
Consequently, 

!irn b~ ,~ -F*( l - -P  )(TP )~f'=bk, k=O, 1, 2 . . . . .  

and the lemma is entirely proved. 

The role of the obtained factorizations at the investigations of contractive matrix func- 

tions will be elucidated in the next part of the paper. 
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MINIMUM OF THE MODULUS OF AN ENTIRE FUNCTION ON THE 

SEQUENCE OF POLYA PEAKS 

A. E. Eremenko, M. L. Sodin, 
and D. F. Shia (Shea) 

UDC 517.53 

Let f be an entire function of genus zero, let (r k) be a sequence of Polya peaks for 

N(r, f) of order ~ < i. Then there exists a sequence r~ ~ r k such that 
min lnlf(z) l>(cos~+o(1) lnM(r~,D,k~.  

tz!=r~ 
If for (r k) one takes a sequence of Polya peaks for inM(r, f) or for T(r, f), i/2 < 

I < i, then the result ceases to be true. 

For a transcendental entire function f we set 

L(r, f ) =  inr{ I f(z)l :Izl  = r } ,  M(r, f) =sup[[f(z)l:lzl =r}. 

B. Kjellberg has shown that the classical Wiman--Valiron inequality 

InL(r, 1) ~.COS~%, (0.i) lira sup In M (r,/) 

is satisfied if the lower order I of the function f does not exceed one (see, for example, 

[i, Chap. V, Theroem 3.4]. A large number of investigations have been devoted to various 

refinements and generalization of this inequality. In this paper we prove a certain refine- 

ment of the estimate (0.i) and we also refute several conjectures connected with this estimate. 

i. Fundamental Results. We give some definitions. 

A sequence r k + ~ is said to be a sequence of Polya peaks [of the first kind] of order 

for an unboundedly increasing positive function S(r) if there exists a sequence qk § 0 such 

that 

Translated from Teoriya Funktsii, Funktsional'nyi Analiz i Ikh Prilozheniya, No. 45, 
pp. 26-40, 1986. Original article submitted October 2, 1984. 
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(')" S(r )~<( lq- r lk)S( r~)  ~ ; ~lkrk ~< r ~< ~l~lrk. 

It is known [2] that such a sequence exists if ~, -< p < p*, where 

~,-= )~, (S)----inf {F : lira in[ S(#_____~) } ~ , t ~  S ( r ) &  <oo ; 

p* = p* (S) = sup {8: lira sup S(tr______~) } 
, . t ~  S ( r ) &  > 0  �9 

( 1 . 1 )  

If T(r, f) is the Nevanlinna characteristic of the entire function f, then ~ , ( T ) - - X , ( I n M ) .  

p*(T) = p*( InM);  in t he  s e q u e l  t h e s e  numbers  w i l l  be d e n o t e d  by X, and p*. 

The sequence r k is said to be a sequence of strong Polya peaks of order p for an entire 

function f if (i.i) is satisfied with S(r) = N(r, f), where N(r, f) is a the Nevanlinna func- 

tion of the number of zeros of the entire function f, and, moreover 

(')" In M (r '  f) ~< CN (rk' [) ~.k ; rlkr~ ~< r ~< ~l~rk" (1.2) 

(Here and in the sequel, by C we denote various positive constants). Such a sequence always 

exists [3] if p is not an integer and ~, i p ~ p*. 

THEOREM i. Let (rk) be an arbitrary sequence of strong Polya peaks of order p > ! for 

the entire function f. Then there exists a sequence r~ ~ r k such that 

Jn t (r~, h 
limk~,inf In M (r~, f) ~ cos  n~ .  ( 1 . 3  ) 

We give two proofs of Theorem i. The first one is based on the passage from the function 

f to the limiting subharmonic function in the sense of V. S. Azarin [4] and on the proof for 

it of the "nonasymptotic form" of Theorem i [Theorem la]. In a related situation this method 

has been applied by J. M. Anderson and A. Baernstein. The second way of proving Theorem i 

is based on standard methods. 

