Consequently,

Hm by, = F*(I—P Y(TPYF =b, k=0, 1,2, ...
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and the lemma is entirely proved.

The role of the obtained factorizations at the investigations of contractive matrix func-

tions will be elucidated in the next part of the paper.
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MINIMUM OF THE MODULUS OF AN ENTIRE FUNCTION ON THE
SEQUENCE OF POLYA PEAKS

A. E. Eremenko, M. L. Sodin, UDC 517.53
and D. F. Shia (Shea)
Let f be an entire function of genus zero, let (ry) be a sequence of Polya peaks for

N(r, f) of order » < 1. Then there exists a sequence ré ~ ry such that
!“r’r—,-i?’ inlf(@|>(cosmr+o()lnM {re £y k- o0,

If for (ry) one takes a sequence of Polya peaks for InM(r, f) or for T(r, f), '/, <

A < 1, then the result ceases to be true.

For a transcendental entire function f we set

L(r, = int{[F@:]2] = r}, M(r, ) =sup{|F(2)]:]2] =r).

B. Kjellberg has shown that the classical Wiman—Valiron inequality

. InL(r, )
1‘,’1‘3,“9 YA

> €08 7 (0.1)

is satisfied if the lower order A of the function f does not exceed one (see, for example,
[1, Chap. V, Theroem 3.4]. A large number of investigations have been devoted to various
refinements and generalization of this inequality. In this paper we prove a certain refine-

ment of the estimate (0.1) and we also refute several conjectures connected with this estimate.

1. Fundamental Results. We give some definitions.

A sequence rp » ~ is said to be a sequence of Polya peaks [of the first kind] of order
p for an unboundedly increasing positive function S(r) if there exists a sequence ny - 0 such

that

Translated from Teoriya Funktsii, Funktsional'nyi Analiz i Tkh Prilozheniya, No. 45,
pp. 26-40, 1986. Original article submitted October 2, 1984,
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P rM -1
S(f)\<(l+7|k)3(’k)(7k‘) pO Mty ST < W 1 (1.1)

It is known [2] that such a sequence exists if A, < u < p*, where
by =1 (S) = inf{p:]iminf —&— < ool

)
ot S(r)t*

J
S () > O} )

* = p*(8) = B H
pre=pt(8) SUP{H s Sy
If T(r, f) is the Nevanlinna characteristic of the entire function f, then i, (T)=2,(In M),

p*(Ty=p*(InM); 1in the sequel these numbers will be denoted by X, and p*.

The sequence ry is said to be a sequence of strong Polya peaks of order u for an entire
function f if (1.1) is satisfied with S(r) = N(r, f), where N(r, f) is a the Nevanlinna func-

tion of the number of zeros of the entire function f, and, moreover
n
InM(r, f) < CN(r,, f)(—,r;) VM < T < VR (1.2)

(Here and in the sequel, by C we denote various positive constants). Such a sequence always

exists [3] if u is not an integer and A, < u £ p*.

THEOREM 1. Let (ry) be an arbitrary sequence of strong Polya peaks of order u > 1 for

the entire function f. Then there exists a sequence ré ~ rg such that

lnL(r,;,f) (1.3)

lim lnf‘m > COS .

ko0
We give two proofs of Theorem 1. The first one is based on the passage from the function
f to the limiting subharmonic function in the sense of V. S. Azarin [4] and on the proof for
it of the "nonasymptotic form" of Theorem 1 [Theorem lal]. In a related situation this method
has been applied by J. M. Anderson and A. Baernstein. The second way of proving Theorem 1

is based on standard methods.

