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INDEPENDENCE OF SOME POLYNOMIAL STATISTICS AND OF THE SAMPLE MEAN 

A. E. Eremenko UDC 519.21 

Let x = (xl,...,x n) be a random vector in R n with independent components. By a poly- 
nomial statistic we mean a random variable P(x) = P(xl,...,Xn) , where P is a polynomial in 
the coordinates of the vector x. We assume that x is a sample with replacement, i.e., that 
the random variables have the same distribution F(t). One of the important characterization 
problems of mathematical statistics consists of determining the functions F(t) for which two 
polynomial statistics, Pl(x) and P2(x)~ can be independent random variables. When one of the 
statistics is linear, the general method of solving such problems is that of differential 

equations. By this method the case when Pz is a linear form and P2 a quadratic one has been 
relatively completely treated ([I], Sec. 4.2). 

In the present note we study third-degree statistics independent of a linear form. We 
shall consider a linear form of the type L(x) = xl + ... + x n, n ~ 2. Any linear form with 
nonzero coefficients ca~ be reduced to this type by a substitution xj = ~jxj. Let P(x) be a 
polynomial of degree m with real coefficients. The polynomial P is called admissible if at 
least one term xT appears in the irreducible expression of P with a nonzero coefficient. We 

denote by d k (I < k ~ m) the sum of the coefficients of terms of degree k in the polynomial 
P. Without loss of generality we can assume that the constant term in P vanishes. 

THEOREM I. Let x be a sample with replacement, and P be an admissible statistic of de- 
gree m such that one of the numbers d k ~ O. If P(x) and L(x) are independent random variables, 
then P(x) = const almost surely (a.s.). 

The case of dk = 0 for all k has been successfully investigated only with m = 3. Let P 
be a third-degree polynomial. We put 

P (x) = c:~kx~xjx~ cijx~x~ X cjxj, ctj~, c~, c] 6 R, 
t,j,k=l i,]=l i=l 

(!) 

E E IS and we introduce the notation al_____ o~i,a.2--__ (Qi; -~- c~i: + cj~:), a3~- ~ ci1~, a~ ~ X cjj, as__ - 

E c:j, a 6 =  X cl �9 ~ ~#i ~<.ic~ f 
r" #.i i 

THEOREM 2. Let x be a sample with replacement and P(x) be an admissible statistic of the 
the form (I) with at least one of the numbers ~j ~ O. If P(x) and L(x) are independent ran- 
dom variables, then either x is a normal vector, or P(x) = const a.s. 

Proof of Theorem I. We denote by f the characteristic function (c.f.) of the distribu- 
tion function F of the random variables xj. From the independence of P(x) and L(x)~ and from 
Theorem 8.12 in [2], in view of the polynomial P being admissible, it follows that f is an 
entire function of a finite order. Using again the independence, and arguing as in the proof 
of a theorem in [2] (Lemma 8.3.1), we obtain a differential equation 

~aj,.../ .f-...  f =A,  (2) 

where the summation is extended to all sets of indices such that jl + ... + Jn ~< m, and a 
t~--dn 

and A are some constants satisfying X aii...7 :(~-7)~d~, k~| ..... m. 

fi+...+jn=k 
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Applying the Wyman--Valiron method ([3], Chap. V), we use the formula f(J)(~)/f(~) = 

(I + o(1))(~(r)/~)J, j = I, 2,.... Here r = I~I + ~, disregarding a set of finite logarithmic 
measure, and ~ is the point at which f attains its maximum module on the circle Izl = r, while 

v(r) is the central index ([3], (8)). Substituting this formula in (2) we find ~((~-~)kdg~- 

k=l 

o(1))(w(r)/~)k~-A, r-+oo, and owing to the conditions of the theorem, at least one of the num- 

bers d k ~ 0. It follows that v(r) = O(r) as r § ~, and consequently the function f is of the 
exponential type. 

Now it follows from Theorem 2.2.2 in [2] that the set of points of growth of F(t) is 

bounded, i.e., that the xj are a.s. bounded. The proof is completed by applying the follow- 
ing lemma: 

LEMMA. Assume that the random variables xj in a sample with replacement are a.s. bounded 
at least on one side, and that an arbitrary statistic P(x) does not depend on L(x). Then 
P(x) = const a.s. 

This lemma is proved by an argument analogous to one adduced in [1]. 

Proof of Theorem 2. In view of Theorem I, we can assume that d k = 0 (k = I, 2, 3). 
Equation (2) with m = 3 takes the form 

i a~-- f--+a2-- f--~+a 3 7 +a~--/-+a5 ---~A, (3) 

~ = V -  1, ACR 

the constant A being the expectation of P(x) taken with the opposite sign. Since the statis- 
tic P is admissible, the solution of this equation ought to be an entire function of finite 

order. Putting w = f'/f, we get i(alw" + (3al + ~2)w'w) + ~4w' = A. Here we used the fact 

that a6 = dl = 0, a4 + a5 = d2 = 0, al + a2 + a3 = d3 = 0. Integrating and multiplying by --i, 
we obtain the Riccati equation 

I 
aim' -+ -~ (3a1 + a~) w 2 - -  ia~w = - -  iAz -1- C, A 6 R, C 6C. (4) 