In conversations with one of the authors, A. Edrei has posed the question whether the 

estimate (1.3) holds if (r k) is a sequence of Polya peaks of order p for T(r, f). In this 

case, A. Edrei has proved* that for each ~ > p there exists a constant C = C(a, p) and a se- 
! ! 

quence (rk), r k ~ r k 5 Cr k such that 

In L (r~, f) 
lim sup ~ c o s ~ .  

For p ~ 1/2 the answer to A. Edrei's question is in the affirmative by virtue of Theorem i. 

Indeed, in this case one can show that the strong Polya peaks coincide with the Polya peaks 

for T(r, f). For 1/2 < p < i the answer to A. Edrei's question is negative. 

Example i~ For each p, 1/2 < p < i, there exists an entire function f for which X, = 

p* = p, the sequences of Polya peaks for T(r, f) and for in M(r, f) coincide and, moreover, 

for any such sequence (rk) we have 

*A. Edrei, A local form of the Phragmen-Lindelof indicator. Mathematika, Voi. 17, pp. 149- 
172, 1970. 
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InLr } 
[irn sup sup In M (r, [) : or-irk ~< r ~< crr k ~< --q  (o), (1.4) 

where q(a) § +~ for o + i. 

D. Drasin and A. Weitsman [5, No. 2.37] have suggested to elucidate whether relation 

(0.i) holds in the neighborhoods of the Polya peaks of order X for the function In M(r, f). 

A negative answer to this question is given by 

Example 2. For each p, 0 < ~ < I, there exists an entire function f for which X, = P* = 

p and, moreover, on any sequence of Polya peaks (r k) for in M(r, f) inequality (1.4) is satis- 

fied. 

2. A Nonasymptotic Form of Theorem i. For a subharmonic function u we set 

A ( r , u ) = i n f { u ( z ) : l z l = r } ;  B ( r , u ) = m a x [ u ( z ) : i z  I =r};  
2~ l; N (r, u) --- ~ u (rd ~ dO, 
0 

and by v we denote the Riesz measure of the function u, v(t) = v({z:[z] 5 t}). 
r 

~ (t) 
O, t hen  N(r,u)=d---- i--dt .  

0 

THEOREM la. Let u be a subharmonic function in C , of order less than one. 

and 

If u(0) = 

If u(0) = 0 

max{~, O<r<oo}=N(l,u)=l 

for some p < i, then 

A O, u) :> cos ~. BO, u) 

Proof. Without loss of generality, we assume that B(I, u) = u(1). 

the representation 

(2.1) 

( 2 . 2 )  

The function u admits 

If we set 

t l  z u ( z ) = .  In 1 - - ~ -  d~(~). 
r 

( 2 . 3 )  

v ( z ) =  In 1 + - 7 -  dr(t),  
0 

( 2 . 4 )  

then 

v(--r)~< A (r, u)~< B (r, u) ~< v(r). (2.5) 
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We consider the function 

0 

I ~v(r#~)de?,  0~<0~<~,  v* (re io) = 
--0 

harmonic in the upper halfplane and continuous in its closure. We have v*(r)----0, v*(--r)=N • 

(r, u) ~< r,, 0 < r < oo. By the Phragmgn--Lindel~f theorem we have 

�9 sin~0 ( 2 . 6 )  v*(re i~ ~< r~ .----- ~ r"H (O), 0 ~< 0 ~< ~, O ~< r < oo. sm n/x 

We denote v~(rem)=-~v(re~). We have v*(1) = H(0) = 0,*(--i) = H(~) = i. 

virtue of (2.5), (2.6) have 

B(1,  u ) ~ v ( 1 ) = ~ v ~ ( 1 ) ~ < ~ H ' ( - { - O ) =  ~ 
sin ~1~ ; 

A(1, u) ~ v(- -1)  = :w$ (--1) ~> ~ H ' ( = - -  0) = =~ctg ~ ,  

f rom where  we o b t a i n  ( 2 . 2 )  i f  ~a 5 1 /2 .  