In conversations with one of the authors, A. Edrei has posed the question whether the
estimate (1.3) holds if (ry) is a sequence of Pdlya peaks of order u for T(r, f). In this
case, A. Edrei has proved* that for each a > p there exists a constant C = C(a, u) and a se-

quence (ré), rg < rﬁ < Cri such that

li InL(ry,f)
im sup ——————— COs e,
k..B oM (r: ) > T

For pu £ 1/2 the answer to A. Edrei's question is in the affirmative by virtue of Theorem 1.
Indeed, in this case one can show that the strong Polya peaks coincide with the Pdlya peaks

for T(r, f). For 1/2 < u < 1 the answer to A. Edrei's question is negative.

Example 1. For each u, 1/2 < u < 1, there exists an entire function f for which Ay =

p* = , the sequences of Polya peaks for T(r, f) and for InM(r, f) coincide and, moreover,

for any such sequence (rk) we have

*A. Edrei, A local form of the Phragmén—Lindelof indicator. Mathematika, Vol. 17, pp. 149-
172, 1970.
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: InLt, /) | -1 _
hmksEB sup{m.c rk<r<0rk}< q (o), (1.4)

where q(o) > += for o » 1.

D. Drasin and A. Weitsman [5, No. 2.37] have suggested to elucidate whether relation
(0.1) holds in the neighborhoods of the Polya peaks of order A for the function 1n M(r, f£).

A negative answer to this question is given by

Example 2. For each u, 0 < p < 1, there exists an entire function f for which ), = p¥* =
B and, moreover, on any sequence of Polya peaks (rg) for lnM(r, f) inequality (1.4) is satis-
fied.

2. A Nonasymptotic Form of Theorem 1. For a subharmonic function u we set

A(r,uy=influ(2):|z\ =71}y B(r,u)=max{u(2):[z| =r};
2

T
N(r,u) =Tln",§ u(re’®) ¢o,
1}

and by v we denote the Riesz measure of the function u, v(t) = v({z:|z| € t}). If u(0) =
r

t
0, then N(r,u)= 519 dt.
1)
THEOREM la. Let u be a subharmonic function in € , of order less than one. If u(0) =0

and

max{‘y—éﬁ'—u),0<r<oo}=N(1,u)=1 (2.1)
for some u < 1, then
Al u)
Baa > CoS T (2.2)

Proof. Without loss of generality, we assume that B(1, u) = u(l). The function u admits

the representation

a@) = |1 = Z|av ). (2.3)
c
If we set
then
(2.5)

v{—r)< A(r,u) < B(r, u) < v(r).
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We consider the function

8
v (ref’) = -Ql—ﬁ yv(refw) dp, 0 <8 < =,
=8

harmonic in the upper halfplane and continuous in its closure. We have
(r,u) <, 0<r < oo,

¢*(r) =0, *(—r)=Nx
By the Phragmén—Lindel3f theorem we have

v* (re®) < rw sin 0

S e (0), 0<f<m, O<r< oo,

(2.6)

. P A
We denote U§{re®) = 5 v(re®).

We have v*(1) = H(0) = 0,*%(—1) = H(w) = 1. Therefore, by
virtue of (2.5), (2.6) have

B(l,uyy<u(l)=

g (1) < i’ (4+0) = —2£

. (2.7)
sinmp '

A(l, 1) > v(—1) = nf (—1) » o’ (n— 0) = npctg ny,

from where we obtain (2.2) if u < 1/2.

(2.8)
If 1/2 <y < 1, then we set 2w(z)

by virtue of (2.3), (2.4) we have

v(ivz) + v(—ivZ). Further, let A(l,u)=u(e). Then,

oo

v > _S‘ln!l—t—lz’dv(t)

AQL, u) 4 B(1, 0) > u(e®) + u(e=") =S‘“‘ |2

P ip
2

=g(l) 4+ v(—1)= 2w (—-1);

N(r,w) N2 _
ru/Z = ’uﬂ SN(I,W})——I.

