A. É. Eremenko

It is well known that an entire function of finite order has an most countable number of asymptotic values. Gross [1] constructed an example of an entire function of infinite order whose set of asymptotic values coincides with the extended complex plane. Dreisin and Weizmann [2] raised the question of whether there are any restrictions from above on the size of the set of asymptotic values of a meromorphic function of finite order. In this direction only the result of Valiron [3] is known; he constructed a meromorphic function of finite order with a set of asymptotic values having the cardinality of the continuum. In this paper we construct a meromorphic function of finite order whose set of asymptotic values coincides with the extended complex plane, thereby giving a negative answer to the question of Dreisin and Weizmann.

We express the numbers in $[0,1]$ in base seven and reject expressions ending in an infinite sequence of sixes. Let $\alpha_{n}, \beta_{n}, \gamma_{n}, \mu_{n}$ denote the sets of numbers in [0, 1] whose expressions contain $0,2,4,6$, respectively, in the n-th place. We write \bar{A} for the closure of a set A on the real axis and put

$$
\begin{aligned}
& E_{n}=\bar{\alpha}_{n} \cup \bar{\beta}_{n} \cup \bar{\gamma}_{n} \cup \bar{\mu}_{n}, \\
& E_{n}^{\prime}=E_{n} \cup[\pi-1, \pi] .
\end{aligned}
$$

LEMMA. For each positive integer n there exists a meromorphic function f_{n} of the first order with the properties

$$
\begin{equation*}
\left.\right\} \tag{1}
\end{equation*}
$$

uniformly in arg z as $|z| \rightarrow \infty$.
Proof. The set E_{n}^{\prime} consists of finitely many segments. Let $\left\{\theta_{j}\right\}_{j=1}^{N}$ be the midpoints of these segments. It is easy to see that if θ_{j}, θ_{j+1} are the midpoints of two adjacent segments in E_{n}^{\prime} then $(1 / 2)\left(\theta_{j}+\theta_{j+1}\right) \in E_{n}^{\prime}$. Consider the function

$$
g(z)=\frac{\sum_{j=1}^{N} a_{j} \exp \left(z e^{-i \theta_{j}}\right)}{\sum_{j=1}^{N} \exp \left(E e^{-i \theta_{j}}\right)}
$$

where $a_{j}=1$ for $\theta_{j} \in \alpha_{n} ; a_{j}=i \quad$ for $\theta_{j} \in \beta_{n} ; a_{j}=0 \quad$ for $\theta_{j} \in \mu_{n} \cup[\pi-1, \pi] ; a_{j}=1+i \quad$ for $\theta_{j} \in \gamma_{n}$. It is known (see [4, p. 161]) that the function g , which is clearly of the first order, possesses property (3). Let $\left\{b_{k}\right\}_{k=1}^{m}$ be all the poles of g on the set $D=\{z: \arg z \in$ $\left.E_{n}^{\prime}\right\}$ (there are finitely many of them by (3)). The function

$$
\begin{equation*}
h(z)=g(z)(z+i)^{-m} \prod_{k=1}^{m}\left(z-b_{k}\right) \tag{4}
\end{equation*}
$$

has no poles in D and has property (3) along with g. We put

$$
M(r)=\max \{|h(z)|: z \in D,|z|=r\}
$$

Lvov State University. Translated from Matematicheskie Zametki, Vol. 24, No. 6, pp. 779-783, December, 1978. Original article submitted October 6, 1976.

By (3) we have $\varlimsup_{r \rightarrow \infty} M(r)=\sqrt{2}$. Let r_{0} be such that $M(r)<2$ for $r>r_{0}$. We put $M=\max$ $\left\{M(r): r \leqslant r_{0}\right\}$ and let $\eta>0$ be so small that for $|z| \leqslant r_{0}$ we have $\left|\eta z(\eta z+i)^{-1}\right|<2 / M$. Using the fact that $\left|\eta z(\eta z+i)^{-1}\right|<1$ in the upper halfplane, we obtain that the function $f_{n}(z)=$ $\eta z(\eta z+i)^{-1} h(z)$ saťisfies all the conditions of the lemma.