Therefore, by 

( 2 . 7 )  

( 2 . 8 )  

If i/2 < ~ < i, then we set 2w(z) = v(i~z) + v(--iV~. Further, let A(l,u)=u(e~% 
by virtue of (2.3), (2.4) we have 

A ( l , u ) + B ( 1 , u ) ~ u ( e ~ ) + u ( e - f ~ ) =  In l - - ~ i d v ( ; ) : ~  In 1----~- d'~(t) 
C o 

= v(1) + v ( - - l ) =  2w(--1); 

N(r,w) N(?/z u) ~< N( I ,  w) = 1. 
r~12 r~12 

By virtue of (2.10), 

by w and of ~ by ~/2. 

Then, 

( 2 . 9 )  

( 2 . 1 0 )  

the inequalities (2.7), (2.8) are satisfied with the replacement of u 

Now from (2.9), (2.8), (2.7) there follows 

A(1, u) + B(1,  u) > 2w(- -1 )  > ~ [ ~ c t g ~  = 

= 2 cos 2 alt sinntt~t :~ 2 cos 2 ~ B (1 , u) = (1 + cos a~) B (I, u), 

and Theorem la is proved. 

In order to derive Theorem i from Theorem la we make use of some properties of the linear 

measure. 

3. Linear Carleson Measure and Its Properties. Let E be a bounded set in C �9 We consider 

coverings of the set E by countable collections of circles of radii r~ and we set Z(E) = 

in[ ~ rv where the infimum is taken over all such coverings. The linear measure s has the 

following properties: a) monotonicity: A~B==>I(A) ~/(B); b) ~-semiadditivity: A~ ~ An=> 

t(A) ~ ~ i(A.). 
n=I 

We say that a sequence of functions u n converges to the function u with respect to the 

linear measure (un=~u), if for each e > 0 we have I(lun--u I ~e)-+O, n-+~. 

We have the analogues of the classical theorems of F. Riesz and Egorov. 
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LEMMA i. Let un=~u. Then there exists a sequence (nk) such that a) unk+u outside 

some set of zero linear measure; b) for each 6 > 0 there exists a set Q6 such that s < 

6 and unk ~ u uniformly outside Q6" 

Proof. We repeat the usual arguments. Let gn + 0. We construct a sequence (n k) in- 

ductively, setting n k > n k_l so that !(lunk--u I~ek)<2 -k. We show that this sequence is the 

required one. Let 

k=f i=1 

By v i r t u e  o f  t h e  o - s e m i a d d i t i v i t y ,  we h a v e  l(R~) ~< ~ 2 -k = 2 - ' +  ~. 
k = l  

by virtue of the monotonicity we have s = 0. If z ~ Q, 

that z ~ R j, i.e., 

V ~ > i I u.k (z)  - -  u (z) t < ek, 

Since R I ~ R z  ~ . . .  ~ R i  ~ . . . .  

then there exists an index j, such 

(3.1) 

c o n s e q u e n t l y ,  unk (z)---~ u(z), k--+ oo. 

o r d e r  t o  o b t a i n  b ) ,  we s e l e c t  i > l o g ~ - ~ - + l  and we s e t  Q6 = Ri" By v i r t u e  o f  ( 3 . 1 ) ,  I n  

unk ++ u u n f o r m l y  w i t h  r e s p e c t  t o  z % O6, w h i l e  I ( Q s ) =  t(Ri)~< 2 - i + 1 :  6. The lemma i s  p r o v e d .  

4. P r o o f  o f  Theorem 1. We assume t h a t  p > 0. The c a s e  p = 0 r e q u i r e s  s i m p l e r  b u t  s e p -  

a r a t e  a r g u m e n t s .  W i t h o u t  l o s s  o f  g e n e r a l i t y ,  we assume t h a t  f ( 0 )  = 1. We c o n s i d e r  t h e  s e -  

quence  o f  s u b h a r m o n i c  f u n c t i o n s  u , (z)--- - - lnl[( rnz) l /N(r , , [ ) .  By v i r t u e  o f  ( 1 . 2 )  we h a v e  

! (4.1) B(r,u~) ~ CrY, ~ n ~  r < q ~ ,  n--+~. 