We d i s t i n g u i s h  s e v e r a l  c a s e s :  1. a l  ~ 0,  3a l  + a2 ~ 0,  A ~ 0. We s h a l l  show t h a t  in  
t h i s  c a s e  t h e  e q u a t i o n  (3) c a n n o t  have  e n t i r e  c h a r a c t e r i s t i c  s o l u t i o n s .  By means of  t he  

2a I ia~ 
substitution m~-~y+._ __3alq-a--------~-~Y+~ we reduce (4) to the form 

y' "-k Y~ --~ iAlz + C1, A16 R, C1 C C. (5) 

I t  i s  w e l l  known t h a t  a l l  t h e  s o l u t i o n s  of t h i s  e q u a t i o n  a r e  meromorph ic  f u n c t i o n s  w i t h  an 
i n f i n i t e  number of  p o l e s ,  a l l  t h e  r e s i d u a  b e i n g  e q u a l  to  1. T h e r e f o r e ,  y = v ' / v ,  where  v i s  
some e n t i r e  f u n c t i o n .  O b v i o u s l y ,  f ( x )  = ( v ( z ) )  a e x p  Bz. For  t h e  f u n c t i o n  v we have  t h e  e q u a -  
tion 

vo=(iAlZ + C1) v, A1CR, C16C. (6) 

Th i s  e q u a t i o n  r e d u c e s  to  A i r e y ' s  e q u a t i o n  ( [ 4 ] ,  No. 2 3 . 4 ) .  Any s o l u t i o n  of  t h e  e q u a t i o n  (6) 
i s  known to  be an e n t i r e  f u n c t i o n  of  c o m p l e t e l y  r e g u l a r  g rowth  of  o r d e r  3 / 2 .  C o n s e q u e n t l y ,  
t h e  P h r a g m e n - - L i n d e l 8 f  i n d i c a t o r  h ( 0 )  of  t h e  f u n c t i o n  f c o i n c i d e s  w i t h  t h e  i n d i c a t o r  of  t h e  
f u n c t i o n  v a n d ,  by t h e  p r o p e r t y  of  t h e  r i d g e  of  an e n t i r e  c h a r a c t e r i s t i c  f u n c t i o n  f ,  s a t i s -  
fies the conditions 

h (O) ~ h ( 2 ) (sin O)a/2 , 0 ~ 0 ~ ~, 

h (O) ~ h ( - -  2 ) [ sin O I 3/2, n ~ O ~ 2r~. 

We are going to show that the indicator of the solution of (5) cannot have the properties 
(7) and (8). Let, e.g., A1 > O. From the asymptotic relations adduced in [4] it follows 
that Eq. (6) has two linearly independent solutions, vl and v2, with respective indicators 

(7) 

(8) 
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h l ( 8 ) = •  O ~ - ~ -  , __-~- --~-,  h 2 ( 8 ) = - - •  -ff 0 @ - ~ -  , 6 - ~ 8 ~  ~ , •  For  a n y  

s o l u t i o n  v of  e q u a t i o n  (6) we h a v e  v = y l v l  + u (Y1 and Y2 b e i n g  c o n s t a n t s ) .  I f  7z = 0 ,  ! 3 (e+~:/6)! then h2(e) = h(e); if Y2 = 0, then h(e) = hz(e); if yzY2 < 0, then h(8)----- • 

in the neighborhood of the point 8 = -~/2. All the three cases are incompatible with (8). 
The case of Az < 0 is treated similarly; we then obtain a contradiction with (7). 

2. az = O, 3a2 + a2 ~ 0, A = O. Repeating the arguments of case I as far as Eq. (6), 
we find v" = Czv. Hence v(z):?lexp~z)+T2exp(--V~z) . Consequently, the function f(z) = 
(v(z)) aexp Bz is of the exponential type. Therefore, the random variables xj are a.s. 
bounded, and it follows from the lemma that P(x) = const a.s. 

3. al = 0, 3al + ~2 = 0. Equation (4) takes the form aiw' -- ia~w = iAz + C. The gen- 

eral solution of this equation is w=C1exp{ a~- iz~@Q(z),- Q being a polynomial. If Cl~ ~ 0, 
\ al ] 

t h e n  f(z)--=exp~m(z)dz i s  a f u n c t i o n  of  an  i n f i n i t e  o r d e r .  T h i s  c o n t r a d i c t s  Theorem 8 . 1 2  i n  

[ 2 ] .  I f  Cla4 = 0 ,  t h e n  f ( z )  i s  an  e n t i r e  f u n c t i o n  w i t h o u t  z e r o s ,  and  a c c o r d i n g  to  Theorem 
3 . 1 3  i n  [2] t h e  r a n d o m  v a r i a b l e s  x j  a r e  n o r m a l .  

4 .  a l  = 0 .  E q u a t i o n  (4) t a k e s  t h e  f o r m  

1/2a~m2--ia~w=--iAz + C. (9) 

I f  t h e  v a l u e s  o f  t h e  c o e f f i c i e n t s  a r e  s u c h  t h a t  (9)  a r e  m e r o m o r p h i e  s o l u t i o n s ,  t h e n  w i s  a 
p o l y n o m i a l  o f  t h e  f i r s t  d e g r e e ,  and  we r e t u r n  to  t h e  n o r m a l  d i s t r i b u t i o n .  

Hence the proof is complete. 
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