THEOREM. There exists a meromorphic function of finite order for which every value $a \in \mathbf{C}$ is asymptotic.

Proof. Consider the sequence of functions f_{n} constructed in the lemma. Let $T(r, f)$ be the Nevanlinna characteristic of f. Then it is easy to see that there exist numbers $r_{n}>0$ such that

$$
\begin{equation*}
T\left(r, f_{n}\right)<2^{-n} r^{2}, \quad r>r_{n} \tag{5}
\end{equation*}
$$

In addition, we can find by (2) a $\delta_{n}, 0<\delta_{n}<1$, sufficiently small, such that

$$
\begin{equation*}
\left|f_{n}\left(\delta_{n} z\right)\right|<1 \text { for } \quad|z|<\max \left(n, r_{n}\right) \tag{6}
\end{equation*}
$$

It follows from (4) and (5) that for all $r>0$

$$
\begin{equation*}
T\left(r, f_{n}\left(\delta_{n} z\right)\right)<2^{-n} r^{2} \tag{7}
\end{equation*}
$$

The series $F(z)=\sum_{n=1}^{\infty} 2^{-n} f_{n}\left(\delta_{n} z\right)$ converges uniformly on compact sets by (6) and therefore represents a meromorphic function in the finite plane. It follows from (6), (7) that

$$
\begin{aligned}
& T(r, F) \leqslant T\left(r, \sum_{n=1}^{[r]} 2^{-n} f_{n}\left(\delta_{n} z\right)\right)+T\left(r, \sum_{n=[r]+1}^{\infty} 2^{-n} f_{n}\left(\delta_{n} z\right)\right) \leqslant \\
& \leqslant \sum_{n=1}^{[r]} T\left(r, f_{n}\left(\delta_{n} z\right)\right)+O(\log r) \leqslant 2 r^{2}+O(\log r), \quad r \rightarrow \infty
\end{aligned}
$$

Consequently, the order of F is at most 2.
We show that every complex number in the square

$$
\Delta=\{z: 0 \leqslant \operatorname{Re} z \leqslant 1,0 \leqslant \operatorname{Im} z \leqslant 1\}
$$

is an asymptotic value for F. Every $a \in \Delta$, can be written in the form $a=\sum_{n=1}^{\infty} 2^{-n} v_{n}$, where the ν_{n} take one of the values $0,1,1+i$, i. We define a number $\varphi_{a} \in[0,1]$ using the baseseven expansion

$$
\varphi_{a}=0, t_{1}, t_{2}, \ldots,
$$

where $t_{j}=0$ for $v_{j}=1 ; t_{j}=2$ for $v_{j}=i ; t_{j}=4$ for $v_{j}=1+i ; t_{j}=6$ for $v_{j}=0$. We show that $F(z) \rightarrow a$ for $\arg z=\varphi_{a},|z| \rightarrow \infty$. Let $\varepsilon>0$ be arbitrary and choose a number N such that

$$
\begin{gather*}
\left|\sum_{n=N+1}^{\infty} 2^{-n} v_{n}\right|<\varepsilon / 3 \tag{8}\\
\left|\sum_{n=N+1}^{\infty} 2^{-n} f_{n}\left(\delta_{n}-\right)\right|<\varepsilon / 3 . \tag{9}
\end{gather*}
$$

By (1) we can arrange it so that (9) holds, since $\varphi_{a} \in \bigcap_{n=1}^{\infty} E_{n}^{\prime}$. By (3), we can now choose r_{0} so large that when $\operatorname{argz}=\varphi_{a}, r>r_{0}$

$$
\begin{equation*}
\sum_{n=1}^{N}\left|f_{n}\left(\delta_{n} z\right)-v_{n}\right|<\varepsilon / 3 \tag{10}
\end{equation*}
$$

Combining (8), (9), and (10) we obtain for $\arg z=\varphi_{a},|z|>r_{0}$: that

$$
|F(z)-a|=\left|\sum_{n=1}^{\infty} 2^{-n} f_{n}\left(\delta_{n} z\right)-\sum_{n=1}^{\infty} 2^{-n} v_{n}\right|<\varepsilon
$$

Hence $F(z) \rightarrow a$ for $\arg z=\varphi_{a},|z| \rightarrow \infty$. It is proved in exactly the same way that $F(z) \rightarrow 0$ as $|z| \rightarrow \infty$, uniformly for $\pi-1 \leqslant \arg z \leqslant \pi$.