In addition, Un(0) = 0. By V. S. Azarin's theorem [4], the family (u n) is precompact, i.e., 

there exist a subharmonic function u and a sequence (n k) such that 

uak -~ u, k.--+ ~o , (4.2) 

in the topology of the Schwartz space D'(R ~) of generalized functions. 

By another theorem of V. S. Azarin [4, Theorem 4.4.1], from (4.2) there follows that 

on each compactum E cR ~ we have u n =~ u. Making use of Lemma i, we obtain 

A ( r , u ) = l i m A ( r ,  unk); B(r ,u)-- - - l imB(r ,u .k) ,  (4.3) 

f o r  a l m o s t  a l l  r e ( 0 ,  = ) ,  where  one h a s  t o  t h i n  o u t  a g a i n  t h e  s e q u e n c e  ( n k ) .  

We show that every limit function u satisfies the conditions of Theorem la. We fix 

r e (0, ~). We have 

N ( r , u ) = l i m N ( r , u ~ k ) ~ < r %  N ( l , u ) =  1. 

By v i r t u e  o f  ( 4 . 1 )  and ( 4 . 3 )  we h a v e  B ( r ,  u)  < CrP,  and by v i r t u e  o f  t h e  " l i f t i n g  p r i n c i p l e "  

we h a v e  

u (0) > lira sup u~ k (0) = O. 
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Therefore, u(0) = 0. 

Assume that Theorem 1 is not true. Then by virtue of (4.3) there exists c > I such that 

for all r e (0 -I , a) we have A(r, u)/B(r, u) 5 cos ~ -- e, e > 0. This contradicts Theorem 

la. Theorem 1 is proved. 

Remark. One can show that equalityin (2.2) implies 

u( rd  ~ ~ sin------~cos~(O + =)r" ,  - - ~ - - ~  ~ O < ~ - - ~ .  

This leads to the known description of the functions for which equality prevails in the cos ~X 

theorem. 

5. Second Proof of Theorem i. We prove a somewhat more refined statement. 

THEOREM lb. Let f be an entire function and let (rk) be a sequence of strong Poiya peaks 

of order ~ < i. Then for every sequence ~k + 1 + 0 such that (ek -- 1)rk § ~ there exists 

a set 

for which we have 

o ~ ( 5 . 1 )  

Proof. 

[z] -< 2r k 

liminf lnL(r, l) ~ cos=~. ( 5 . 2 )  
k- .~ ,  r(zl k In M {r, l) 

Making use of a known representation [i, Chap. V, Lemma 3.1] and of (1.2), for 

X It Inlf(z)[ = in I--~. + o(N(rk)). (5.3) 
12.1~r1r k) 

where qk are the numbers from the definition of the strong Polya peaks, while (Zn) are the 

zeros of the entire function f. Here and until the end of the proof th e symbols o, O refer 

tok+~. 

We select the sequences 

c k =  1 + ~ k - +  1 + 0 ,  % =  I +[~k-+ I + 0 ,  k -+  c~,, 

so that we should have 

TIk -< [~k < = k  < 1; ( 5 . 4 )  

=~/2/~,-. oo, k ~  oo; ( 5 . 5 )  
~/2 In [~k--+ O, k-+ oo. ( 5 . 6 )  

Let n(r) = n(r, f) be the number of the zeros of the function f in the circle {z: [z[ < 

r}. We show that 
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n ( t rk)  1 
1~--8~< N(r------5-<~t+6k, ~ < t < * k ,  

