
Regular interpolational families are, for example, certain scales of spaces of power 

series (Riesz centers) or generalized spaces of power series. From what has been said there 

follows at once 

THEOREM 3. In a regular interpolational scale of Kothe spaces all the absolute bases of 

pairs of spaces can be extended into any intermediate space and, moreover, are jointly 

quasiequivalent. 

We note that the regularity of the scale is not necessary for the joint quasiequivalence 

of the bases [6]. 

LITERATURE CITED 

I, 

2. 

3. 

4. 

5. 

6. 

M. M. Dragilev, "On compatibly regular bases in nonnuc!ear Kothe spaces," Mat. Zametki, 
30, No. 6, 819-822 (1981). 
P. B. Djakov, "A short proof of the Crone and Robinson theorem on quasiequivalence of 
regular bases," Stud. Math., 53, No. 3, 269-271 (1975). 
V. P. Zakharyuta and V. P. Konkdakov, "on the weak equivalence of bases of Kothe spaces," 
Izv. SKNts, VSh, ~, 12-15 (1983). 
M. M. Dragilev, "Compatibly regular bases of Kothe spaces," Mat. Zametki~ 19, No. I, 
115-122 (1976). 
J. M. Whittaker, Sur les Series de Base de Polynomes Qualconques (avec la collaboration 
de C. Gattegno), Gauthier-Villars, Paris (1949). 
P. A. Chalov, "on quasiequivalence of bases in a system of Hilbert spaces," Candidate's 
Dissertation, Rostov-on-the-Don (1980). 

VALIRON EXCEPTIONAL VALUES OF ENTIRE FUNCTIONS OF COMPLETELY REGULAR GROWTH 

A. E. Eremenko LDC 517.535.4 

We make use of the standard notations of the theory of meromorphic functions [i]. A 

number a6C is said to be an exceptional value in the Valiron sense of a meromorphic func- 

tion f if 

A(a, f) = lim sup m(r, a, 0 > O. 
r ~  T(r,f) 

The set of these a is denoted by Ev(O. A. Hyllengren [2] has given the following descrip- 

tion of the set Ev(O for a meromorphic function of finite order. We shall say that a set 

E~C is an H-set if there exist a sequence (~)~C and a number ~ > I such that every 

point a6E is contained in an infinite set of circles Iz--akl < exp(--~) (i) and, moreover, 

~k+i/~= ~. A. Hyllengren's result consists in the fact that for every meromorphic function 

f of finite order the set {aEC:A(a, [) > x} is an H-set for each x, 0< x<l. On the other 

hand, for each H-set E there exist an entire function f of finite order and a number x > 0, 

such that A(a, f)>x for a6E. 

For an important subclass of entire functions, namely the functions of completely regular 

growth (c.r.g.) in the B. Ya. Levin-A. Pfluger sense, the structure of the set Ev(O has 
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been investigated in [3, 4]. In these investigations it is proved that if f is an entire 

function of c.r.g., then Ev(f) contains the set of those aC C, for which [--a is not 

a function of c.r.g., and can differ from it by at most a finite number of points. In [3, 4] 

one has constructed examples of entire functions of c.r.g, for which Ev([) has the power 

of the continuum. 

This paper is devoted to the further investigation of the set Ev(h for entire functions 

f of c.r.g. We consider also the wider class Reg+ of functions. This class consists of 

entire functions having c.r.g, on those rays where the indicator is nonnegative. We note that 

in the definitions of the functions of c.r.g, and of the functions of the class Reg+ there 

occurs a proximate order 9(r). Everywhere in the sequel we shall assume that p~)~P= const. 

The consideration of the general case does not involve additional difficulties. The func- 

tions of the class Reg+ of order ~ I/2 cannot have Valiron exceptional values. Therefore, 

we shall restrict ourselves to functions of order >1/2. 

THEOREM I. Let f6keg + �9 If a ~Ev(/), then the function f - a is of c.r.g. 

This theorem is a variant of Theorem 1 from [4]; however, we give its proof for the sake 

of completeness. 

Proof. Following V. S. Azarin [5], we consider the family of subharmonic functions 

ut(z ) = t-Plogl[(tz)--a], where a ~ fv(f). We consider the limit set Fr[[-La] of this family 

for t-~oo. The limit is understood in the sense of generalized functions. Since f6 keg +, 

for each function v6Fr[f--~ we have v+ (r ei~) = r~ h+ (O), where p is the order and h is the 

indicator of the function f. Since a ~ Ev([), we have re(r, 0, I--a) = o(rP), r-+~, consequently, 

v~0 for all v6Frff--a]. Thus, Fr[y--a] consists of one function rPh+(0), i.e., f--a 

is of c.r.g. (see [5]); this is what we intended to prove. 

A set EKE will be said to be an H0-set if there exists a sequence of circles (i) 

such that each point a6 E belongs to an infinite set of circles and ~+i/6k-+oo , k-+oo. It 

is easy to see that a finite union of H0-sets is again an H0-set. Such sets have been used 

by D. Drasin [6] and his method allows us to obtain the following results. 