(2.9)

(2.10)
By virtue of (2.10), the inequalities (2.7), (2.8) are satisfied with the replacement of u
by w and of u by p/2. Now from (2.9), (2.8), (2.7) there follows

A(l,u)+ B(1, 1) > 2w(—1) > npctg T =

=2cost Tt T

3 Sinap >2cosz§2’13(l,u)=(l+cosnu)B(l,u),
and Theorem la is proved.

In order to derive Theorem 1 from Theorem la we make use of some properties of the linear
measure.

3. Linear Carleson Measure and Its Properties.

Let E be a bounded set in C .
coverings of the set E by countable collections of circles of radii r,, and we set L(E)
inf ¥ ry

We consider
v

where the infimum is taken over all such coverings.

The linear measure { has the
following properties: a) monotonicity: A< B={(A) < |(B);

1(4) < 1(4,).

Rk

n

b) o-semiadditivity: Ac El A=

f==]

We say that a sequence of functions u, converges to the function u with respect to the

linear measure (u,=u), if for each ¢ > { we have I{tu,—u}>»e)—>0, n—>oo.

We have the analogues of the classical theorems of F. Riesz and Egorov.
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LEMMA 1. Let upn=>u. Then there exists a sequence (nk) such that a) unk »u outside
some set of zero linear measure; b) for each § > 0 there exists a set Q§ such that £(Qg) <

§ and unk 2 u uniformly outside Qg-

Proof. We repeat the usual arguments. Let e, - 0. We construct a sequence (ng) in-
ductively, setting nyp > ny.; so that [(|u,,—u]>e,) < 2% We show that this sequence is the

required one. Let

Ro= U (ltn—ul>u) Q= R

By virtue of the o-semiadditivity, we have [(R)< Y 2% =2~ Since R,oR,>...DR>...,
k=l
by virtue of the monoteonicity we have 2(Q) = 0. If z # Q, then there exists an index j, such

that z # Rj, i.e.,
V> |un(2)—u@)]|<e, (3.1)

consequently, u,,(2)—u(2), k— co.

In order to obtain b), we select i>log2%+1 and we set Qg = Rj. By virtue of (3.1),

up 3 u unformly with respect to z § Qg, while /(Qs)=1I(R) <2~ =4§. The lemma is proved.

4, Proof of Theorem 1. We assume that p > 0. The case yu = 0 requires simpler but sep-

arate arguments. Without loss of generality, we assume that f(0) = 1. We consider the se-

quence of subharmonic functions u,(z)=In|f(r,2)|/N(r,,f). By virtue of (1.2) we have

B{r, u,) < Cr¥, nn<r<]§7, n— oo. (4.1)

In addition, un(0) = 0. By V. S. Azarin's theorem [4], the family (u,) is precompact, i.e.,

there exist a subharmonic function u and a sequence (nk) such that

Uny, 57 Uy k> 0, (4.2)

in the topology of the Schwartz space D’(R?} of generalized functions.

By another theorem of V. S. Azarin [4, Theorem 4.4.1], from (4.2) there follows that

on each compactum E c—R? we have u, = u. Making use of Lemma 1, we obtain

Alr, u) =’3i*r2A(r, Un);, B(r,u)= ’lei_’rgB(r, Uny), (4.3)

for almost all r € (0, »), where one has to thin out again the sequence (ny).

We show that every limit function u satisfies the conditions of Theorem la. We fix
r € (0, »). We have

N(r,u)=HmN(r, u,) <%, N(l,u)= 1.
k= o

By virtue of (4.1) and (4.3) we have B(r, u) < CrH, and by virtue of the "lifting principle"
we have

#(0) > lim sup 1, (0) = 0.
koo
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Therefore, u(0) = 0.

Assume that Theorem 1 is not true. Then by virtue of (4.3) there exists ¢ > | such that
for all r € (¢”!, o) we have A(r, u)/B(r, u) < cosmu — €, ¢ > 0. This contradicts Theorenm

la. Theorem 1 is proved.
Remark. One can show that equality in (2.2) implies

e

w(re®y = R

cosu(@+a)rt, —n—a<Lb<sn—a.

