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ABSTRACT. For any p, 0 < ρ < 00, there exists an entire function of order ρ such that for
any asymptotic curve Γ on which/—> 00 the relation l(r, Γ) = O{r), r -» 00, does not hold,
where l(r, Γ) is the length of that part of Γ contained in the disc (z: |z | < r). The same is
true of asymptotic curves on which/-* α φ oo under the natural restriction that 1/2 < ρ
< oo. This disproves a well-known conjecture of Hayman and Erdos. Several closely
related results are obtained.

Bibliography: 24 titles.

In a lecture given at Moscow University in 1960, W. K. Hayman [1] stated the

following conjecture. Let / be an entire function of finite order p. Then it is always

possible to choose an asymptotic curve Γ on which / tends toward 00 such that

l(r, Γ ) = 0 ( Γ ) , r-voo, (0.1)

where l(r, Γ) is the length of that part of Γ which is contained in the disc (z: \z\ < r).

And for ρ = 0, Hayman conjectured the stronger condition

, r->oo. (0.2)

Thirteen years later, Paul Erdos (see [2], Problem 2.41) repeated the same problem

almost word-for-word, also posing as an open question the problem of whether (0.1) is

also satisfied for those asymptotic curves on which the entire function / tends toward a

finite asymptotic value.

In [3], Hayman has shown that if, for an entire function /,

\nM{r, f)=O(\n2r), r-+oo, (0.3)

then it is possible to take a ray (z: arg ζ = θ) for almost all θ e [0, 2π] as the

asymptotic curve on which / tends toward oo (here and in what follows we use without

explanation the standard notation of the theory of entire and meromorphic functions;

see, for example, [4]). Thus if (0.3) is satisfied it is always possible to choose the

asymptotic curve not only so that (0.2) holds, but even so that /(r, Γ) = r.

In § 1 of this paper it is shown that, for any function <p(r) which tends toward + oo as

r —» + oo, it is possible to find an entire function / such that

\nM(r, f)=O(q)(r)\n2r), r-^oo, (0.4)
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and, for any asymptotic curve Γ on which / approaches oo, (0.1) is not satisfied. Thus on
the one hand, Hayman's conjecture is disproved, and on the other, it is shown that it is
impossible to weaken (0.3) and still get (0.1), to say nothing of (0.2). It is also possible to
construct a similar example of an entire function with preassigned order p, 0 < ρ < oo.

In §2 we construct an example of an entire function of order p, 1/2 < ρ < oo, for
which 0 is an asymptotic value, but there exists no asymptotic curve Γ with the property
(0.1) on which the function approaches 0. Since an entire function with ρ < 1/2 cannot
have finite asymptotic values (see [4], p. 226), we have thereby obtained a negative
answer to the question of Erdos. However, it is possible that (0.1) is always satisfied for
some asymptotic curve on which the entire function / approaches a finite value if/is of
order ρ = 1/2 and of normal type (if / is of minimal type, then it has no finite
asymptotic values). For entire functions / of order ρ = 1 /2 and normal type it is known
only (see [5]) that for each asymptotic curve Γ on which / approaches a finite value,

where arg ζ is some branch of the argument which is continuous on Γ.
In §§1 and 2 we use various methods which can be used to construct examples of

entire functions with other properties. We treat this briefly in §3. In particular, we obtain
the following result in §3. We denote by 9(r,f) the measure of the set {φ e [0, 277]:
\f(rei<p)\ > 1), where/is an entire function. Valiron ([6], pp. 133-136) has shown that for
an entire function for which (0.3) is fulfilled, we have that #(/·,/)-»27τ as r—»oo.
Hayman [3] has strengthened this result by showing, in particular, that 9(r,f) = 2-n for
all r except for a set of finite logarithmic measure. In §3 we construct an example of an
entire function / for which (0.4) is fulfilled for an arbitrary preassigned function
<p(r) —• 00 and for which 9{r,f) —»0 as r —> 00, r Ε Ε c [0, 00), where Ε is some set of
upper density 1. Therefore the hypotheses under which the results of Valiron and
Hayman mentioned above are true cannot be weakened. It is possible to construct the
same examples with an arbitrary preassigned order. We note that the first examples of
entire functions / of finite order for which l im^^ 9(r, /) = 0 were constructed recently
[7]. On the other hand, it is well known (see [8], [9], and [4], p. 233) that for entire
functions of order p,

ΤϊττΓθ (r, f) > min {2π, π/Ρ}.

In addition we give in §3 an answer to a question of Winkler (see [2], Problem 2.42).

§1

THEOREM 1. Suppose that the function φ(/·), defined on [0, 00), tends to + 00 as r —» 00.
There exists an entire function f for which (0.4) holds but for which (0.1) is satisfied for no
asymptotic curve Γ on which f tends toward 00.