(5 .7)  

where 

We prove, for example, 

n (~,r~) In 
"[krk 

S e t t i n g  here  r = r~ (1 + or 

ak = 0 (r 

the  r i g h t - h a n d  s ide  of the  e s t ima te s  ( 5 . 7 ) .  For Xkrk 

The left-hand side of (5 .7)  is 

We show that for rE[r~/gk, 

.~ ~-~dt= N(r)--N(,,r,) ..<11,N(r,,(~)"+ N(r,){(~)"--l}. 
%krk 

and making use of (5.6), we obtain 

N(rk) ~ In(l @-=ll2)--In(l+ak) ~-O(~/2)" 

proved in a similar manner. 

r.z.]~E~=Za, IEa,=o(r.((ta--l)) we have 

(5.8) 

r ~ rk/nk: 

lim inf In L (r, rEik, k.~. N (r,---'---'~ ~ :~ctg~l~. (5 .9)  

We estimate in L(r, f) from below. We set 

ried out over the zeros z,: rk/Tk ~[Z,] ~ rk~. 

by parts, we obtain 

Ek = Eln[ l-- ~z--~ . where the summation is ear- 

By virtue of the equality (5.3), integrating 

We estimate 

(5.7) ,  

X i I l n L ( r , f ) >  In 1 I z.I + o ( N ( r k ) ) =  
IZ n f<.r k/(2~q k) 

r kl'~ k rk/(2"q k) 

+ 
0 rkT k 

r k/'~ k r k/(2v~ k) 

= (  ~ + ,f ) r - - - ' - -~gN(t '+n(2"~ k ) ln ( l  r ' / ~ l k ' ) +  
0 rir162 

+ n ( ~ )  In (~'/, k I) n (r,,i) In (I r~'c, )+ E,  +~ 

from below the contribution of the insets. By virtue of the 

(5.8), we have 

) ( i - -  = 

N (rD {a In ~ --6kln <~k -- Ok)'l _ N (r#) {o (I) - -  28k In (o~k --  ~k)} 
= Tkko~ } - -  

= --N (r~) {26k In cz k + o (1)} = o (N (rk)). 

(5.10) 

estimates (5.5), 

(5.11) 
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By virtue of (i.I) with S(r) = N(r), we obtain 

(,) ( r ) 
n ~-~q~ In 1- 'k/(2~k)" >t--(1 + o ( 1 ) ) n  rk/~k) 

(rk/.k) , 
>i - - ( I  + o(I))  N ln2 rk/(2,lk) 

>1 - -C~-"N  (rk) = o (N (rk)). 

We combine the expressions (5.10)-(5.12) and we integrate again by parts: 

(5.12) 

rklT k rkl(2~, k} 

0 rk~ k 
r k/T k rk/(2~' k) 

, N('kl , 

+ i - -  rkl~k ~ "  + rk~k---~---T N (rk~k) 

> - -  ~ d t  + 

0 rk~ k 

r ( rk ) E +~ rk/(2qk) - r N  ~ + k 
( 5 . 1 3 )  

Further, by virtue of (i.I) with S(r) = N(r), we have 

r k~lr 
S rN (t) 

(r - -  t)'- dt = o (N (r~)); 
0 

r N (r~/(2.k)) 
rk/(2qk) - -  r 

~< Cr l~-"N (r , )  = o (N (rk)). 

(5.14) 

(5.15) 

In addition, from the expression (5.5) there follows that o k = 1 + o(= k) and, therefore, 

r e k.____k xk  
;--rk/xk > ok_ff-z  -- -~k + o ( 1 ) ;  

r ~ -l l 
- - ~  _ ~ + o ( t ) .  
rkTlr - -  r .Ok - -  Ok 1 

(5.16) 

(5.17) 

Combining (5.13)-(5.17), we write 

r k/~ k r k/(2~, k) 

