r 0 > 0 and 6 > 0, so small that the function f be univalent in D(0, r0) and we 

should have D(f(0), 6) C if)(0, r0). 

Let G(z, ~, V) be the Green function of  the domain V with pole at the point ~, defined to be equal to zero in C / V. In 

this case, if f(0) ~ a, then N(r0, a, f) = G( f - l a ,  0, D(0, r0) ) = G(a, frO), fD(0, r0)); here f - l a  is an a-point of the function f, 

nearest to the origin. From the monotonicity of  N(r) and the maximum principle for r ___ r 0 we obtain 

6 1 
N (r, a, f) >1 N (ro, a, D > G(a, f(O), D(f(O), 6)) = log + I I (0) - -a l  >~ l~ I / ( 0 ) - - a l  q- log& 

Now from Nevanlinna's first fundamental theorem there follows that 

I re(r, a, f ) ~ < T ( r ,  [ ) - - N ( r ,  a, ~ q - l o g ~  q -e (a ,  r)~< 

I I 1 
~< T ( r ,  f) m l o g  + I / (0 ) - - a l  q- log I t (0 ) - - a l  -k log~- q- log§ q- 

-k log 2 ~ T(r, f) -b Cf, a =/= f (0). 

If, however, a = f(0), then the required inequality follows directly from the first fundamental theorem. Lemma 2 is proved. 

Proof of Theorem 2. There exists a point a E if2, at which the logarithmic potentials of both m e a s u r e s  ~j are finite and 

a ~ Ev(f  ). It is sufficient to prove that each measure f*pj is p-equidistributed with f*6 a. Assuming that a = oo (this can be 

achieved by replacing f by 1/(f - a)), we arrive at the following situation. 

Prove that the measures f*/~ and f*6 a are p-equidistributed under the condition that 

(8) ~ log § [ a [ dlx a < co, 

oo ~ Ev (f), (9) 

Ix (Ev if)) = O. 
(10) 

Following Frostman's method [2, Chap. X], we consider the logarithmic potential 

u (w) ----- ~ log [ w - -  a I d~a 

(by virtue of (8) the integral converges for almost all w). Then U = u o f E fiSH, AU = 2n(f*# - f*6~o ) and, by virtue of the 

continuity of the Laplacian, it is sufficient to prove that 

LtU (z) = It l -~ (lz)---~O, t---~ co. (11) 
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We fix an arbitrary number r 1 < r For  0 < r _< rl,  t --, oo we have 

2~ 2~ 

2---h-. 2~rl t I 0 [ log 1~ (tre(o) - -  a II d/x~ dO 

2~ !!{ ~< ~ I  " log* If (ire ~~ I - - a  ] 4- log + -~ ! (trd e) --  a i } d~xo dO ~< 

<- I-]TTfo { m ( l t l r ,  co, D + ! o g 2 + l o g §  a, f ) } d ~ <  

~< Cro f m (s, ~ ,  f) q- log 2 q- log + I a I -/- m (s, a, f) '~'4"a ' 
T (s, y) 

where s = [ t [ r. By virtue of (8) and Lemma 2, the integrand has a/~-summable majorant. By Lebesgue's theorem, we can take 

the limit under the integral sign for s --, 0% while, by virtue of (9) and (10), this limit is equal to zero. Thus, 
2~ 

j- [ L tU  (re~~ I dO ~ . 0  t ~ oo~ 
0 

uniformly with respect to r, 0 < r _ r 1. From here we obtain (11). The theorem is proved. 

5. The Balanced Measure  and the Equidistribution of the Roots of the Equation Rnz = a. Let M be the set of all 

probability measures in ~?' with the property/~(E(R))  = 0. We define an operator  Q: M --, M in the following manner: 

Q~ = 1 
-3- R*I x- (12) 

A measure/~ E M is said to be balanced if Qu =/~. Roughly speaking, this means that for each Borel set E C ~ the measure 

/t(E) is distributed equally among the preimages of the set E under the action of the function R. 

THEOREM 3. For  each rational function R there exists a unique balanced measure gR and, moreover, for each measure 

E M we have Qn/~ ._,/~R, n --, co (13). 

If R is a polynomial, then the measure kt R coincides with the balanced (in the sense of potential  theory) measure of the 

Julia set J(R). In this case Theorem 3 has been proved by Brolin [10]. In the general case Theorem 3 has been proved by M. Yu. 

Lyubich [4] and, independently, by Freire,  Lopes, and Marl6 [5]. The proof in [4] is based on the investigation by means of 

functional analysis of an operator  A ,. C (~) --0- C (~), for which Q = A*. 

In the sequel we need the following sample. 

LEMMA 3. Let  R be a rational function, p E M. Then for each neighborhood U of the set E(R)  and for any number 

e > 0 there exists an index N such that (Qnp)(U) < e for n >_ N. 

The proof  of  this lemma follows directly from the description of the set E(R),  given in Sec. 1. 

Proof of Theorem 3. The existence of the measure PR is established with the aid of the usual N. N. Bogolyubov--N. M. 

Krylov construction. Let M be the set of the probability measures v on ~ such that v(E(R)) = 0. We consider the sequence of 

Ces~ro means 
N ~ I  

,~(N) = ~ Q%, a ~ E(R). 
N m 

s~0 

Clearly, v(N) ~ M. Let v be some limit measure for the sequence v(N). Then v is a probability measure and Qv = v. 

From I_emma 3 there follows that v E M. 

First we assume that R has a repellent fixed point ~ and we consider the Poincare equation (1). We denote by T the 

operator  TX, defined in Sec. 4, where ,1 = R'(~). 

By virtue of the relation (4) we have d = I,t [P and, therefore, for each charge v E W and any bounded Borel set X c 

C we have Tv(X) = d- lv(2X) .  From the definition of the operators Q, T, f* and the diagram (2) there follows that f*Q = Tf*. 

Obviously, the operator  f*: M --, W is continuous and injective. 
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For any measure/~ E M, by virtue of  Theorems 1 and 2 we have 

0 = tim T ~ (f* ,~R - -  [*Ix) = f*/xn - -  lira T"f*~, 

from where we obtain at once the uniqueness of the invariant measure PR and (13). 

We get rid of the assumption that R has a repellent fixed point. We select k E N so that R k should have repellent fixed 

points (this can be done since the number of  all nonrepellent periodic points of the function R is finite). 

Obviously, the measure/~R, constructed by the Krylov--Bogolyubov method, is balanced also for R k and, according to 

what has been proved, kt R is the unique balanced measure for R. 

For any measure/~ E M we have Q~/a --- /~R, n --, oo. Then for any q E {0, 1, 2 ... . .  k - 1} we have Q~+q/~ = 

Qkn(Qq/t) ~/ZR, n --, 0% and, therefore, (13) holds. 

Theorem 3 is proved. 
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