PROOF. We denote by Tk the curve Tk = (z = rem: 2 < r < 3, θ = 2<nk{r - 2)}. We
use the well-known theorem of Runge (see [10], Volume 1, Chapter 4, §2) to construct a
polynomial Pk with the properties that

Ρ*(0) = 1, (LI)

for | ζ | < 1 , (1.2)

-1 for 26 Γ*. (1.3)
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We put χΛ = max{l, JC}. It is clear that there exist positive constants Ak such that for all

r > 0

\nM(r, Pk)<^Ak(\nr)A, k£N. (1.4)

Without loss of generality, we may assume that <p(r) is a continuously differentiable

increasing function, <p(r) Ξ 1 for r G [0, e], <p(r) < (In r)A and <p'(r) < \/r, 0 < r < oo

(if this last condition is not fulfilled, we replace y(r) for r > e by the function

max{l, j\ min{<p'(f)> 1/0*})·

We construct a sequence of positive numbers (τη), τ1 <e~l, τη+χ < τη/3, and a

sequence of polynomials (Qn) with the following properties {Tn — r~x):

In | Q n ( 2 ) | ^ — 2-1—2-n for ζτ£Ι\·, 1 ^ / < η , (1.5)

Ν if, 0, Qn) <ζφ (r) (In2 r) A for r > 0, (1-6)

In Μ (Th Qn) < (1 - 2~n) φ (Ty) In2 Ty, 1 < / < n. (1.7)

We choose T,, 0 < τχ < e~y, so that

In Μ (τ·! r, Pi) ̂ - φ (r) (In2 r)' , r > 0. (1.8)

We put <2J(Z) = Ρ,ίτ,ζ). The polynomial β , has the properties (1.5)—(1.7). Indeed, (1.5)

(with η = 1) is satisfied for Qx by virtue of (1.3). From (1.1), (1.8) and Jensen's inequality

it follows that

JV (r, 0, Q0 < In Μ (r, Qx) ̂  1 φ (Λ) (In2 r ) A ,

from which we get that (1.6) and (1.7) are satisfied for Qv We assume that τν . . . , rk_x

and Qx, . . . , Qk_x have already been constructed, satisfying (1.5)—(1.7). We show how

to choose rk and Qk. We choose Bk_x > 1 so that, for all r > 0,

In Μ (/-,&_,) < ^ _ x (In r ) \ (1.9)

Let rk be large enough so that

( l - 2 - * ) < p ( r A ) > ( 6 4 f c + 1)5*..,, (1.10)

Γ * > 3 Γ * - 1 . (1.11)

Now we choose τΛ > 0 small enough so that

τ* s l̂//-*. (1.12)

2B*_! In (37,) | In PA (%kz)\ ^2~k, \z\^rk, (1.13)

where the branch of the logarithm In Pk(rkz) is chosen so that In ̂ (0) = 0, taking into

account the fact that Pk{rkz) has no zeros for \z\ < rk by virtue of (1.2) and (1.12). To

show that we can satisfy (1.13) we note that for \z\ < rk and for sufficiently small τ

1 In Pk (xz)\ In - < 2 | Pk (τζ) — 11 In —
τ τ

< 2 (1 + 1 P'k (0)|) rkx In ̂  - ο (1), τ --> 0.
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Now we put

(1.14)

. (1.15)

From (1.11) and (1.12) it follows that rk < τΛ_,/3. We show that (1.5)-(1.7) (with η = k)
are satisfied for Qk.

By virtue of (1.5) (with η = k - 1), (1.11) and (1.13)-(1.15), we have for ζη e Γ,,
7 = 1, . . . , k - 1,

In | Qk (2)| = In | <2*_χ (z)\ + qk\n\ Pk (zrk)\
(1.16)

< — 2~x — 2~k+1 + 2~k = — 2~x — 2~k.

By virtue of (1.3) and (1.9), for zrk G Γ̂  we have
In | Qk (z)\ < I n |Q*_x (z)\ -qk^ Bk-t In (3Γ*) — [25,^ In (37*)] < - 1,

i.e., (1.16) is satisfied forj — k; consequently (1.5) holds for Qk.
By virtue of (1.2), (1.6) with η = k - 1, and (1.15), for r < Tk we get

W (/-, 0, Qk) = N(r, 0, ρΛ.Ο < φ (Λ) (lnV)A. (1.17)

Using (1.4), (1.9), (1.10), (1.15) and (1.12), for r > Tk > e we get

In Μ (r, Qk) < Bk^ In r + ^ Λ (In (Τ*Γ))Λ

fc-x In r + lA&k-i In (3ΓΛ) In r

-! In r + 4 4 ^ In r + 2AkBk~1 In2 r < Bk^ (1 + 6^ft) lnV

< (1 — 2~k) φ (ΓΛ) lnV ^ (1 — 2~k) φ (r) In2 r.

Taking (1.1), (1.17), (1.18) and Jensen's inequality into account, we see that (1.6) is also
satisfied for η = k. Putting r = Tk in (1.18), we get (1.7) with η = k and j = k. If
1 < j < k - 1, then from (1.7) for AI = A: - 1, (1.13), and (1.15) we have

In Μ (T}, Qk) < In Μ (Th Q^ + 2Bk^ In (37,) In Μ (Γ/τ*, />*) ( 1 1 9 )

^ (1 — 2""*+1) φ (Γ/) In2 Γ, + 2~* < (1 — 2~*) φ (Γ/) In2 Γ,.