., (r -- 0 2 ~- 
rk~ k rkT k 

4 ~k~ (rk/~k)~_ +~ X (rk~k) + %" + 0 (N (rk)). / ' ' ;k  

L e t  ? = r / r kE [a -~  I, sk], ~ I ,  k - . o o .  M a k i n g  use  o f  t h e  p o s i t i v i t y  o f  

the estimate (i.i) with S(r) = N(r), we obtain 

r k/T k r k/(2~ k) 
rN (t) 

rk~ k rkTk 

rk/~ k rkl(2~kJ 

rkr4r rk~ k 
l/(xkT) 

x 

o ( 1 )} ----{(l+r~k)'~( .[ + ~i )(,_l)= + N(rk). 
0 r k.l~ 

(5.18) 

the kernel r/(r -- t) 2 

(5.19) 
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Further, 

ll(xkT} i i 
o Xkl T o ~kl~ 

1 -- ~ IXkl, i = "Ok -- I -'}- I -- ~-~---------f 

(5.20) 

(5.21) 

and, by virtue of 

In addition, 

(5.5),  setting y---- l +ek, l e~l=O(~) we have 

I .ck-.v-~' ~?-. ~ ~F ~ 
15;k I = I -- ~-~,-~ l -- ~?-~ ~ -- I I -- ~F ~ = 

_ 2 ~  _2 + o(1)  ~ . - -  = o(1).  / ~ k  -- 8k ( 5 . 2 2 )  

II('~ k- p 

+ ~ = v .  p. 1 - ~  
o xk]~ t o 

= art ctg art + o(1). 

Combining (5.19)-(5.23), we obtain 

(5.23) 

rk /~  k rkl{2~ k) 

rk'q k rk'( k 

( - -  art ctg art  + 
,i[Ix • ,I--I~ 

k T ~ k  

exit 
+ o ( l ) ) N ( r k ) .  (5.24) 

Further, 

N (rk'ck) ~ N (rk) --}- rt (rk) In %; 
N (rk/rl~) > N (rl~) - -  n (rk) In xk, 

and, therefore, 

.~.u. ~ ~l--p. 
k "T'~k tkN (rk/tk) + N (rkxk) __ N ~ ,trk~ 

{x k o~ k 

I 
>1 6;  {N (rk) (x~ + 1 - -  x ~ - -  x~-~)} - -  n (rk) In T k ----- 

I N(rk)(.c~__ 1) (x~- .  __ l )__n(rk)In '~,~ = o(N(r~) ) .  
o~ k 

(s.25) 

Now we estimate the sum Z k from below. With the aid of the known Valiron--Cartan estimate 

(see, for example [6]), we obtain 

k > n(r (c~) - -n  ~ ~(1 + ~ ) '  

for rqEh, IEkl~qkx~rk. In this estimate we set q~=~/o~k. Then by virtue of (5.5) we have 

"r~q k = O  / c ~ ) = o ( 1 3 k ) = o  o~--& . 
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Making use of (5.7), (5.8), and (5.6), 

E > --CN (r~) 6 k In - ~  = o ( N  (rk)),  r ~ E k. 
k ~ k  

( 5 . 2 6 )  

Combining the estimates (5.18), (5.25), we obtain (5.9). 

Now from (5.3), integrating twice by parts and making use of (1.1) with S(r) = N(r), 

we have 

f ) rN (t) dt + o(N(r~)) ~< ~ + o ( I )  N(rk), r E [rk/aa, r ~ ] .  In M (r) ~< . (r + l) ~ 
o 

( 5 . 2 7 )  

From (5.9) and (5.27) there follows the assertion of the theorem for %~ 5 1/2. The case 

1/2 < ~ < 1 is considered in the same way as in the proof of Theorem 1 by the first method. 

Theorem ib is proved. 

6. Example s . In this section we construct examples of entire functions which show that 

in the assumptions of Theorem 1 the strong Polya peaks cannot be replaced by Polya peaks for 

in M(r, f) or by Polya peaks for T(r, f) for (D > 1/2). These examples are based on the gen- 

eral ideal described below. 

We consider the class of "periodic" subharmonic functions, i.e., functions satisfying 

the condition u e C, p > 0, with some R > I. The number R is called the period. By V(r) = 

V(r, u) we denote either the characteristic 

or B(r, u). 

,f T (r, u) = V~ 
o 

u + (re ~~ d4, 

The number T e [i, R) is called the limit Polya peak for V(r) if 

V (xr) 
max " 7 -  = V (x). 