THEOREM 2. Let f6keg +. The~ Ev(D is an H0-set~ 

THEOREM 3. Let E be an H0-set. Then there exist an entire function [6 Reg + and a 

number x> 0 such that A(a,h> x for all a6E. 

Proof of Theorem 2. Let I be a closed arc on the unit circumference such that h(0) ~ 0, 

0El, h being the indicator of the function f. We set 

re(r, a, I) = ~ log +] f (m ~~ --a[-* dO. 
I 

Theorem 2 follows from the following statement: the set 

E (I) = {aC C:  limsupr-~m (r, a, D > O} (2)  
r - - ~  

is an H0-set. We prove this statement. According to a known theorem on the indicator, there 

exists a function ~(r) ~ 0, r-+~ such that log[f(rei~)]~(r)rP, 86] (3). We shall assume that 
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99 decreases so slow that the right-hand side of (3) increases monotonically to oo and, in 

addition, ~ (r) > (log r) -I (4). We set D(r, R)-~Iz:r <Iz[<rR, argzE[}; l(r)=Iz:IzI=r, argz6f}; 

K(r, Ri={z 2r<Izl<r1~/2, argz=O,}, where 0<r< oo, R>15, O0 is the midpoint of the arc I. 

Let P(x, z) be the Poisson kernel of the domain D(r, 19,) (xEOD, z6D). We denote 

z(R)~inf{P(x, z):xEl(r), zEK(r, R)}. 

From similarity considerations it follows that this quantity does not depend on r. From 

Harnack's inequality we obtain that ~(R)>0, 5~R< oo. 

LEMMA. There exists a function R(r)> 5, R(r)% oo such that 

(R (r)) - -  2P+ 1 (R (r))o V q~ (2rR (r)) > (log r)-~; 
(s) 

R (r) ~ log r q- 5, r > r o. ( 6 )  

P r o o f .  We s e t  r o = m i n { r >  l : g ( 5 ,  r) m (log r)-*}, w h e r e  g ( R ,  r)='~(R)--2P+lRvWr A s s u m e  

t h a t  we h a v e  a l r e a d y  s e l e c t e d  r~, n > O .  F o r  r~+~ we s e l e c t  t h e  n u m b e r  rain { r > r , + e " :  g(n_+8,  

r) > ( l o g r ) - ~ } .  S u c h  a c h o i c e  i s  p o s s i q ~ l e  s i n c e  ~( r ) ; -~O,  r - + o o .  S e t t i n g  R ( r ) = n + 5  f o r  r , ~  

r<rn+b we obtain the required function. 

For each dEE(l) we consider the set 

F (a) ~- {r: r-Pro (r, a,  1) > / V  ~ (2rR (r))}. ( 7 )  

This set is unbounded by virtue of (2). We select a number ro(a ) ,~ r o (r~ is from the lemma) so 

that we have 

max (log 2, log [ a 1) ~< ~ (r) re, r > r 0 (a). 

This is possible by virtue of the assumption that 

We estimate the subharmonic function l o g ] f ( z ) - - a ]  

(5), (4): 

(8) 

(r) re - ~  oo. L e t  r E F (a) n [r0 (a), oo) - -  F o (a). 

o n  K(r,  R(r)), m a k i n g  u s e  o f  ( 3 ) ,  ( 8 ) ,  ( 7 ) ,  

log 4 [ (z) - -  a [ ~ max  log[ : (z) - -  a [ - -  
Z~OD(r, R(r)) 

- -  S P (x, z) log + [,/(x)l-__ a I dx < 2(~ (2rR (r)) (2rR (r))P - -  
x(r) 

- -  g (R (r)) m (r, a, I)  ~ {2P+'~ (2rR (r)) (R (r))P - -  

- -  T (R (r)) V q~ (2rR (r))} : ~< - -  V ~ (2rR (r)) ( log r ) - l :  "~ - -  (log r ) - ~ : .  

(9) 

Let q6Fo(=), r~6F0(b), K(q, e(rl))fqK(r~, R(f~))=/=~,zo6K(q, R(q))f]K(q, R(r~)). Taking into 

account (9), we obtain [b--a[ ~][(zo)_bl_~_lf(zo)_al<<exp(_rl/'2). (i0) 

Now we consider the sequence (tin), tl = r0, tm+l -----(]/4)tmR(tm). We set Jm= [is, tm+1]. If for 

some a6E(I ) we have d,n['IFo(a)=/= Z, then we select one of these a ts and we denote it by 

am. If no such a exists, then we set am----O. Assume now that b6E(l ). The set F0(b) inter- 

sects an infinite number of segments Jm. In each of these segments there exist a point rmE 

F0(am ) andapoint r*6Fo(b). It is easy to see that K(r,~,R(rm))NK(r*, R(r*))=/= Q),: and, therefore, 

by virtue of (I0), we have lb--aml~exp(--tlp)=exp(--o,n) (ii), where ff,,+I/ffm-+oo. The theorem 
is proved. 
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Theorem 3 will be derived from a result of D. Drasin [6]. Let f be an entire function 

of order p<oo of normal type. We assume that the indicator of the function f is nonposi- 

tive on the segment I and that the number 0o lies inside I. We denote by n(r, a, ~ the number 

of a-points of the function f in the sector {z:[zl~ r, Oo~e~ argz ~O,+e}. We say that a 

value a6 C is maximally assumed in the neighborhood of 

such that for all e > 0 we have 

l imsupr-Pn(r ,  a, e) > n. 

