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Glasser and Davison [1, 2] discussed the following problem.
Consider two disjoint balls B1 and B2 of unit radius in 3-space, and let

r > 1 be the distance between their centers. Let u be a harmonic function in
the complement of the balls, which takes value 1 on the surfaces of the balls,
and u(x)→ 0 as x→∞. Denote

C(r) =

∫
∂B1∪∂B2

∂u

∂n
,

where ∂/∂n is the differentiation along the inward normal.
The problem stated in [1, 2] is to prove that C(r) is an increasing function

on [1,∞).
An interpretation of C(r) given in [2] is the rate of heat loss by a pair

of sleeping animals. Each animal is represented by a ball whose surface
temperature equals 1, while the outside temperature is zero (far away from
the bodies). Then C(r) represents the rate of heat loss, and monotonicity of
C(r) explains the habit of many animals (like hedgehogs or armadillos) to
huddle together at night to keep themselves warm.

In [2], an explicit expression was derived,

C(r) = const

∞∑
k=1

(−1)k

Uk(r)
, (1)

where Uk are Chebyshev polynomials of the second kind, and monotonicity
of C(r) was verified numerically. The problem of proving monotonicity of
the expression (1), stated in [1, 2] looks hard. Steven Finch, in a personal
message, informed me that someone even tried to prove monotonicity of (1)
using computer algebra!
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Explicit expression (1) does not help much in proving the monotonicity.
However, if one uses the original definition of C(r), monotonicity follows
easily from the basic principles of Classical Potential Theory, see, for example,
[3], and in fact, a much more general result can be obtained.

I think this is a good example showing the power of general principles as
compared to explicit computations.

Let E = E(r) be the union of the two spheres. The constant C(r)/4π
is nothing but the (Newtonian) capacity capE(r). It can be obtained by
solving the following extremal problem for measures µ on E:

4π

C
= inf{I(µ) : suppµ ⊂ E, µ(E) = 1}, (2)

where

I(µ) =

∫ ∫
dµ(x)dµ(y)

|x− y| (3)

is the energy of a measure µ. A unique extremal measure exists for every
compact set E of positive capacity. This extremal measure is called the
equilibrium measure of E. In fact, u is the potential of this equilibrium
measure, divided by capacity; this is a form of the Dirichlet’s Principle, see,
for example [3, Theorem 7.1c].

Monotonicity of C(r) is a consequence of the following proposition which
is is well-known and easy to prove:

Proposition Let φ : E1 → E2 be a one-to-one map of compact sets in R3,
which decreases distances, that is |φ(x) − φ(y)| ≤ |x − y|. Then capE2 ≤
capE1.

Indeed, if we replace a measure by its image under a map that decreases
distances, the energy (3) will evidently increase, so the solution of extremal
problem (2) for E2 is greater then or equal to that for E1, and thus capE2 ≤
capE1.

Here is a more formal proof. Let M(E) denote the set of Borel measures
satisfying suppµ ⊂ E and µ(E) = 1. Denote by

φ∗ : M(E1)→M(E2), (4)

which is defined by
φ∗µ(X) = µ(φ−1(X),
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for every Borel subset X ∈ E2. It is clear that the map (4) is one-to-one.
Now we have

I(φ∗µ) =

∫ ∫
dφ∗µ(x)dφ∗(y)

|x− y| =

∫ ∫
dµ(x)dµ(y)

|φ(x)− φ(y)|

≥
∫ ∫

dµ(x)dµ(y)

|x− y| = I(µ).

Thus
inf

µ∈M(E2)
I(µ) ≥ inf

µ∈M(E1)
I(µ),

so capE2 ≤ capE1. 2

For our original problem this means that C(r) is increasing (take φ which
is identity on S1 and moves S2, as a rigid body, towards S1). It is easy to
show that actually C(r) is strictly increasing.

Neither the number of animals nor their shape are relevant for this ar-
gument: the total rate of the energy loss by a group decreases when the
animals come closer. The exact meaning of “coming closer” is described in
the Proposition above. However the assumption that all animals have equal
body temperature is important.

The above proposition establishes monotonicity of the total rate of loss of
heat by the whole group of animals. In the original problem with two equal
balls, the rate of loss of heat by one ball is of course 1/2 of this total.

In more general cases, it seems more interesting from the point of view of
animal behavior, and more challenging mathematically, to find under what
conditions one can assert that as the animals come closer together, the rate
of heat loss decreases for each individual animal.

Indeed, it is its own rate of loss of heat that an individual animal feels,
and the behavior we discuss is probably driven by individual feelings rather
then some abstract “community goal”.

I suppose that in general the individual rates of loss of heat might not
be monotone in the sense of the above Proposition, but in simple situations
this could be the case. The following two cases seem to be the simplest:

a) two balls of unequal radii, and
b) three balls of equal radii.
Is it true that if we move such balls closer (such that all pairwise dis-

tances between their centers decrease) the rate of heat loss for each ball will
decrease?
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