Putting $G_{1}=2 F-1-i$, it follows from what has been proved that the asymptotic values of the function G_{1} cover the closed unit disk centered at the coordinate origin, and the corresponding asymptotic paths lie in the sector $\{z: 0 \leqslant \arg z \leqslant 1\}$. It is possible to use the same method to construct a meromorphic function G_{2} whose asymptotic values cover the closed unit disk, the corresponding asymptotic paths lying in the sector $\{z: \pi-1 \leqslant \arg z \leqslant \pi\}$, and such that in addition $G_{2}(z) \rightarrow 0$ as $|z| \rightarrow \infty$, uniformly for $0 \leqslant \arg z \leqslant 1$. Thus the asymptotic
values of the meromorphic function $\left(G_{2}(z)+e^{z}\right)^{-1}$, corresponding to the asymptotic paths lying inside the sector $\{z: \pi-1 \leqslant \arg z \leqslant \pi\}$, cover the exterior of the closed unit disk. Hence the function

$$
G(z)=G_{1}(z)+\left(G_{2}(z)+e^{z}\right)^{-1}
$$

which has order at most 2 , satisfies the conditions of the theorem.
Remark. One can construct a meromorphic function satisfying the condition of the theorem and having a given order $\rho>0$. In order to do this we make use of the well known approach (see, e.g., [4, p. 164]) and construct as above a meromorphic function of order at most $\rho_{1}, 0<\rho_{1}<\min (1, \rho)$, to which we then add an arbitrary meromorphic function of order ρ which tends to zero as $|z| \rightarrow \infty$ uniformly in $0 \leqslant \arg z \leqslant \pi$. It is also possible to find the smallest possible growth of the characteristic of a function satisfying the condition of the theorem.

Let $\psi(r)$ be an arbitrary positive function tending monotonely to infinity as $r \rightarrow \infty$. In [3], Valiron constructed a meromorphic function g^{*} having properties (3) such that

$$
T\left(r, g^{*}\right)=o\left(\psi(r) \log ^{2} r\right), \quad r \rightarrow \infty
$$

is satisfied. Replacing the function (4) in our construction by g^{*}, we obtain a meromorphic function satisfying the condition of the theorem and in addition the condition

$$
T(r, G)=O\left(\psi(r) \log ^{2} r\right), \quad r \rightarrow \infty
$$

On the other hand, Valiron [5, Sec. 33] proved that if the condition $T(r, G)=O\left(\log ^{2} r\right)$, holds as $\mathbf{r} \rightarrow \infty$, then the function G has at most one asymptotic value.

The author thanks A. A. Gol'dberg for his guidance of this work and for a number of valuable remarks.

LITERATURE CITED

1. W. Gross, "Eine ganze Funktion für die jede komplexe Zahl Konvergenzwert ist," Math. Ann., 79, 201-208 (1918).
2. K. Hayman, "New problems," in: Symposium on Complex Analysis, Canterbury, 1973, Cambridge Univ. Press (1974), pp. i55-180.
3. G. Valiron, "Sur les valeurs asymptotiques de quelques fonctions méromorphes," Rend. Circ. Mat. Palermo, 49, No. 3, 415-421 (1925).
4. A. A. Gol'dberg and I. V. Ostrovskii, Value Distribution of Meromorphic Functions [in Russian], Nauka, Moscow (1970).
5. G. Valiron, "Fonctions entières d'ordre fini et fonctions méromorphes. Fonctions entières d'ordre fini et d'ordre null. VI, V," Enseign. Math., 4, No. 3, 157-177 (1958).
