A problem of Stanisław Saks

Alexandre Eremenko^{*}

Abstract

A solution of Problem 184 from the Scottish Book is given. 2010 MSC 31A05. Keywords: subharmonic functions.

On February 8, 1940, the following entry was made in the Scottish book [3]:

184. Problem; S. Saks. A subharmonic function ϕ has everywhere partial derivatives $\partial^2 \phi / \partial x^2$, $\partial^2 \phi / \partial y^2$. Is it true that $\Delta \phi \ge 0$? Remark: it is obvious immediately that $\Delta \phi \ge 0$ at all points of continuity of $\partial^2 \phi / \partial x^2$, $\partial^2 \phi / \partial y^2$, therefore on an everywhere dense set. Prize: one kilo of bacon.

Theorem. Let u be a subharmonic function of two variables whose first partial derivatives exist on the coordinate axes and u_{xx} , u_{yy} exist at the origin. Then $u_{xx}(0,0) + u_{yy}(0,0) \ge 0$.

Proof. Without loss of generality we assume that $u(0,0) = u_x(0,0) = u_y(0,0) = 0$ (add a linear function). Proving the Theorem by contradiction, we assume that $\Delta u(0,0) < 0$. Then there exist real a, b and $R_0 > 0$ such that for $x^2 + y^2 < R_0^2$ we have

$$u(x,0) \le ax^2, \quad u(0,y) \le by^2, \quad \text{where} \quad a+b < 0.$$
 (1)

Without loss of generality, a < 0.

If b < 0, consider the function

$$v_1(r\cos\theta, r\sin\theta) = Cr^2|\sin(2\theta)|,$$

^{*}Supported by NSF grant DMS-1665115.

which is harmonic in each quadrant, and choose C > 0 so large that $v_1(x, y) \ge u(x, y)$ when $x^2 + y^2 = R_0^2$. Then $u(x, y) \le v_1(x, y)$ for $x^2 + y^2 < R_0^2$ by the Maximum principle applied to the intersection of this disk with each quadrant. Thus

$$u(x,y) \le C(x^2 + y^2), \text{ when } x^2 + y^2 < R_0^2.$$
 (2)

Consider the family of subharmonic functions

$$u_r(x,y) = r^{-2}u(rx,ry), \quad r > 0$$

In view of (2), for every compact K in the plane there exists $r_0 > 0$ such that u_r are defined and uniformly bounded from above on K for $r \in (0, r_0)$. Therefore there is a sequence $r_j \to 0$ for which $u_{r_j} \to u_0$ in L^1_{loc} , where u_0 is a subharmonic function, [1, Theorem 3.2.12]. Moreover $u(x, y) \geq \lim \sup_{r\to 0} u_0(x, y)$ for every x, y by [1, Theorem 3.2.13], so $u_0(0, 0) = 0$. To show that u_0 satisfies (1), fix a point $(x_0, 0)$, and consider disks B_t of radii t centered at this point. Since the family $\{u_r\}$ is uniformly bounded from above on B_1 , there is a continuous majorant v for this family in B_1 , such that $v(x_0, 0) \leq ax_0^2$. This v is just the solution of the Dirichlet problem for upper and lower halves of B_1 with boundary conditions ax^2 on the intersection of B_1 with the x-axis, and constant on the half-circles. So for every $\epsilon > 0$ there exists δ such that $v(x_0, 0) \leq ax_0^2 + \epsilon$ in B_{δ} . Then L^1_{loc} convergence gives

$$u_0(x_0,0) \leq \frac{1}{|B_{\delta}|} \int_{B_{\delta}} u_0(x,y) dx dy \leq \frac{1}{|B_{\delta}|} \int_{B_{\delta}} v(x,y) dx dy \leq ax_0 + \epsilon.$$

As ϵ is arbitrary, we obtain that u_0 satisfies the first inequality in (1) on the whole x-axis. Similar arguments show that u_0 satisfies the second inequality in (1) on the whole y-axis, and also satisfies (2) in the whole plane.

The Phragmén–Lindelöf indicator of u_0 ,

$$h(\theta) := \limsup_{r \to \infty} r^{-2} u_0(r \cos \theta, r \sin \theta)$$

is non-positive for $\theta = \pi/2$ and negative for $\theta = 0$. This contradicts the inequality

$$h(\theta) + h(\theta + \pi/2) \ge 0,$$

which the indicators of all functions of order 2 must satisfy, [2, Section 8.2.4].

If $b \ge 0$, we consider the subharmonic function

$$u^*(x,y) = u(x,y) + c(x^2 - y^2),$$

where b < c < -a. Such a c exists because a + b < 0 in (1). Then u^* satisfies

$$u^*(x,0) \le (a+c)x^2, \quad u^*(0,y) \le (b-c)y^2$$

near the origin, and we apply the previous argument to u^* . This completes the proof.

Corollary. There is no subharmonic function u satisfying

$$u(0) = 0$$
 and $u(x,0) \leq -\epsilon |x|$

for all sufficiently small x and $\epsilon > 0$.

Remark. The Theorem does not hold in \mathbb{R}^n for $n \geq 3$. Indeed, in this case the union of the coordinate axes is a polar set, so it is easy to construct a counterexample.

References

- [1] L. Hörmander, Notions of convexity, Birkhäuser, Boston MA 1994.
- [2] B. Levin, Lectures on entire functions, AMS, Providence, RI, 1996.
- [3] R. D. Mauldin, The Scottish Book, Springer, NY, 2015. Online version of the English translation by S. Ulam, http://kielich.amu.edu.pl/Stefan_Banach/pdf/ks-szkocka/ksszkocka3ang.pdf

Purdue University, West Lafayette, IN 47907 USA eremenko@purdue.edu