Thus we have shown that (1.7) is satisfied for η = k. This proves the possibility of
constructing (rn) and ((?„) with the properties (1.5)—(1.7).

We show that (Qn) converges uniformly on compact sets in C to some entire function
/. The convergence of (Qn) is equivalent to the convergence of the product

OO CO

Π {Qk <diQk-x (z)> = Π {Pk (vkz)}°k

(see (1.15)), and this product converges uniformly on compact sets by virtue of (1.13) and
(1.14).

We show that the entire function/satisfies the hypotheses of Theorem 1.
From (1.1) and (1.15) it follows that {^(0) = 1, k• e N. Consequently/(0) = 1. From

(1.5) we get that

l n | / ( z ) | < - 7 2 , ζτ,-er* /€N. (1.20)
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From/(0) = 1 and (1.20) it follows, in particular, that/ ^ const. Let Γ be some curve on
which / approaches oo. Taking the form of Tk into consideration, we get from (1.20) that

/ (37*. Γ) > / (37*. Γ) - / (2Tk, T)>(k- 1) 4π7*.

Consequently (0.1) is not satisfied for Γ.
We estimate the growth of /. Allowing η to approach oo in (1.6) and using a

well-known theorem of Hurwitz, we get that

Ν (r, 0, / ) < φ (r) (In2 r)A < (In3 r ) \ r > 0. (1.21)

Let π(ζ) be a canonical Weierstrass product of genus zero constructed from the zeros of
/. From (1.21) it follows that ιτ{ζ) has order zero. From (1.7) it follows that

In Μ (Τ,-, / ) < φ (Tj) In2 7, < In3 7y.

Consequently 7(7},//77) = 0(ln3 T),j —> 00, and//π = const, (see, for example, [4], p.
51). Since/(0) = ?r(0) = 1, it follows that/ = 77. Therefore ([4], p. 89, (4.16))

jjdn(t, 0, f)^r\ N{t^f)dt. 0-22)

Since φ'(/") < 1/r, it follows that for all r > r0 > e with <p(r0) > 2 the function <p(r)r~x/2

is decreasing, and we get from (1.21) and (1.22) that

\nM(r,f)^r j" φ (t) Γ2In2 /dt
r

r ' / 2 l n 2 i i t t = 2(1 + ο (1))φ (r) ln 2 r , r ->oo.

Thus (0.4) is satisfied for /. This proves Theorem 1.

THEOREM 2. Suppose that 0 < ρ < oo. There exists an entire function f of order ρ such
that (0.1) is satisfied for no asymptotic curve Γ on which f approaches 00.

PROOF. For ρ = 0 Theorem 2 is contained in Theorem 1. Suppose that 0 < ρ < 1. We
define the sequences of curves (I\), polynomials (Pk), and constants (Ak) as in the proof
of Theorem 1. We take an entire transcendental function ψ such that

In Μ (r, ψ) = In Ι ψ (r)\ < (Κ)Λ, r > 0, (1.23)

-ψ(Ο) = 1, ψ(2)^=0 for | ζ | < 1 , (1.24)

|^μΓ ρ for r^sl, (1.25)

where μ is some positive constant. It is possible to take ψ(ζ) to be Ερ(σζ), for example,
where Ep{z) is the Mittag-Leffler function (see [4], p. Ill), and σ > 0 is sufficiently
small.

We construct sequences of positive numbers (τη), τχ < e~x, τη+, < τπ/3, and (s,,),
5, > 1, 5n + 1 > 2sn, and a sequence of entire functions (/?„) with the following properties
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(Τη = 1/rJ:

\n\Rn(z)\^ — 2~1~2~n-1 for zx^Th l^j^n, (1.26)

Ν (r, 0, Rn) ^ 6 (rp In2 r) A for r > 0, (1.27)

In | Rn (S/)| > s^~ / ) p + 2"B, 1 < / < n, (1.28)

In Μ (Tj, /?„)< 6 (1 — 2~n) Tf In2 Th 1 < / < n, (1-29)

lnM(r, /?„)=-0 (/·'), r^oo. (1.30)

We choose τ,, 0 < τ, < e~l, small enough so that

In Μ far, PJ ζζι*, r ^ l . (1.31)

We now find σ1? Tj/3 > σι > 0, so small that

Ιΐπψίσ^)^— for | ζ | < 37\. (1.32)

Then, by virtue of (1.23) and the fact that σ, < 1,

lnAf(a tr, ψ) ^ r p , r > l . (1.33)

We put Rx(z) = Ρχ(τλζ)ψ(σχζ). For zrx e Γ, we have, by virtue of (1.3) and (1.32),

In | Rx (z)\ ̂  — 1 + In Μ ( σ ^ , ψ) <c - 1 + - - — 2~l — 2~\

i.e., (1.26) is satisfied for Rv From (1.31) and (1.33) it follows that

whence it follows at once that (1.27), (1.29), and (1.30) hold. Since for sx > ax

 x

In | Rx (sx)\ > μσ ί̂ + 0 (In sx), sx > oo,

by virtue of (1.25), it follows that if we take sx > 0 large enough, (1.28) is satisfied.