This leads to the known description of the functions for which equality prevails in the cos mi

theorem.

5. Second Proof of Theorem 1. We prove a somewhat more refined statement.

THEQOREM 1b. Let f be an entire function and let (ry) be a sequence of strong Polya peaks
of order pu < 1. Then for every sequence ¢ » 1 + 0 such that (o — 1)rp > = there exists

a set

I .
lkc[—o%v fkok]' ]lk}"’rk(ok-a): k—r o0, (5.1)

for which we have

. .o dnl(r, P (5.2)
’321 :éllfk MGy > CosTh

Proof. Making use of a known representation [1, Chap. V, Lemma 3.1] and of (1.2), for

lzl < 2ry

mip@i= ¥ 1n]l-;§[+o(N(rk))- (5.3)

12 pir /@20 )

where ni are the numbers from the definition of the strong Polya peaks, while (zn) are the

zeros of the entire function f. Here and until the end of the proof the symbols o, O refer

to k » o,
We select the sequences

T=14o,—+14+0, 6,=1+B>1+4+0, k> o0,

so that we should have

N < Pr<<o,<<I; (5.4)
N (5.5)
o Inpp—0, k— oo. (5.6)

Let n(r) = n(r, f) be the number of the zeros of the function f in the circle {z:]z] <

r}. We show that
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B8 < - <pt b, —<t<w,
T (5.7)

where
8 = 0 (¥, (5.8)

We prove, for example, the right-hand side of the estimates (5.7). For tyrg < r S r/ng:

r

<\ 2Ba=Ne—Nam <V (2] + Ve |(Z) -1,

ik

r
Tk
Setting here 7==rg(l +aL’2) and making use of (5.6), we obtain

n(erg) M F a4 palfr
Nim < 72
#7 Im4a—In(+ay

<p+ 0@,
The left-hand side of (5.7) is proved in a similar manner.

We show that for rgire/or, r0e]\Er= Iz, |Eel=o0(re(ow "'61;)) we have

lim mf Lt B
rEl R-roo N( f) > RMCtgnu (5.9)
We estimate In L(r, f) from below. We set 2k= Elnl l-'_i_zr_l" where the summation is car-
n
ried out over the zeros 1z, rn/t <|z,| < rTe. By virtue of the equality (5.3), integrating

by parts, we obtain

mL(r, H> Y lnll—lz

2l <1 /2N )

rply rpl(2ng)

rpltg rpl 2y

(S + [ Jui=g]ee+ X, Fowiem=
T

[£31
r
( )m( - fk/(2nk))+
rka

+n(’_’2) ln( ! _1)—n(rkrk) ln(l rm)-l— 2 + 0(N (rz)).

Tk Tk/Tk

(5.10)

We estimate from below the contribution of the insets. By virtue of the estimates (5.5),

(5.7), (5.8), we have

(Tk) In (TJT_k — l)—n(rk'ck) ln(l — fker) >
> N(r), (M—Gk)ln(—— )—(p—i—ﬁk)ln( -—‘%)}:

== N(rk){u In % __§,In Te—2K. (te — Ow)* 1—— N (re) {0 (1) — 28, In (a: — Bs)}

TEOR

= —N (r,) {26, ln o, + 0 (1)} = o (N (ry)). (5.11)
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By virtue of (1.1) with S(r) = N(r), we obtain

nb%]k) ln(l k_-r—k/(;w) —(1+o(h)n (2%) ’k/(;nk) >

Nrwme) 7
> —(I+ o)~ oy (5.12)

> —Cni "N (1) = o (N (7).

