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Abstract

For differential equations P (y(k), y) = 0, where P is a polynomial,
we prove that all meromorphic solutions having at least one pole are
elliptic functions, possibly degenerate.

1. Introduction

According to a theorem of Weierstrass, meromorphic functions y in the
complex plane C that satisfy an algebraic addition theorem

Q(y(z + ζ), y(z), y(ζ)) ≡ 0, where Q 6= 0 is a polynomial, (1)

are elliptic functions, possibly degenerate [17, 1].
More precisely, let us denote by W the class of meromorphic functions in

C that consists of doubly periodic functions, rational functions and functions
of the form R(eaz) where R is rational and a ∈ C. Then each function
y ∈W satisfies an identity of the form (1), and conversely, every meromorphic
function1 that satisfies such an identity belongs to W .
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1A “meromorphic function” in this paper means a function meromorphic in the complex

plane, unless some other domain is specified. See [17, 20] for discussion of the equation
(1) in more general classes of functions.
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One way to prove this result is to differentiate (1) with respect to ζ and
then set ζ = 0. Then we obtain a Briot–Bouquet differential equation

P (y′, y) = 0.

The fact that every meromorphic solution of such an equation belongs to W
was known to Abel and Liouville, but probably it was stated for the first
time in the work of Briot and Bouquet [5, 6].

Here we consider meromorphic solutions of higher order Briot–Bouquet
equations

P (y(k), y) = 0, where P is a polynomial. (2)

Picard [18] proved that for k = 2, all meromorphic solutions belong to the
class W . This work was one of the first applications of the famous Picard’s
theorems on omitted values.

In the end of 1970-s Hille [12, 13, 14, 15] considered meromorphic solutions
of (2) for arbitrary k. The result of Picard was already forgotten, and Hille
stated it as a conjecture. Then Bank and Kaufman [4] gave another proof of
Picard’s theorem.

These investigations were continued in [8]. To state the main results
from [8] we assume without loss of generality that the polynomial P in (2)
is irreducible. Let F denote the compact Riemann surface defined by the
equation

P (p, q) = 0. (3)

Then every meromorphic solution y of (2) defines a holomorphic map f :
C→ F . According to another theorem of Picard, a Riemann surface which
admits a non-constant holomorphic map from C has to be of genus 0 or 1,
([19], see also [2]). The following theorems were proved in [8]:

Theorem A. If F is of genus 1, then every meromorphic solution of (2) is
an elliptic function.

Theorem B. If k is odd, then every meromorphic solution of (2) having at
least one pole, belongs to the class W .

The main result of the present paper is the extension of Theorem B to
the case of even k.

Theorem 1. If y is a meromorphic solution of an equation (2) and y has at
least one pole, then y ∈ W .
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This can be restated in the following way. Let y be a meromorphic func-
tion in the plane which is not entire and does not belong to W . Then y and
y(k) are algebraically independent.

It is easy to see that for every function y of class W and every natural
integer k there exists an equation of the form (2) which y satisfies.

It is not true that all meromorphic solutions of higher order Briot–Bouquet
equations belong to W , a simple counterexample is y′′′ = y. We don’t know
whether non-linear irreducible counterexamples exist.

In the process of proving of Theorem 1 we will establish an estimate of
the degrees of possible meromorphic solutions in terms of the polynomials
P . Here by degree of a function of class W we mean the degree of a rational
function y, or the degree of R in y(z) = R(eaz), or the number of poles in the
fundamental parallelogram of an elliptic function y. Thus our result permits
in principle the determination of all meromorphic solutions having at least
one pole of a given equation (2).

Our method of proof is based on the so-called “finiteness property” of
certain autonomous differential equations: there are only finitely many formal
Laurent series with a pole at zero that satisfy these equations. The idea
seems to occur for the first time in [12, p. 274] but the argument given
there contains a mistake. This mistake was corrected in [8]. Later the same
method was applied in [7] and [10] to study meromorphic solutions of other
differential equations.

2. Preliminaries

We will use the following refined version of Wiman–Valiron theory which
is due to Bergweiler, Rippon and Stallard.