We assume that τ,, . . . , rk_x, $ , , . . . , sk_x and Rx, . . . , Rk_x have already been

chosen so that (1.26)—(1.30) are satisfied, where Rj, 1 < j < k — 1, has the form

Ri (z) = Qj (ζ) Π Ψ (σν ζ), (1.34)
V = l

where Ω,(ζ) is some polynomial, and where 0 < av < 1 for 1 < ν < k — 1. We choose

Ck_x > 2 large enough so that for all r > 0,

lnAi(r, flfc-iXCfc-i/* r > l , (1-35)

which is possible by virtue of (1.30) (for η = k — 1). We take rk so large that

i, s*-i}, (1-36)

^C^+l. (1.37)

Now we choose τ̂. > 0 small enough so that (1.12) is satisfied and

We can satisfy (1.38) by choosing rk properly, since

%-p\\nPk(xz)\^2{\-\-
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for sufficiently small τ. We choose ak, \/rk > ok > 0, so that

| lni |>(a f c z) |^2- f t - 2 for |z |s^37\. (1-39)

Now we put

Rk (z) = R^ (z) {Pk (Tkz))Pk^ (okz), (1.40)

where

]. (1.41)

From (1.12) and (1.36) it follows that rk < τΛ_,/3. For ZTJ 6 Γ-, 1 < j < k - 1, we have

that

In | Rk (2)| = In | Rk-i (z)\ + pk In | P fe ( w ) j + In | ψ (σ*ζ)|

<^ — 2"1 r - 2~fe + 2~k~2 + 2~*~2 = — Tx — Tk~x

by virtue of (1.40), (1.26), (1.38), and (1.39). With the help of (1.35) and (1.39)-(1.41) we

get that

)p] ^In | Rk (z)\ < C*-! (3T,)P - [2C,_X (3Tk)
p] + 2~^2

 ( L 4 3 )

<c — 2 + 2~Λ~2 < — 2"1 — 2~ft~1

for ζτλ e ΓΛ. Thus, by virtue of (1.42) and (1.43), (1.26) is satisfied for Rk with η = k.

For 1 < j < k — 1 we have

In | Rk (Sj)\ > In | Rk^ (S /)| - pk \ In | P fe (TfeS/)| | { χ Μ )

+ In | p"^ fe k j ^ fe

We have used (1.28) with η = k - 1 and (1.38) here, as well as the fact that |ψ(/·)| > 1

for r > 0. From (1.34) and (1.25) we get that, for sufficiently large sk {> 2sk_l)

In | Rk (sk)\ > In | Ω/ (sk)\ + In | -ψ

which, together with (1.44), shows that (1.28) holds for η = k.

The function {Pk(Tkz)}Pk\p(akz) does not vanish for \z\ < Tk; therefore for r < Tk

Ν (r, 0, Rk) = yV (r, 0, /?fe_x) - 6 (rp In2 r ) A , (1.45)

by virtue of (1.27) for η = k - 1. With the help of (1.40), (1.35), (1.4), (1.23), (1.12), and
(1.37) we get that

In Μ (r, Rk) ^ Ck^ + pkAk (In (x,r))A + (op

kr
p)A

W p In r + rp < (C^ x + 2 • 3 ^ 4 ^ - + 1) rp In r (1.46)

for r > Tk. From (1.45), (1.46), and Jensen's inequality, we get (1.27) for η = k. Putting

r = Tk in (1.46), we get (1.29) for « = A: andy' = A:. If 1 < j < k - 1, then by virtue of
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(1.29) with η = k - 1 and (1.38) we get

In Μ (T}, Rk) ^ In Μ {Th /?,_x) + 2C*_X (3Tk)
p In Μ (TjTk, Pk) + In Μ (akTh ψ)

^ 6 ( 1 — 2~k%l) Tpi In2 Tj + 2~k~2 + 2~k~2 sC 6 (1 — 2~k) T] In2 Th

so that (1.29) with η = k is satisfied for/ < k — 1.
The relation (1.30) for « = k follows immediately from (1.34).
Thus we have constructed the desired sequences (jn), (sn), and (Rn).
The uniform convergence on compact sets in C of the sequence (Rn) of entire

functions to the entire function/is proved in exactly the same way as the convergence of
(Qn) in the proof of Theorem 1 (with reference to (1.38) and (1.39)). Allowing η to
approach oo in (1.26)-(1.29), we get that (1.20) is satisfied for/and that

N(r, 0, /) <c6(r p ln 2 r) A , r > 0, (1.47)

1η|/(*/)|>;Τ2Λ /6Ν, (1.48)

In Μ (Tj, /) < 67? In2 Th j £ N. (1.49)

As we saw in the proof of Theorem 1, it follows from (1.20) that (0.1) does not hold for/.
From (1.47) and (1.49) we can conclude that / is a canonical product of genus zero
whose order is the same as that of N(r, 0, f) by the classical Borel theorem (see [4], p.
79), and whose order does not exceed ρ by virtue of (1.47). From (1.48) it follows that the
order of/is equal to p. Thus the entire function/has all of the required properties.