We combine the expressions (5.10)-(5.12) and we integrate again by parts:

et /g

min>( |+ [ )l t)+E+O(N(rk))>—-( .0' + ) e

3 rpTe
TolTh rp/(2np)
L __N|* 4 L (5.13)
+ r—rkrlTy N (177) + = rEtp— N(rkrk) re/(2ng) —r N ( 2ne ) + Ek +o(N (re))-

Further, by wvirtue of (1.1) with S{r) = N(r), we have

Ttk

N (¢ 5.14
| 2O st = o ey (5.14)
[]

r N (re/2ns) 1—p —
Toemg = <C N(r =o(N(ry)). (5.15)

In addition, from the expression (5.5) there follows that oy = 1 + o(ay) and, therefore,

r—relte > op — 1! ==z, T ok (5.16)
-
r Gp 1
ThRTp —7 > Tk-—Ukl =_°Tk+o(1)' (5-17)
Combining (5.13)-(5.17), we write
I’k/Tk rp/@ng)
N (¢
me)>—( | + [ )20
Te'k ek
N v .
+Tk (fk/::)_‘l—ll (fka)+ ‘\:k-{_o(N(rk))- (5.18)

Let Y==f/fk‘E‘{U;‘, 0., ¥~ 1, k—>oco. Making use of the positivity of the kernel r/(r — t)2,
the estimate (1.1) with S(r) = N(r), we obtain
e rk/(2nk)

N (f)
( S - v } =0t dt <
rk'l‘ ’ka
[%r rpl(2n )
" r AL
< (L+m) N(ry) \ + ) =) A=

Tr'ik TR %
ity

—fasmn( [+ 1) &5 +om|Ne (5.19)
) 4

[ /1
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Further,

ALISY .mkn -

P gp,dg o M HTRy) gu—l dt .
( S S) E—D? = T—F by —u( + S) = (5.20)
k Tk/'f
Eu 1/(TkT) _ Tkl T —H (5.21)
1——% TR/1 “Tk—-l—l_ 1 — —l +Skv
and, by virtue of (5.5), setting y=1+g¢, [¢]|=0(B,) we have
R e
lSkI= 1__1_;1?_1 - T —ap? _Tk—-l— 1-——-;;’1 =
_({l—pae |, 1t pop  l—pog T-H“Zk —
_[ak+8k+ g — &k “Iz +0(1)l
2ap, 5k
| A< - ('a:)-"“’ (5.22)
In addition,
YL P% 4} . o 1
g ag g
+ [ ) EE v (5B 0=
O g TF 5 '8 (5.23)
= np cigap 4 o(1).
Combining (5.19)-(5.23), we obtain
W WO o
N (¢ T T, )
( + S ) (;_(t))z dt <(—ﬂ!l€tgﬂu+——k——ak—k——+o(l))N(rk). (5.24)
’kﬂk e ’
Further,
N (ryne) > N (r) +n(r)) Intg
N(ryfw) = N(r))—n(ry) Inw,
and, therefore,
TeN (rp/th) + N (rath) —N(ry) L +Tk
>é;e{N(rk)(1:k—i—l——-rk—rk ”)}-—n(rk)lnrk= (5.25)

= V= DA™ = D —n)nT, = o (N ()

Now we estimate the sum Iy from below. With the aid of the known Valiron—Cartan estimate

(see, for example [6]), we obtain

%> (o —e () m

for r ¢ E, |Ed < gyt In this estimate we set ¢;=Pi/%  Then by virtue of (5.5) we have

Ty = O (Bi/at,) = 0 (B) = 0 (Gk - c;;) .
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Making use of (5.7), (5.8), and (5.6),

2

Zk>/—CN(rk)6k]n%=o(N(rk)), r¢ E, (5.26)

Combining the estimates (5.18), (5.25), we obtain (5.9).

Now from (5.3), integrating twice by parts and making use of (1.1) with S(r) = N(r),

we have

/g

mM(n< | -0
0

—(r—q_—w—df—f'o(/v(fk}} <(_&~+0(1))N(rk)y re[rk/gkr rkck]' (5'27)

sin U

From (5.9) and (5.27) there follows the assertion of the theorem for u < 1/2. The case
1/2 < u < 1 is considered in the same way as in the proof of Theorem 1 by the first method.