Let y be a meromorphic function and G a component of the set {z :
|y(z)| > M} which contains no poles (so G is unbounded). Set

M(r) = M(r, G, y) = max{|y(z)| : |z| = r, z ∈ G},

and
a(r) = d logM(r)/d log r = rM ′(r)/M(r). (4)

This derivative exists for all r except possibly a discrete set. According to a
theorem of Fuchs [11],

a(r)→∞, r →∞,

3



unless the singularity of y at∞ is a pole. For every r > r0 = inf{|z| : z ∈ G}
we choose a point zr with the properties |z| = r, |y(zr)| = M(r).

Theorem C. For every τ > 1/2, there exists a set E ⊂ [r0,+∞) of finite
logarithmic measure, such that for r ∈ [r0,∞)\E, the disc

Dr = {z : |z − zr| < ra−τ (r)}

is contained in G and we have

y(k)(z) =

(
a(r)

z

)k (
z

zr

)a(r)

y(z)(1 + o(1)), r →∞. (5)

When y is entire, this is a classical theorem of Wiman. Wiman’s proof
used power series, so it cannot be extended to the situation when y is not
entire. A more flexible proof, not using power series is due to Macintyre [16];
it applies, for example to functions analytic and unbounded in |z| > r0. The
final result stated above was recently established in [3].

3. Proof of Theorem 1

In what follows, we always assume that the polynomial P in (2) is irre-
ducible.

To state a result of [8] which we will need, we introduce the following
notation. Let A be the field of meromorphic functions on F . The elements
of A can be represented as rational functions R(p, q) whose denominators are
co-prime with P . In particular, p and q in (3) are elements of A. For α ∈ A
and a point x ∈ F , we denote by ordxα the order of α at the point x. Thus
if α(x) = 0 then ordxα is the multiplicity of the zero x of α, if α(x) = ∞
then −ordxα is the multiplicity of the pole, and ordxα = 0 at all other points
x ∈ F .

Let I ⊂ F be the set of poles of q. For x ∈ I we set κ(x) = ordxp/ordxq.

Theorem D. Suppose that an irreducible equation (2) has a transcendental
meromorphic solution y. Then:
a) The set of poles of p is a subset of I.
b) For every x ∈ I, the number κ(x) is either 1 or 1 + k/n, where n is a
positive integer.
c) If κ(x) = 1+k/n for some x ∈ I, then the equation f(z) = x has infinitely
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many solutions, and all these solutions are poles of order n of y.
d) If κ(x) = 1 for some x ∈ I, then the equation f(z) = x has no solutions.

Picard’s theorem on omitted values implies that κ(x) = 1 can happen for
at most two points x ∈ I. For the convenience of the reader we include a
proof of Theorem D in the Appendix.

The numbers κ(x) can be easily determined from the Newton polygon
of P . Thus Theorem D gives several effective necessary conditions for the
equation (2) to have meromorphic or entire solutions.

Remark. The proof of Theorem D in [8] uses Theorem C which was stated
in [8] but not proved. One can also give an alternative proof of Theorem D,
using Nevanlinna theory instead of Theorem C, by the arguments similar to
those in [9].

Lemma 1. Suppose that y is a meromorphic solution of (2). If κ(x) = 1 for
some x ∈ I then y has order one, normal type.

Proof. In view of Theorem A, we conclude that the genus of F is zero.
Therefore, we can find t = R(p, q) in A which has a single simple pole at
x. Then w = R(y(k), y) is an entire function by Theorem D, d). As t has
a simple pole at x, the element 1/t ∈ A is a local parameter at x, and in a
neighborhood of x we have

q = atm + . . . and p = btm + . . . ,

where −m = ordxp = ordxq as κ(x) = 1, and the dots stand for the terms of
degree smaller than m. Substituting p = y(k) and q = y and differentiating
the first equation k times we obtain for w a differential equation of the form

dk

dzk
wm + · · · = (b/a)wm, (6)

where the dots stand for the terms of degree smaller than m. Now we use a
standard argument of Wiman–Valiron theory. Applying Theorem C to the
entire function wm, with G = C and z = zr, we compare the asymptotic
relations (5) and (6) to conclude that a(r) ∼ cr, where c 6= 0 is a constant.
This implies logM(r) ∼ cr, which means that w is of order 1, normal type.
So y is also of order 1, normal type, because w and y satisfy a polynomial
relation of the form P (y, w) = 0, where P is a polynomial with constant
coefficients.
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Lemma 2. Suppose that y is a meromorphic solution of (2). If κ(x1) =
κ(x2) = 1 for two different points x1 and x2 in I, then y is a rational function
of eaz, where a ∈ C.