Considering entire functions of the form/(z"), η = 2, 3, . . ., where /is the function
of order p, 0 < ρ < 1, constructed above, we show that Theorem 2 holds for arbitrary p,
0 < ρ < oo.

If ρ = oo, then we carry out the construction as follows. We take γ = {ζ = reir:
r > 1} and, using Carleman's approximation theorem (see [11], Chapter II, §§1 and 2),
we construct an entire function / which is bounded on γ. Clearly if Γ is an arbitrary
asymptotic curve on which / approaches oo, then r2 = O(l(r, Γ)) as r —» oo, and for a
continuous branch of arg ζ on Γ we have arg ζ = |z| + 0(1) as ζ ~» oo, ζ 6 Γ . By
Ahlfors' theorem (see [12] and the footnote on p. 213 of the Russian translation of [13]),/
has infinite order.

§2

The method by which we will construct the necessary example of an entire function
with finite asymptotic values is different from the method of §1, which is not applicable
here. The basis of our construction is a theorem on conformal mapping of a semistrip
which may be of interest in itself.

Let A and Β be two open sets. We call the set C = 'mi{A υ Β), where the bar denotes
closure and int denotes the interior, their connection C = A II B. The operation of
connection generalizes in a natural way to the case of an arbitrary system of open sets.
This operation is studied in topology (see [13], Russian p. 14), but we know of no name
or notation for it.

We denote by Lm the linear function Lm(z) = ζ + m, m £ R, and we define / = {iy:
y < TT) and put Im = Lm(I).

Let 0 < m < oo. We denote by D(m) an arbitrary Jordan region in C having the
following properties:
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1) 7_C dD(m), Im c dD(m);
2) D{m) Π {ζ: χ < 0, \y\ < π) = 0, D(m) η {ζ: χ > m, |>>| < ττ) = 0.
We will regard D(m) as a Jordan quadrangle with vertices ± iri and m ± τπ, and we

will call / and Im the lateral sides of D(m), and each of the two Jordan arcs which
constitute 3D(m)\(/ υ Im) a base of D(m). In the special case when D(m) is a rectangle
with vertices ± πϊ and m ± τπ, we will write Q{tri) instead of D{m). We will denote by
S{rij, Dj(mj)} (where rij > 0 and ny > 0 are real numbers) the curvilinear semistrip

S = S {nh D, (m,)} = Q (%) II Ldl {Dx Κ ) ) Π Uz (Q (nt)) II Ld, (D2 (m2)) u

... UL&k(Q (nk)) U Ldjk (D, (mk)) Π L6,+ 1 (Q (

where ^, = nt, dk = dk + nk and 8k = dk_x + mk_v k = 2, 3, . . . .
In order to facilitate the description of this and the semistrips and strips which we will

encounter below, we assume that the ny are chosen large enough so that the regions
Ld(Dj{nij)), j Ε Ν, are pairwise disjoint. Without this assumption, we would have to
regard the common points of the various Ld(Dj(mjj) as distinct and the semistrip
Sirij, Dj(mj)) as a Riemann surface. None of the following propositions would be
weakened by such an approach, but the statements would be more complicated.

Let So = {ζ: χ > 0,\y\ < π), and let ξ = £s(z) be a one-to-one conformal mapping of
So onto S such that $s(±iv) = ± lit and fs(oo) = oo. We will denote the inverse of
t; = Ss(z)byz = zs(i;).

In what follows, whenever we consider a one-to-one conformal mapping of one Jordan
region onto another, we will assume that it has been extended by continuity to the
boundary.

THEOREM 3. For any sequence of regions (Dj(nij)),j e N, it is possible to find a sequence

of positive numbers (vj) such that for any semistrip S{nj, D^mj)} with nj > vp

lim Re ζ5 (χ + iy)/x - 1, (2.1)

where the approach to 1 is uniform with respect to y.

We will need the following lemma.

LEMMA 1. Let ζ = ζ(ζ) be a one-to-one conformal mapping of the region

Δ = ^{n,D (m)) = Q(n)U Ln (D (m)) II Lnvm (Q (n))

onto some rectangle Q(M), Μ = MA, such that z ( ± wr) = ± iir and z(2n + m ± ϊπ) = Μ

± im. Let ζ = £(z) = £(z) + ir\(z) be the inverse of z = ζ(ζ). Then for each ε > 0 and

m > 0 there exists an η such that for \ y \ < π

\*\(iy)—y\< ε, \i\(M + iy) — y\<: ε, (2-2)

dt\(iy)

dy
— 1 dr\ (M + iy)

dy
— 1 < ε. (2.3)

PROOF. For a set Ε c C and a line or segment / c C, we will denote by E/l the set
which is symmetric to Ε with respect to /. We assume that η > \6π. Then by a
well-known inequality of Ahlfors (see [15], Chapter V, §6, Theorem 6.1), Re z(f) > η —
8ττ for i e / n . Consequently Jn = ζ(Ιη_&π) is a Jordan arc lying in Q(n) (with the
exception of its endpoints) and connecting the bases of Q(n). Again applying Ahlfors'
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inequality,^) we get that Re £ > η - 16π for ξ e /„. We put Q0(n) = £(Q(n - 8ττ)) and

note that

Q(n—Wn)czQ0(n)c:Q(n). (2.4)

