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Abstract

A solution of Problem 184 from the Scottish Book is given.
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On February 8, 1940, the following entry was made in the Scottish book [3]:

184. Problem; S. Saks.

A subharmonic function φ has everywhere partial derivatives ∂2φ/∂x2, ∂2φ/∂y2.
Is it true that ∆φ ≥ 0?
Remark: it is obvious immediately that ∆φ ≥ 0 at all points of continuity of

∂2φ/∂x2, ∂2φ/∂y2, therefore on an everywhere dense set.

Prize: one kilo of bacon.

Theorem. Let u be a subharmonic function of two variables whose first par-

tial derivatives exist on the coordinate axes and uxx, uyy exist at the origin.

Then uxx(0, 0) + uyy(0, 0) ≥ 0.

Proof. Without loss of generality we assume that u(0, 0) = ux(0, 0) =
uy(0, 0) = 0 (add a linear function). Proving the Theorem by contradiction,
we assume that ∆u(0, 0) < 0. Then there exist real a, b and R0 > 0 such
that for x2 + y2 < R2

0
we have

u(x, 0) ≤ ax2, u(0, y) ≤ by2, where a+ b < 0. (1)

Without loss of generality, a < 0.
If b < 0, consider the function

v1(r cos θ, r sin θ) = Cr2| sin(2θ)|,
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which is harmonic in each quadrant, and choose C > 0 so large that v1(x, y) ≥
u(x, y) when x2 + y2 = R2

0
. Then u(x, y) ≤ v1(x, y) for x2 + y2 < R2

0
by

the Maximum principle applied to the intersection of this disk with each
quadrant. Thus

u(x, y) ≤ C(x2 + y2), when x2 + y2 < R2

0
. (2)

Consider the family of subharmonic functions

ur(x, y) = r−2u(rx, ry), r > 0

In view of (2), for every compact K in the plane there exists r0 > 0 such
that ur are defined and uniformly bounded from above on K for r ∈ (0, r0).
Therefore there is a sequence rj → 0 for which urj → u0 in L1

loc
, where

u0 is a subharmonic function, [1, Theorem 3.2.12]. Moreover u(x, y) ≥
lim supr→0

u0(x, y) for every x, y by [1, Theorem 3.2.13], so u0(0, 0) = 0.
To show that u0 satisfies (1), fix a point (x0, 0), and consider disks Bt of
radii t centered at this point. Since the family {ur} is uniformly bounded
from above on B1, there is a continuous majorant v for this family in B1,
such that v(x0, 0) ≤ ax2

0
. This v is just the solution of the Dirichlet problem

for upper and lower halves of B1 with boundary conditions ax2 on the inter-
section of B1 with the x-axis, and constant on the half-circles. So for every
ǫ > 0 there exists δ such that v(x0, 0) ≤ ax2

0
+ǫ in Bδ. Then L1

loc
convergence

gives

u0(x0, 0) ≤
1

|Bδ|

∫
Bδ

u0(x, y)dxdy ≤
1

|Bδ|

∫
Bδ

v(x, y)dxdy ≤ ax0 + ǫ.

As ǫ is arbitrary, we obtain that u0 satisfies the first inequality in (1) on the
whole x-axis. Similar arguments show that u0 satisfies the second inequality
in (1) on the whole y-axis, and also satisfies (2) in the whole plane.

The Phragmén–Lindelöf indicator of u0,

h(θ) := lim sup
r→∞

r−2u0(r cos θ, r sin θ)

is non-positive for θ = π/2 and negative for θ = 0. This contradicts the
inequality

h(θ) + h(θ + π/2) ≥ 0,

which the indicators of all functions of order 2 must satisfy, [2, Section 8.2.4].

2



If b ≥ 0, we consider the subharmonic function

u∗(x, y) = u(x, y) + c(x2 − y2),

where b < c < −a. Such a c exists because a+ b < 0 in (1). Then u∗ satisfies

u∗(x, 0) ≤ (a+ c)x2, u∗(0, y) ≤ (b− c)y2

near the origin, and we apply the previous argument to u∗. This completes
the proof.

Corollary. There is no subharmonic function u satisfying

u(0) = 0 and u(x, 0) ≤ −ǫ|x|

for all sufficiently small x and ǫ > 0.

Remark. The Theorem does not hold in Rn for n ≥ 3. Indeed, in this case
the union of the coordinate axes is a polar set, so it is easy to construct a
counterexample.
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