Proof. As in the previous lemma, the genus of F is zero. Let t = R(p, q)
be a function in A with a single simple pole at x1 and a single simple zero
at x2. Then w = R(y(k), y) is an entire function of order 1, normal type (by
Lemma 1) omitting 0 and ∞ (by Theorem D, d). So w(z) = eaz for some
a ∈ C. Since t is a generator of A, by Lüroth’s theorem, both p and q are
rational functions of t and the lemma follows.

Lemma 3. Suppose that k is even, the Riemann surface F is of genus zero,
y is a non-constant meromorphic solution of (2), and κ(x) = 1 for at most
one point x ∈ I. Then the Abelian differential pdq is exact, that is pdq = ds

for some s ∈ A.

Proof. It is sufficient to show that under the assumptions of Lemma 3,
the integral of pdq over every closed path in F is zero. As F is of genus zero,
we only have to consider residues of pdq. By Theorem D, a), all poles of our
differential belong to the set I.

Consider first a point x ∈ I with κ(x) = 1 + k/n. By Theorem D, c), we
have a meromorphic solution y with a pole of order n at zero, such that the
corresponding function f has the property f(0) = x. In a neighborhood of x
we have a Puiseaux expansion

pdq =
∞∑
j=J

cjq
−j/mdq

with some positive integer m. We substitute p = y(k), q = y and obtain

y(k)y′ =
∑
j 6=−m

cjy
−j/my′ + ry−1y′, (7)

where r = cm is the residue of pdq at x. Now we notice that for even k,

y(k)y′ =
d

dz

{
y(k−1)y′ − y(k−2)y′′ + . . .± 1

2
(y(k/2))2

}
. (8)

Using this, we integrate (7) over a small circle around 0 in the z-plane,
described m times anticlockwise. We obtain that 2πimr = 0, so r = 0.

Now we consider a point x ∈ I with κ(x) = 1. By the assumptions of
the lemma, there is at most one such point. Then the residue of pdq at x is
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zero because the sum of all residues of a differential on a compact Riemann
surface is zero. This proves the lemma.

Using (8) and Lemma 3, if the assumptions of Lemma 3 are satisfied, we
can rewrite our differential equation

y(k) = p(y) (9)

as

y(k−1)y′ − y(k−2)y′′ + . . .± 1

2
(y(k/2))2 = s(y) + c, (10)

where s ∈ A is an integral of the exact differential pdq, and c is a constant
that depends on the particular solution y. We have the relation p(y) = ds/dy.

Lemma 4. For a given differential equation of the form (10), there are
only finitely many formal Laurent series with a pole at zero that satisfy the
equation.

Proof. By making a linear change of the independent variable, we may
assume that

s(y) = y2+k/n + . . . .

Then
p(y) = (2 + k/n)y1+k/n + . . . .

Now we substitute a Laurent series with undetermined coefficients

y(z) =
∞∑
j=0

cjz
−n+j (11)

to the equation (9), which is a consequence of (10). With even k we have:

y(k)(z) =
(k + n− 1)!

(n− 1)!
c0z
−n−k +

(k + n− 2)!

(n− 2)!
c1z
−n−k−1

+ . . .+ k!cn−1z
−k−1

+k!cn+k +
(k + 1)!

1!
cn+k+1z +

(k + 1)!

2!
cn+k+2z

2 + . . . ;

and

y1+k/n(z) = z−k−n
[
c

1+k/n
0 +

(
(1 + k/n)c

k/n
0 c1 + (. . .)1

)
z

+
(
(1 + k/n)c

k/n
0 c2 + (. . .)2

)
z2 + . . .

+
(
(1 + k/n)c

k/n
0 cj + (. . .)j

)
zj + . . .

]
.
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In the last formula, the symbol (. . .)j stands for a finite sum of products of
the coefficients of the series (11) which contain no coefficients ci with i ≥ j.
Substituting to (9) and comparing the coefficients at z−k−n we obtain

(k + n− 1)!

(n− 1)!
c0 = (2 + k/n)c

1+k/n
0 .

This equation has finitely many non-zero roots c0. We have

(2 + k/n)c
k/n
0 =

(k + n− 1)!