Similarly, appealing to Ahlfors' inequality, we get that for 877 < χ < η — Sir,

Q(x-8ii)c=:l(Q(x))c=:Q(x + 8n). ( 2 · 5 )

We put

Qo(n) = Qo(n)U(Qo(n)/n,

Ω (η) = Q'o (η) LI (Q'o (η)/{ζ : η = — «}) II (Q'o (η)/{ζ : η = π}),

Q' (η) = ρ (n — 8n)U (Q (η — 8π)//),

ω (η) = Q' (η) Π «?' (η)/{ζ : η = - π}) U (Q' (η)/{ζ : η = π}),

i.e., ω(/ϊ) is a rectangle with vertices ± (n — 877) ± 3OT.

From the Riemann-Schwarz symmetry principle, it follows easily that the mapping

ζ = ζ(ζ) can be continued analytically to a one-to-one conformal mapping of ω(/ΐ) onto

Ω(ΑΖ). We take an arbitrary sequence {nj) of real numbers which approaches +00

monotonically and for which ηλ > 16ττ. We let ω/ = ω(«,) and Ων = Ώ(ηβ, and we let

£,= $j(z) be the corresponding mapping of ω/ onto Ω̂; it is the analytic continuation of

ζ = ζ(ζ) of the rectangle Q(MA) onto Δ = Δ(Λ,·, D(m)).

If we take (2.4) into account, it is easy to see that both sequences of regions, (ω,) and

(Ω7), converge to the same kernels in the sense of Caratheodory (see [10], Volume 2,

Chapter 5, §2.3), the strips ω(οο) = {ζ: \y\ < 3ττ) and Ω(οο) = {ζ: \η\ < 3ττ}. Since

Qj c Ω(οο), it follows by an application of the compactness principle that we can extract

from (£j(z)) a subsequence ($jk{z)) which converges uniformly on compact sets in ω(οο) to

a function ζ^ζ) which is analytic in co(oo) (the fact that each of the functions ^(z) is

defined only on a subset of ω(οο) does not preclude our conclusion; see [10], Volume 2,

Chapter 5, §2.3, proof of Caratheodory's theorem). By virtue of well-known theorems

^ ( z ) maps (0(00) conformally and univalently onto some region Ω,(οο) c Ω(οο). On the

other hand, it is easy to prove using (2.5) that ^(SQ) = So, and since ί^+οο) = + oo

and ζοο(±ΐττ) = ± iir, it follows that ζχ{ζ) =ζ. Consequently Ω,(οο) = Ω(οο), and the

sequence (£Jk(z)) converges to ζ^ζ) =ζ uniformly on compact sets. In particular we

have that

dlmXj (iy)

on /, since Oj(iy) = i Im ξ,(/>). Taking k sufficiently large, we can satisfy the first

inequalities in (2.2) and (2.3). In order to satisfy the second inequalities in (2.2) and (2.3),

we must use the fact that the intervals / and IM are completely equal in Lemma 1 and, if

necessary, choose an additional subsequence from (ξ, (z)).

REMARK. Following the pattern of the proof of a well-known theorem of Caratheodory

(see [10], Volume 2, Chapter 5, §2.3), it is possible to show that any sequence (ξ,(ζ))

converges uniformly on compact sets to the identity mapping. Hence it is possible to

deduce, in turn, that under the hypotheses of the lemma, (2.2) and (2.3) are satisfied for

all sufficiently large n. It is also clear that (2.2) follows from (2.3).

(')Ahlfors' inequality is usually stated for a conformal mapping of a curvilinear semistrip onto a rectilinear
semistrip, but an examination of the proof shows that it is applicable in both of our cases.
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LEMMA 2. Let η = λ(>>) be a continuously differentiable function on [ — IT, IT] which maps
this interval bijectively onto [ — π, π], and let

λ ( ± π ) = ± π , \K{y)—y\<e, \\'{y) — 11 < ε , \y\^n,

where 0 < ε < 1/2. Then the quasiconformal mapping of Q(\) onto Q(X) given by

(2.6)

or

Λα5 characteristic p(z) such that

/?(ζ)-1<ε(1+ΐ/5), e6Q(l). (2·8)

PROOF. It is well known (see, for example, [4], pp. 437-440) that

p{z) = Κ + VΚ2 - 1 ,

where

K=(E+G)/2J, E=(i'xy+(n'xy, G = U ; ) 2 + (TI;)*, / = ^ ; - δ ; η ; .

We consider the mapping (2.6), for example. For it,

A:-1 = {(λ' (y) -1) V + (λ (y) -y)2} /27 < 2ε2.