O < r < ~  �9 

The set of all limit Polya peaks will be denoted by P(V). 

tained in the set 

(6.1) 

It is easy to see that P(V) is con- 

{r = e ' : O < x < l n R ,  din V(eX)/dx = p}, 

t h e r e f o r e ,  i f  t h e  f u n c t i o n  V i s  r e a l  a n a l y t i c  and V ( r )  ~ c r P ,  t h e n  t h e  s e t  P(V) c o n s i s t s  o n l y  

of a finite number of points. 

First we construct a subharmonic function u(z) for which the set P(V) is finite and for 

all T e P(V) we have 

A (z, u) ----- - -oo.  ( 6 . 2 )  
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Then, making use of V. S. Azarin's theorem on the approximation of subharmonic functions,* 

we find an entire function f of order p such that we have 

l n l f ( z ) l = u ( z )  + o ( ] z [ O  , z ~ o o ,  z6Co, (6 .3)  

where C o is some set of zero relatively linear measure. From (6.3) and the "periodicity" of 

the function u there follows at once that 

lnM(r ,  f) N B(r,  u), T(r, f) N T ( r ,  u), r--+ oo. 

The Polya peaks for in M(r, f) and T(r, f) can be easily found. Indeed, by virtue of 

the "periodicity" of V(r, u), this has only Polya peaks of order ~, and they are those and only 

those sequences r n + ~, n + ~, for which there exists a sequence (rn) such that r~r,,n-+oo, 

and(r~)c U {RkP(V)}. Here tE denotes the homothetic transform of the set E with respect to 
k=0 

the origin with ratio t. We note that if V~(r)...V~(r), r-+oo then the Polya peaks of these 

functions coincide. Further, by virtue of (6.2) and the "periodicity" of the function u, 

for any sequence of Polya peaks (r n) for V(r, u) we have 

lira sup sup tA (r, u):6-1r. ~< r ~< fit'n] ~< --q (o), (6 .4)  
n~- ~B (r, u) 

where q(o) -~ +o~ f o r  o § 1. Now, by v i r t u e  of  (6 .3 )  and ( 6 . 4 ) ,  on each sequence (r  n) of  Polya 

peaks for V(r, In If[) the relation (1.4) is satisfied. 

Thus, it remains to construct "periodic" subharmonic functions with the property (6.2). 

Example i. We fix p, i/2 < 9 < i. Let 

By [t] we denote the integer part of the number t. We define a continuous function p with 

period 4 in the following manner: p(t) = I z, if [[]~0(rnod4); p(l)=l 2, if [l]~2(mod4); p(/) 

is a linear function if [t] - 1 or [t] - = 3(mod 4). We set 

t 

(t)  = ( p (~) a t ,  - ~ o <  t < ~ .  
v 
0 

Then ~ " ( t ) = m i n ( q F ( t - - O ) ,  ~"(t+0))>~,--k,>~*--k[, ~ ' ( t ) ~ l ,  ~ ( t ) = g t + O ( 1 ) ,  t ~ o o .  Further, 

4 

(t + 4)-- ~ (t) = ~ p (T) dTz 40 . (6.5) 
0 

Now we define the function g(x@iy)=e~cos~y in the band {--oo<x<~, ]yl<~l(2~)). 

It is positive in this band and subharmonic (indeed, 

A g = (~" (x) + ~" (x) -- ~) g > (.2_ x~ + xl -- ~2)e > 0) 

*V. S. Azarin, "On rays of completely regular growth of an entire function,"Mat. Sb., 79 (121), 

No. 4, 463-476 (1969). 
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We set 

g ( l n r  4- iO), tO]<~ t / (2F) ;  
u(rde) - - [ 0 ,  rt/(21x) ~< [Ot ~z ~t. 

By virtue of (6.5), this is a "periodic" subharmonic function with period R = e 4. It can 

be verified in a straightforward manner that P(B) = P(T) = {e7/2}. It can be seen easily 

on the graph of the function p(t). 