(n− 1)!
. (12)

Further we obtain

(k + n− 2)!

(n− 1)!
c1 = (2 + k/n)c

k/n
0 (1 + k/n)c1 + (. . .)1. (13)

Substituting here the value of (2 + k/n)c
k/n
0 from (12), we see that the coef-

ficient at c1 is different from zero, because

(k + n− 2)!

(n− 2)!
6= (k + n− 1)!

(n− 1)!

k + n

n
.

Thus c1 is uniquely determined from (13). The situation is analogous for all
coefficients cj with j < n + k. These coefficients are uniquely determined
from the equation (9) once c0 is chosen.

Now we consider the coefficients cn+k+j with j ≥ 0. We have

(k + j)!

j!
cn+k+j = (2 + k/n)c

k/n
0

n+ k

n
cn+k+j + (. . .)n+k+j.

Again we substitute the value of (2 + k/n)c
k/n
0 from (12) and conclude that

the coefficient at cn+k+j equals

(k + j)!

j!
− (k + n)!

n!
.

This coefficient is zero for a single value of j, namely j = n. Thus c2n+k

cannot be determined from the equation (9), but once c0 and c2n+k are chosen,
the rest of the coefficients of the series (11) are determined uniquely.
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To determine c2n+k we invoke the equation (10):

y(k−1)y′ − y(k−2)y′′ + . . .± 1

2
(y(k/2))2 = y2+k/n + . . . , (14)

where the dots stand for the terms of lower degrees. We have

y′(z) = −nc0z
−n−1 + . . .+ c2n+k(n+ k)zn+k−1 + . . . ,

y′′ = n(n+ 1)c0z
−n−2 + . . .+ c2n+k(n+ k)(n+ k − 1)zn+k−2 + . . . ,

. . . . . . ,

y(k−1) = −n(n+ 1) . . . (n+ k − 2)c0z
−n−k+1 + . . .

+c2n+k(n+ k)(n+ k − 1) . . . (n+ 2)zn+1 + . . . .

Substituting this to our equation (14) we write the condition that the con-
stant terms in both sides of (14) are equal. This condition is a polynomial
equation in c, c0, . . . , c2n+k (it is linear with respect to c2n+k) and the coeffi-
cient at c2n+k in this equation equals

c0

k−1∑
m=0

(n+m)!(n+ k)!

(n+m+ 1)!(n− 1)!
.

This expression is not zero because each term of the sum is positive. Thus
c2n+k is determined uniquely, and this completes the proof of the lemma.

Remark. It follows from this proof that the only meromorphic solutions
of the differential equations

y(k) = ym

are exponential polynomials when m = 1 and functions c(z − z0)
−n where

m = 1 + k/n, z0 ∈ C and c is an appropriate constant.

The rest of the proof of Theorem 1 is a repetition of the argument from
[8].

By Theorems A and B, we may assume that F is of genus zero, and k is
even. In view of Lemmas 2 and 3, it is enough to consider the case that the
differential pdq is exact. Then every solution of (2) also satisfies (10) with
some constant c.

Assume that y is a transcendental meromorphic solution of (10), hav-
ing at least one pole. By Theorem D, d), c), y has infinitely many poles
zj , j = 1, 2, 3, . . . . The functions y(z−zj) satisfy the assumptions of Lemma
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4, therefore some of them are equal. We conclude that y is a periodic func-
tion. By making a linear change of the independent variable we may assume
that the smallest period is 2πi.

Consider the strip D = {z : 0 ≤ =z < 2π}.

Case 1. y has infinitely many poles in D. Applying Lemma 4 again, we
conclude that y has a period in D, so y is doubly periodic.

Case 2. y is bounded in D ∩ {z : |<z| > C} for some C > 0. Since y is
2πi-periodic, we have y(z) = R(ez) where R is meromorphic in C∗. As R is
bounded in some neighborhoods of 0 and ∞, we conclude that R is rational.