Theorem 1b is proved.

6. Examples. In this section we construct examples of entire functions which show that
in the assumptions of Theorem 1 the strong Polya peaks cannot be replaced by Polya peaks for
InM(r, £) or by Polya peaks for T(r, f) for (p > 1/2). These examples are based on the gen-

eral ideal described below.

We consider the class of "periodic" subharmonic functions, i.e., functions satisfying
the condition u € €, p > 0, with some R > 1. The number R is called the period. By V(r) =

V(r, u) we denote either the characteristic
on

T(r,u)= 5{5," u*(re’®) dd,
Q

or B(r, u). The number 1 € [1, R) is called the limit Polya peak for V(r) if

max!—%’—)=V('s). (6.1)

I<roo T

The set of all limit Pélya peaks will be denoted by P(V). It is easy tosee that P(V) is con-

tained in the set

{r=e":0<x<<InR, dInV(e*)/dx = p},

therefore, if the function V is real analytic and V(r) # crP, then the set P(V) consists only

of a finite number of points.

First we construct a subharmonic function u(z) for which the set P(V) is finite and for
all 1 € P(V) we have

A, U) = —o0. (6.2)
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Then, making use of V. S. Azarin's theorem on the approximation of subharmonic functions,*

we find an entire function f of order p such that we have
In|f(2)] =u(z) +o(]zff), 200, 24 C,, (6.3)

where C, is some set of zero relatively linear measure. From (6.3) and the "periodicity" of

the function u there follows at once that
InM(r, fy~B(r,u), T(r, N ~T(r,u), r— oo.

The Polya peaks for 1InM(r, f) and T(r, f) can be easily found. Indeed, by virtue of
the "periodicity" of V(r, u), this has only Pélya peaks of order p, and they are those and only
those sequences r, > «, n » =, for which there exists a sequence (r;l) such that r,~r,, n— oo,
and (r,) < kDO{R"P (V)}. Here tE denotes the homothetic transform of the set E with respect to
the origin with ratio t. We note that if V,(r)~V,(r), r—>o0 then the Polya peaks of these
functions coincide. Further, by virtue of (6.2) and the "periodicity" of the function u,

for any sequence of Polya peaks (r,) for V(r, u) we have

lim sup sup {%_g;% oY, <r < Grn} < —q(0), (6.4)

n-+eo

where q(o) > + for 0 > 1. Now, by virtue of (6.3) and (6.4), on each sequence (r,) of Polya
peaks for V(r, 1ln |f|) the relation (1.4) is satisfied.

Thus, it remains to construct "periodic" subharmonic functions with the property (6.2).

Example 1. We fix p, 1/2 < p < 1. Let

1
<< <o =y (h F h) <D <L Ry by <N —p?

By [t] we denote the integer part of the number t. We define a continuous function p with
period 4 in the following manner: p(t) = Ay, if [f]=0(mod4); p(t) =4, 1f [f]=2(mod4); p(f)

is a linear function if [t] = 1 or [t] = = 3(mod 4). We set

t

Q(l)= f\’ p (T)dt, — eo<t< oo.

v
0

Then ¢"(¢) = min(g" (t —0), (p”(t+0))>7»,——7»,>p,’——hi, o ()= M, ¢(t)=0pt+ 0(1), t >00. Further,
4

o+ 4)—q(t)=| p(r)dr=4p. (6.5)
0

Now we define the function g(x iy)=e®*®cospy in the band {— ocoTx<Too, |y l<<z/(2p)}.

It is positive in this band and subharmonic (indeed,

Ag=(0"(x)+o?(x)—p)g> n2—rM+21—p)g>0).

*V. S. Azarin, "On rays of completely regular growth of an entire function," Mat. Sb., 79 (121),
No. 4, 463-476 (1969).
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We set

o [glinr 0, [8]<n/(2p)
#re®) =10, n/2u) < 18] < =.