Let G(z, ~) be the Green function for the angle ~/(2~)<argz<2~--a/(2~). 

the potential 

We consider 

uo(z ) = V 6(z,e,++7/2)e++o '. ( 6 . 6 )  

(The series converges since O(z. ~) :0([~[-~/r [$]-~ and ~/(2~--1)>I>9). The function 

u 0 is superharmonic inside the considered angle and "periodic" there with period e 4. Now 

we show that the number ~ > 0 can be selected so small that the function 

[ u  (z), ] a rgz  I ~< n/(2~t); 
w (z) = .[ _ euo (z), n/(2~t) ,<  [ arg z I ~< n 

be subharmonic in the plane. For this we need the following known lennna* on subharmonic func- 

tions. 

LEMMA 2. Let Dl, D 2 be disjoint Jordan domains, 0D~ N 0D~ ~, where s is either an 

interval or an arc of a circumference. Let vl, v2 be harmonic functions of constant sign in 

DI, D2, respectively, having zero limiting values on s Then on ~ there exist nonvanishing 

derivatives -On' i= |,2 in the direction of the exterior normals. Further, if , (z)~- 

7nn"" ~< 0 for z ~ s then the function u(z)=v,:(z), zCD~ , extended by zero on ~, is subi~ar- 

monic in the domain 

Making use of this lemma, we select ~ > 0 so small that the function w be subharmonic 

in the neighborhood of the segments {argz--- -•  1 ~< i zl ~< e~}. By virtue of the "periodicity" 

of the function w, this function is subharmonic in C~{0}. Finally, by the theorem on re- 

movable singularities, the function w is subharmonic in C �9 The fact that property (6~ 

holds follows from the construction. 

Example 2. We fix p, 0 < p < i. We set 

It is easy to see that the series converges uniformly on each compactum to a real analytic 

function on (0, ~) and that B(r) ~ crP. (For example, since B' (+0) ~ ~). In addition, 

*M. A. Evgrafov, Asymptotic Estimates and Entire Functions [in Russian], 3rd edn., Nauka, 
Moscow (1979). 
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B(r) satisfies the "periodicity" condition with period R = 3/2. Therefore, as mentioned 

above, the function B has only a finite set of limit Polya peaks P(B) = {rl, r2, ..., rn}. 

We set 
] n t l + z  I, [ l + z [ > ~ l ;  

v(z)= ' ~ l n  ~+~k 1 
e ~ z - ~ r ~ - - z r ~  , I I + z l < l .  

k = l  

By virtue of Lemma 2, the number e > 0 can be selected so small that the function v be sub- 

harmonic in C. We consider the function 

(z)---- E 3 ko 2 k . 

The series converges uniformly on compacta and, therefore, u(z) is a periodic subharmonic 

function with period R = 3/2. Further, B(r, u) ~ B(r), 0 < r < ~, and from the construction 

there follows in a straightforward manner that (6.2) holds. 

i. 

2. 

3. 

4. 

5. 

. 
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UNIVERSAL MODELS OF LINEAR OPERATORS WITH PRESCRIBED RESTRICTIONS 

ON THE GROWTH OF THE RESOLVENT 

V. A. Zolotarev 
UDC 517.948 

By the methods of semigroup theory one describes those classes of bounded linear 

operators which can be realized on the invariant subspaces of the operator ~]f(0~ 

in L2(0, s • s and of its fractional powers. The methods of construction ~re based 

on results of the type of the Paley--Wiener theorems. 

By the methods of semigorup theory we construct universal models for the representation 

of dissipative operators with spectrum at zero and with given constraints on the growth of 

the resolvent. 

I. We consider the dissipative local colligation [I, 2] 

A=(A, H, ~, E, [Ei, (1) 

Translated from Teoriya Funktsii, Funktsional'nyi Analiz i Ikh Prilozheniya, No. 45, 
pp. 40-45, 1986. Original article submitted July 2, 1984. 
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