Hence we get

p—\ = γΚ—\ (Υ Κ —Λ + VT+~1) ^ ε V2 (/2? +

We pass directly to the proof of Theorem 3. According to Lemma 1 we can find
nj > 0 such that the function ζ = Zj(£) maps A(nj\ Dj(m.j)) conformally and univalently
onto the rectangle Q(Mj), z(± ίπ) = ±iir, zQnJ + m7 ± iif) = Mj ± iir, and its inverse
ζ = fa) satisfies (2.2) and (2.3) with ε = (7 + 1)~2, η(ζ) = η/ζ) and Μ = Mpj G N.
For (Ϊ̂ ·) we take an arbitrary sequence which approaches 00 and which satisfies the
conditions

1) v / >2 + /i5_1 + n°/> / > 2 , v 1 > n 5 + l ,

2) n/ = o(v/), /->oo, (2.9)

3) m/=o(vy), /->oo, (2.10)

4) M / = = o(v ; ) , /->oo. (2.11)

We show that (1̂ .) is the required sequence.
First of all, we construct a quasiconformal mapping w = ws(z) of the semistrip So

onto S = S{nj, Dj(m.j)}, where n} > vr To do this, we represent 5"0 and S as connections
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of pairwise disjoint Jordan quadrangles:

5 = Q (Πχ - η!) Π LPl (Δ {n\, Dx Κ ) ) ) U Lq%{Q (n2 - /£ - n\))

II ΙΛ (Δ ( η · , D2 (m2))) U · · · LI Z ^ (0 (nk ~ nU ~ n%)

Π LPk (Δ « Dk (mk))) Π { j

where / > , = « , - /if, Pk = qk + nk - n°k_x - /i°, ^ = Λ _ , + / η Λ + 2«°, A: = 2, 3, . . . ,

and

5 0 = Q (n, - n\) U L. (Q {Mx)) U L. (Q (n2 - n\ ~ n°2))
1 V 2

U Lp. (Q (M2)) U •••ULq.(Q (nk - n%.x - n\)) U Lp. (Q (Mk)) U . . . ,

where/?,1 = nx - n°x,p'k = q'k + nk - 4_x - n°k, q'k = p'k_x + Mk, k = 2, 3, . . . .

We put

ws (z) = LPk (ξ, (L . (z))) for ζ 6 L. (Q (Mk)), k 6 N. (2.12)

Thus

ws(L-(Q
k

= LPk (Δ («o, Dk

and the mapping ws(z) is conformal and univalent in Lp,(Q(Mk)), i t £ N . For ζ G
Lq>k(Q(nk — nk_x — rfy), k = 2, 3, . . . , we define w5(z) in the following way:

ζ 6

' + 1 ( Q ( n * - n i - i - f l * - 2 ) ) , (2.13),
&

l^— nk)),

where $k (z) is defined in accordance with (2.7), where we take λ(>>) to be
Tfc_i(A/*_i + iy), and ^+(^) is defined in accordance with (2.6), where we take \(y) to
be y\k{iy). It is not difficult to verify that the ws(z) defined in (2.13) is continuous in

and maps this rectangle onto

and the mapping is conformal in

and quasiformal in

The characteristic of the quasiconformal mapping in these rectangles satisfies the

—«A-i-n* —2))
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relations

ρ (ζ) - 1 < /Γ2 (1 + V 5), 26 L' (Q (1)), (2.14)

ρ (ζ) - 1 < (fc + l p (1 + V% 26 1 , ^ (Q (1)), (2-15)

which can be seen if we take into account (2.8) and the choice of ε in the definition of

£y(z). For ζ Ε Q(nx - n^) we define ws(z) thus:

Z, 2 6 Q ( / l l _ „ ; _ ! ) ,
_ (2.16)

where ^,+ (ζ) is defined in accordance with (2.6), where we take X(y) to be λ(>>) =

As before, we get that (2.15) is satisfied for k = 1.

The function w = w s(z) defined by (2.12), (2.13), and (2.16) maps the semistrip SQ

conformally onto the semistrip S = S{rij, Dj(mj)} in the w-plane, and by virtue of (2.14)

and (2.15),

^{p(z)~ \}dxdy <4it(l +1/5)2 (k+\)~*<yo. (2.17)

Taking (2.9), (2.10), and (2.11) into account, we get that for k —» oo

ρ*=Ση/

<7*n = Σ η/ -[

fe fe-1

ΖΛ ' ~ ZJ
7 = 1 7 = 1

fe ft

+

k

-I

M,

M,

k-l

7 = 1

— 2

1j — "ft =

+ - : - ( »

/ = 1

fe

(1

+

+

= (

= (

o(i» Σ

fe

i + o(i);

l+o( l ) )

»/.

fe

/=1

fe

• Σ »/·

(2.18)

(2.19)

(2.20)

/ = 1 7 = 1 7 = 1 7 = 1

From (2.12) it follows that for p'k < χ < q'k+l we have

From (2.18)-(2.21) we get that

oo
Raws(x + iy)/x -> 1 for x-v oc, x ^ U \Pk, <7*+i], (2-22)

uniformly in _y. But if q'k < χ < /?̂ , then by virtue of (2.13), (2.19), and (2.21) we have

Re ws (x + iy) = qk — q'k +
 x = = 0 (<$ + x = (1 + ο (1)) Λ;, k -> oo. (2.23)

