GROWTH OF THE NEVANLINNA PROXIMITY FUNCTION
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Let the function f be meromorphic in the finite plane. Put

23
m f) =m0, )= gz [ log* |1 (re)| do,
0

P
m(r, a, fy=m(r, {/(f—a)), a7="c0.
Drasin and Weitsman [1] showed that the set 4—C of values a for which
m(r, a, f) == 00, r->o00, 1

holds has zero capacity. They also constructed an entire function of order p for which (1) holds for a=4 for
any set A of zero capacity and any p > 1/2. The analogous problem was posed by Drasin and Weitsman [2,

p. 156, Problem 1.27(c)] for meromorphic functions of order p = 1/2. (Itiswell known that for entire func-
tions of order p < 1/2 Eq. (1) is satisfied only for a = «.)

The following theorem answers the question of Drasin and Weitsman.

THEOREM. Let AcC be a set of zero capacity, ¥(r) defined on [0, =) and monotonically increasing
with §(r) — = as r — =, $(0) = 1. There exists a meromorphic function F for which (1) holds with a=4 and

T(r, F) =0 (¢ (r)log?r), r— oo @)
(T(r, F) is the Nevanlinna characteristic function of F).
LEMMA. Let {Ok}g:i and {Bii}llfzi be finite sequences of numbers in the interval (~7/2, ©/2); By < O <
O+t < 6y Put D= :Qi[e,” 6:]. Let {ak}]l{\I21 be complex numbers with lay | < vZ/2. There exists a mero-

morphic function f with the properties:

T(r, fy=o($(r) log?r), r—>x, 3)

f(z) »>a, uniformly as [2]-> 00, 0, <argz <0y, 4)
7(0) =0, (8)

|/(z) ]| <1, argzeD. (6)

Proof. Valiron {3} constructed a meromorphic function g satisfying condition (3) and having the follow-
ing properties: for everya, 0<a < 7/2, g(z) — 1 uniformly as lzl ==, ¢ = argz = 7~ ¢, g(z) — 0 uni-
formly as Izl —~ o, 7+ =argz =27 - a,

We put ¢; = (1/2)(8; — 7/2), ¢k = (1/2)(6 + 0—) for 2 =k = N, Then the function

N
g (2) = ag (2¢7*%) + k.?.::z (ay — ax—;) g (ze7%%)
has properties (3), (4). Let {bk}lézx be all the poles of the function g; on the set E={z:argze=D}. (Their num-
K
ber isfinite by (4).) The function g,(z) = g, (z)(z + 1) ] (s — b) isholomorphic inE. We put M (z) = max| g, (z)}.
=1

fzl=r
€8
It follows from (4) that Tim M (r)<] '2/2. Assume that M(r) =1 and r > r;. We put M = max M (r) and take
>0 <y

n >0 so small that Inz(nz + 1)"11 < 1/M holds for Izl = ry. Bearing in mind that Inz{nz + 1)"11 < 1 in the
right halfplane, we obtain that the function '

(2) =~xz(xz+‘1)“1g2(z)
satisfies all the hypotheses of the lemma.
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Proof of the Theorem. We first prove the theorem in the case when the set A is bounded. Without loss
of generality, it is then possible to assume that Ac{z:|z|<C1/2}. By a theorem of Cartan [4, p. 96] there
exists a measure u such that

”

\loglg—ia—ldp(g)z 0, e A

i

We may assume that the support of u is contained in the square A} ={z =x +iy: —1/2 =x<1/2, -1/2 <y <
1/2}, and that the total measure is equal to m/2. We divide the square A} into congruent squares A%, j=
1,...,4. (The squares are numbered in a clockwise direction starting with the upper left square.)

Assume that the square A) has already been subdivided into congruent squares A%, j=1,..., 4%,
We divide each of the squares A into four congruent squares ordered clockwise from the upper left. We
arrange the quarter-squares thus obtained in the same order as A} and number them in sequence. We get

a sequence A?, ji=1,..., 47, (We assume that the left and lower sides belong to the square AE‘; the right
and upper sides do not belong to it.) We note that the length of a side of the square Agl equals 270,

We denote by mes a the radian measure of the angle . We divide the first quadrant into four angles

ﬁ} so that

mes Bj = u (A;).
4
This can be done since X p(A!) = p(A}) =n/2. The angles are enumerated counterclockwise. Let a’j be the
=

angle with the same bisectrix as B% but with
mesa} = % p(Al) = 14 mesp;.
We divide each of the angles oz‘jl‘1 into four angles Bgl (numbered in sequence in a counterclockwise
direction) with
n 2 lén_.‘i n—14 n
mes f} = — mes ( U e u (A).
Let aﬁ‘ be the angle with the same bisectrix as ﬁtjl but with

mesaf = (1 — 27") mesf].

o 41

Putting 7= ] {J @], it is easy to see that
j=1

n=1 j=
mesT:%H (1—2"")=1t>0
=1
and
mes (o} (] T) = tn.(A}). )

We put ay="o(—1+7), ay="(1+i), as="(1—1), ar="/(—1-1).

"

4 . . . .
If we apply the lemma to the set D = (jaf U[—n/4,0], we get a meromorphic function fn with properties
=1

3), (8), (6), and such that

fo(2)—ap, argze=a;, j=k(mod4), 8)
fn(2) =0, —n/4<<argz<C0, 9

uniformly as |zl =, It follows from (3), (5) that there exist numbers ny >0 such that
[fa(xaz) | <1 for |z| <em, {(10)
T (1, fa(%a3)) < 27™Pp(r)log?r, r=2. (11)
By (10) the series F (z) = >\ 27", (x,3) represents a function meromorphic in the finite plane, and by (10)

n=1

and (11) the function F satisfies condition (2).