0o, if there exists some N >0 

(12) 

D. Drasin has proved in [6] that the set of values, maximally assumed in the neighborhood 

of a ray, is an H0-set. Further, for each H0-set E one has constructed an entire function g 

of order ~, I/2< p < I such that logM(r, ~r~, r-+oo (13) and for the indicator of this 

(I) (14), and all the values from E are function g we have h(0) ~0 for 1O--~l~ I--~ 

maximally assumed by the function g in the neighborhood of O0=m. 

Proof of Theorem 3. Let g be the function described above. First we show that A(a, 

g)>x for all a~E and some x>0. We consider the family of subharmonic functions ut(z)= 

t-P|oglg(tz)--al, where o6E is fixed. We fix a sufficiently small e>0 and with the aid 

of (12) we find a sequence tk -+oo such that 

tF~n(tk, a, e) > W2 > 0. (15) 

The family {ut} is precompact [5] and, therefore, selecting, if necessary, a subsequence, 

we shall assume that ut~-+u for k-~ By virtue of (14) we have 

u ( r e t ~  I0- -~1  ,~ ~( I  ~ ) .  

We s e t  = = e-* (~?4)Up. We have n (=tk, a, 8) .<< N (eo~tk, a, e) ~. N (eczt~, a) ~< T (e•tk, g) ~ log M (eczt~, 

g) ~< (~/4)t~ 06) .  F u r t h e r ,  i t  i t  known, t h a t  the  Riesz  measure of  t he  f u n c t i o n  ut~ converges  

weakly  to  t he  R iesz  measure ~ of  t he  f u n c t i o n  u. Consequen t ly ,  by v i r t u e  of  (15 ) ,  (16) we 

have ~(K) >~q/4, where by K we have denoted  t he  s e c t o r  { z : = ~ l z l ~ l ,  l a r g z - - ~ l  ~e~. Con- 

s e q u e n t l y ,  u ( z ) ~ - - x <  0 in  K, where x depends on ly  on 8 and p. From he re  t h e r e  f o l l o w s  

t h a t  f o r  any 8 > 0  we have 

lira sup r-~ I leg+ I g (fete) - -  a [-1 dO > 0. ( 17 ) 

Let h be the indicator of g. We select a function gl of c.r.g., of order P and of normal 

type with indicator At(0) = ccosp0, --~ ~ 0 ~ ~, where c is so large that h(0)< ccosp0, 101< a]2p. 

Obviously, the function [ = g+ g16Reg +- From (17) there follows that E cEv([), which is 

what we intended to prove. 
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GENERAL FORM OF EXCEPTIONAL BERNSHTEIN OPERATORS 

A. A. Krapivin and Yu. I. Lyubich UDC 519.9+575.1 

A quadratic mapping V:x;= ~J atk, iX~Xk(]=l ..... n) of the space R n into itself is 
t , k ~ l  

said to be a Bernshtein (or a stationary) operator if the identities s(Vx)=s~(x), V~x = 

si(x)Vx (i) hold, where 

n 

/=1 

The investigation of such mappings is stimulated by their role in the foundations of popula- 

tion genetics (see [i], Chaps. 4, 5). 

By virtue of (i), the "unit" hyperplane H = {xls(x)= l} is invariant for V and V ~ = V on 

H. Consequently, all the points of the set Fv = |m(Vls) are fixed for V. Conversely, if 

Vx=x  and X=/=O, then by virtue of (i) we have S(X)=I, i.e., x~H, then x6Fv. Thus, 

Pv coincides with the set of nonzero fixed points of the operator V. We note that the set 

Fv is connected (as the image of the connected set H under the continuous mapping V). 

Let x6Fv. Then the linear operator i x =Vi (the derivative of the operator V at the 

point x).satisfies the equation s-- i x- L x, i.e., it is a projection. At the same time, i x 

is a continuous function of x. Consequently, the integers m =rankL x and 6 = defL~ do not 

depend on x. The pair (~. 8) is called the type of the operator V. We recall now that for 

each smooth mapping ~:R"-+R" the maximum with respect to x of the rank of the derivative 

~ is called the functional rank and it is denoted by rankf~. At the same time one can 

introduce the linear rank rank~ as the dimension of the linear hull of the set ImP. 

Obvionsly~ rank ~f ~ ~ rank t~. 

LEMMA. [i, p. 77]. If V is a Bernshtein operator, then rankfV = m. 

A Bernshtein operator V is said to be exceptional (or quasilinear) if ranky ==m. 

Dually, this means that dim NV=6, where Nv is the space of vanishing linear forms, i.e., 

the linear forms annihilating Im V (in general, dimNv ~ 6). 
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