By virtue of (6.5), this is a "periodic" subharmonic function with period R = e*.

It can
be verified in a straightforward manner that P(B) = P(T) = {e”/2}. It can be seen easily

on the graph of the function p(t).

Let G(z, £) be the Green function for the angle =/(2p)<Cargz <<2m — a/(2p). We consider
the potential

oo

u,(2) = N Gz, e +12)ptke, (6.6)
k=
(The series converges since G(z, &) =O([E[~"er-D), [E]>o0 and p/(2p—1)>1>p). The function
u, is superharmonic inside the considered angle and '"periodic" there with period e*. Now

we show that the number € > 0 can be selected so small that the function

N fu(a,lmgz]<:nﬂ2px
w(2) = | — euy (2), m/(2p)<<|argz| < x

be subharmonic in the plane. For this we need the following known lemma® on subharmonic func-

tions.

LEMMA 2. Let D;, D, be disjoint Jordan domains, oD, dD,> £, where ¢ is either an
interval or an arc of a circumference. Let v,, v, be harmonic functions of constant sign in

D,, D,, respectively, having zero limiting values on %. Then on £ there exist nonvanishing

derivatives %g, i=1,2 in the direction of the exterior normals. Further, if %?(ﬂ-+

A

P1(2) < 0 for z € &, then the function u(z)=vu.(2), 2€D,, extended by zero on &, is subhar-
an i i

monic in the domain

Making use of this lemma, we select ¢ > 0 so small that the function w be subharmonic
in the neighborhood of the segments {argz= +an/(2p), l <jzj<e'}. By virtue of the "periodicity"
of the function w, this function is subharmonic in C\J{0}. Finally, by the theorem on re-
movable singularities, the function w is subharmonic in € . The fact that property (6.2)

holds follows from the construction.

Example 2. We fix p, 0 < p < 1. We set

oo

B~ Y (g)k?m(hu(%)kr), r>0.

k==—oce

It is easy tc see that the series converges uniformly on each compactum to a real analytic

function on (0, «) and that B(r) # crP. (For example, since B' (+0) # »). In addition,

*M. A. Evgrafov, Asymptotic Estimates and Entire Functions [in Russian], 3rd edn., Nauka,
Moscow {(1979).
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B(r) satisfies the '"periodicity" condition with period R = 3/2. Therefore, as mentioned

above, the function B has only a finite set of limit Polya peaks P(B) = {r;, Ty, ..., rp}.
We set
Infl 42z, [142|=1;

n

vle) = € S‘ in
panr!

By virtue of Lemma 2, the number ¢ > 0 can be selected so small that the function v be sub-

2+rk
2+ rp—2rp

14zl 1.

harmonic in €. We consider the function

The series converges uniformly on compacta and, therefore, u(z) is a periodic subharmonic
function with period R = 3/2. Further, B(r, u) = B(r), 0 < r < =, and from the construction

there follows in a straightforward manner that (6.2) holds.
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UNIVERSAL MODELS OF LINEAR OPERATORS WITH PRESCRIBED RESTRICTIONS
ON THE GROWTH OF THE RESOLVENT

V. A. Zolotarev UDC 517.948

By the methods of semigroup theory one describes those classes of bounded liQear
operators which can be realized on the invariant subspaces of the operator {Yfa)m

in L2(0, %) x %, and of its fractional powers. The methods of construction are based

on results of the type of the Paley—Wiener theorems.

By the methods of semigorup theory we construct universal models for the representation
of dissipative operators with spectrum at zero and with given constraints on the growth of

the resolvent.

I. We consider the dissipative local colligation (1, 2]

A=(A, H, o, E, Ip), (1)

Translated from Teoriya Funktsii, Funktsional'nyi Analiz i Ikh Prilozheniya, No. 45,
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