Case 3. y has finitely many poles in D and is unbounded in D ∩ {z :
|<z| > C} for every C > 0. As y is 2πi-periodic, we write y = R(ez) where
R is meromorphic in C∗. Now R has finitely many poles and is unbounded
either in a neighborhood of 0 or in a neighborhood of ∞. Suppose that it is
unbounded in a neighborhood of ∞. Then the set {z : |R(z)| > M}, where
M is large enough has an unbounded component G containing no poles of
R. On this component G, the function R satisfies a differential equation

k∑
m=1

(
k
m

)
wm

dmR

dwm
= (c + o(1))Rκ,

where c is some constant and κ = 1 or κ is one of the numbers 1 + k/n from
Theorem D. Applying Theorem C in G as we did in the proof of Lemma 1,
we obtain that κ = 1 and that R has a pole at infinity. Similar argument
works for the singularity at 0, so R is rational, and this completes the proof.

4. Appendix

Proof of Theorem D. We first prove a). Proving it by contradiction,
suppose that p has a pole at a point x ∈ F such that q(x) = b ∈ C. Let
Uε ⊂ C be a circle of radius ε centered at b, and Vε ⊂ F a component
of q−1(Uε) containing x. We assume that the circle Uε is so small that Vε
contains no other poles of p, except the pole at x. Let y be a meromorphic
solution of our equation (2) and consider the map h : C → F given by
h(z) = (y(z), yk(z)). The image of this map is dense in F and the point
x is evidently omitted by h. Let Gε ⊂ C be a component of the preimage
h−1(Uε). Consider the meromorphic function w = 1/(y−a). It is holomorphic
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and unbounded in Gε, and |w(z)| = 1/ε for z ∈ ∂Gε. We conclude that Gε is
unbounded. Now we apply Theorem C to w in Gε.

Set M(r) = max{|w(z)| : |z| = r, z ∈ Gε} and let a(r) be defined as in
(4). For any r > r0 = inf{|z| : z ∈ Gε}, we choose a point zr with |z| = r
and |w(zr)| = M(r). By Theorem C, we have

|w(j)(zr)| =
(
a(r)

r

)j
|w(zr)|(1 + o(1)) =

a(r)j

rj
M(r)(1 + o(1)) (15)

where r →∞ outside a set of finite logarithmic measure.
From Lemma 6.10 of [3], we have for every β > 0,

(a(r))β = o(M(r)), (16)

as r →∞ outside a set of finite logarithmic measure.
Differentiating the equation y = 1/w + a we obtain

y(k) =
1

w
Q

(
w′

w
,
w′′

w
, · · · , w

(k)

w

)
, (17)

where Q is a polynomial. On the other hand, from the Puiseaux expansion
at the point x we obtain

y(k) = (c+ o(1))wα, w →∞, (18)

where c 6= 0 is a constant and α > 0. Combining (17) and (18) we obtain

Q

(
w′

w
, . . . ,

w(k)

w

)
= (c+ o(1))w1+α.

Inserting to this asymptotic relation z = zr and using (15) and (16) we obtain
a contradiction which proves a).

Consider now a point x ∈ I. From the Puiseaux expansion we obtain

y(k) = (c+ o(1))yκ(x), y →∞. (19)

If x has a preimage under the map h, then this preimage is a pole z0 of y. If
this pole is of order n we have y(z) ∼ c1(z−z0)

−n and y(k)(z) ∼ c2(z−z0)
−n−k

as z → z0. Substituting to (19) we conclude that κ(x) = 1 + k/n. Thus if
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x has at least one preimage under h then κ(x) = 1 + k/n with a positive
integer n, and every preimage of x is a pole of order n of y. This implies d).

Now suppose that a point x ∈ I has only finitely many preimages. Let
Uε = {z ∈ C : |z| > 1/ε} be a neighborhood of infinity, and Vε ⊂ F a
component of the preimage q−1(Uε). We may assume that ε > 0 is so small
that Vε does not contain other poles of q except x. Let Gε be a component
of the preimage h−1(Vε). If Gε is bounded then h : Gε → Uε is a ramified
covering of a finite degree, and h takes the value x somewhere in G. As we
assume that h is transcendental but x has only finitely many preimages, there
should exist an unbounded component Gε. Choosing a smaller ε if necessary,
we achieve that Gε contains no h-preimages of x. Then y is a holomorphic
function in Gε, |y(z)| = 1/ε, z ∈ ∂Gε, and y is unbounded in Gε. Applying
Theorem C to the function y in Gε we obtain the asymptotic relation (5).
Putiing z = zr in this relation, taking (16) into account, and comparing with
(19) we conclude that κ = 1 in (19). This implies c). Thus in any case
κ = 1 + k/n or κ = 1 which proves b).
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