Let 5]?1 be the midpoint of the square A}rl. 1t follows from (8) that

m .
D 27 (%2 > T as |z]|—- o0, argzeaj. 1z)
n=1
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We show that the function ¥ satisfies the hypothesis of the theorem. From the definition of the measure u and
Fatou's theorem, we obtain
A’M
S, (@)= 2 ( inf log™ —-1——-) u(A?) > o
P m [E—al
=1 §EA]'
as m~»oo, asA. Let m be any natural number. By (6) we have

X 27, (40| <27 for argze T. (13)

n=m+1

In accordance with (12) we choose ry so that
m
2 27 fn (n2) = AT
=1

for argz e aj, |z2] =r..  For such z we have by (13) that F (z) < D}, where Dgn is a square with the same center

as A]m and with sides parallel to the sides of A}n but three times longer.

it is easy to see that for any a
. 1 . 1
+ > 1
inf log == inf log =y log 3.

m m
EEDJ' EEAJ

Thus for r > ry we have, bearing in mind (7),

a2
1 1 1
caR)> b { logr—— A
m(r,a )/an og T7 o) = a] d(p}znTlog IF(re“P)*aquj?
AL
1 - 1 m i nwlog 3 (14)
> 2 (ot Tow ,g_,,,) mes (&' 11 7) > g (S (0) — 21E5),
1

Since m was chosen arbitrarily and Spm(@) — = as m — =, it follows that m(r, a, F) — = for a<=4.

We now consider the case when the set A is unbounded. Let 4 =44, 4, {z:{z] <1}, dec={z: |z] >1}.
We put A’={a:1/a=A,}. Since the theorem has been proved for any bounded set A, there exists a meromor-
phic function F; satisfying condition (2) and by (9), (14) having the properties:
: 7t/2
Y log*
0

1 . : 15)
-——————-———lpl(rem)_aidcp»oo as r-—»oo, if a4, {

F\1(z) —-uninformly as |z} = o0, —na/4<Carg z<C0. (16)
Analogously, we construct a meromorphic function F, satisfying (2) with the properties

—/8 -
_.'S;:Alog*—l—i‘—z—(r—e%)-_—_——a-{- dp—o00 asr-—»oo, if acd, an
Fo(z) =0 uniformly as |2] = o0, O0<arg z<a/2. (18)
We now consider a function f satisfying (2) such that
fz) >0, —nfd<argz<<—n8, (19}
(2} = oo, O<arg z<<n/2, (20}
uniformly as |z| = «,
We show that the function

F(z)=F1(z) +1/[F2(2) +/(2) ],

for which (2) obviously holds, satisfies the hypothesis of the theorem. Let g be a meromorphic function tending
to zero as lzl =, 0 s argz =< 7/2. It is easy to see using (14) that Eq. (15) will hold if Fy is replaced by

Fy + g. If, on the other hand, the function g tends to zero uniformly as |zl — «, —n/4 = argz = -7/8, rela-
tion (17) will hold for the function F, + g.

We let k(a, b) denote the chordal distance between the points @ and b on the Riemann sphere. It is easy
to see that
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k(a, b)=Fk(1/a, 1/b). 21)
Moreover, for any 8, and 8, we have as r —

8 8
\ log !

o, k(F (rei®), o) d

If a4, then by (18), (20), (15) we obtain in succession
aj2
L j' log+——-——}—-— dp-— >, r— 0.
N \Fy(re') — ‘
/g

m(r, a, F);—Zl? 5 log™
0

i

_— _de - . 22
7o =] de +0(1) (22)

p = log+
8,

1
————_ll"(rei")—al dep — oo, r — vo.

If, on the other hand, a=4,, we obtain in succession {17), (22), (21), 19), (16). We have
—n/8

! 5 logt 1

byt g -——-———-:—d —>» 00,

=, TR =] ?
—a/8

dg — oo,
—n/4

—/8

1 51 log ——r
2n k(F, (rei®), a—1)

L j‘ log . 1 dg — 0,
o kU(F () £ ()7 a)
—/8

m(r, a, F)>'2_1~E 5 logt
-k

——.—1-—-———dcp—>oo r — oo,
| 7 (rei®) — a| ’

The theorem is proved.

Remark 1. Let the meromorphic function f satisfy the condition Hm T'(r, f)/In?r<Cco. In this case, as

r->00

was shown by Tumura [5], there exists a sequence of positive numbers T — 0, such that the sequence f(7z)
converges uniformly in the annulus {z:1 = Iz| = 2}. It follows that Eq. (1) can hold for the function f for at
most one value a=C,

Remark 2. Assume that a meromorphic function of a given order p, 0 =< p = =, tends to zero uniformly
in the right halfplane. If we add this function to the function F constructed in this paper, we obtain a mero-
morphic function of order p for which (1) holds.

The author expresses his deep gratitude to A. A. Gol'dberg for his interest in this work and for many
valuable comments.

Remark. While this paper was in press, the following somewhat weaker result of Damodaran [6]
appeared: for every set ACC of zero capacity and any function ¢ (r) tending to infinity, there exists a mero-
morphic function f with property (1) for all a==4 and T(r, ) =O(g (r)n®r), r — o,
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