From (2.22) and (2.23) it follows that

lim Re o>s (x + iy)fx = 1, (2.24)

where the limit is uniform with respect to>\
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Since the mapping £s: S0-*S is conformal, it follows that £fl(ws(z)) maps So

quasiconformally onto itself; in addition, the points ± iir and oo are invariant under this
transformation, and (2.17) is satisfied. According to a simple consequence (see [16],
Lemma 2) of a well-known theorem of Teichmiiller and Belinskii ([17], Theorem 12),

is1 (ws {x + iy)) --= X + iy + λ + o(\), x^ + oo,

where λ is some real number and o(l) approaches 0 uniformly with respect to>>. From
(2.25) and (2.24) we get that

is(x 4- iy) = ws(x + iy — h + o (l)), χ -> 4- °°,

= (14-0(1))*, x-^4-00,
i.e., (2.1).

COROLLARY. Under the hypotheses of Theorem 3,

Re 2s (ζ) = (1 4" ο (1)) Re ζ, Re£-->-4~00» ζ 6 S, (2.27)

where o(l) approaches 0 uniformly with respect to η = Im £, ζ €Ξ S.

LEMMA 3. Let a semistrip S = S{nj, Dj(mj)} which intersects each line {z: Re z = const
> 0} in an interval of length < 1m be given. Let a and β be any numbers such that
— ΐΓ<α<β<ιτ. Denote the image of the region S0(a, β) = So Π {z: a <y < β} under
the mapping w = exp ζ8(ζ) by E(a, β). Then there exists a sequence (t>f) of positive
numbers such that, for any semistrip S with n. > vj, except (2.1), we have the following
property. There exists in E(a, β) a locally rectifiable curve C connecting a point on the
circle {w: \w\ = 1} with oo such that:

1) j|ay|-2 |^l<oo, (2.28)
c

2) there exists an R such that, for any w0 G C, |wo| > R, we have that {w: \w — wo\ <
l)cE(a,fi).

PROOF. Let a < ax < β1 < β, and let E\av /?,) be the image in the w-plane of
S0(a{, /?,) under the mapping w = exp ws(z), where the quasiconformal mapping ws:
So-+ S is defined as in the proof of Theorem 3. We also retain here all of the other
notation introduced in the proof of Theorem 3. We denote the image of the segment

under the mapping ζ = ζ^ζ) by yjy and the image of {z: 0 < Λ: < MJty = a,, /?,} under
the same mapping by yj. Let dj be the distance from χ, to yj, let

and let 1(γβ be the length of γ,. We choose vj > Vj so large that for any «y > vf

/6N, (2.29)

/6Ν. (2.30)
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It is obvious that (2.1) is satisfied for the semistrip S. We show how to construct a curve
C with the properties 1) and 2). Let

let C be the image of J under the mapping w = exp ws(z), and let J' be the image of J
under the mapping ζ = ws(z). If

then, as is not difficult to see,

{ζ: |Re (ζ - Q I < κ,·, | Im ( ζ - ζ0) | < κ,·} C S (a l f β,), (2.31)

where S{ax, βχ) is the image of S0(ax, βχ) under the mapping ζ = ws(z). Let vv0 = exp ζ0;
then

V (1, w0) = {w : 1 w — wQ | < 1} c {^ : 1 w0\ e~%> < | w \ < 1 w0\ e">, 2 3 2 )

| arg w — arg w01 < κ /} c Ε1 (αχ, βχ).

The first of the inclusions in (2.32) follows from (2.30), since

\wo\e"i —\wo\>\wo\—\wQ\e~x> > e?i ~χ{\—β~ηΐ) > e p r s

X / > 4

and

The second inclusion in (2.32) follows from (2.31). If

ζο6 r n L,/+1 (Q (n, - n j - χ - n) - 2)), / > 2,

then

and t/(l, w>0) c E\ax, βλ) for all sufficiently large/ Thus for all w0 Ε C, |wo| > Rx, we

have (7(1, w0) c ^Vi» ^i)· B y v i r t u e o f ( 2 · 2 6) t h e r e e x i s t s R > Ri + l s u c h t h a t

{w: \w\^R—\}nEl{au β,) c£(a, β),

so 2) holds for C
We show that (2.28) is fulfilled. We have

w \ 2\dw\

(2.33)
00

It is easy to see that

00 OO
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On the other hand,

j \w\~2\dw\>e~pi j | din a; |

J (2.35)
~Pf {'

j

by virtue of (2.29). Then (2.28) follows from (2.33), (2.34), and (2.35).
In general, the curve C constructed in this way is contained in E(a, β) only from some

point on. It is clear how to modify its definition so that 1) and 2) are satisfied and
C c E(a, β). This proves Lemma 3.

We now prove the principal theorem of this section.

THEOREM 4. For each p, 1/2 < ρ < oo, there exists an entire function f of order ρ for
which 0 is an asymptotic value, but there exists no asymptotic curve Γ with the property
(0.1) on which f approaches 0.

PROOF. Let 1/2 < ρ < oo, and let ε be a number such that

2 \ 2p / 2p

We construct a semistrip S — S{nj, Dj(mj)} for which

where Df is a parallelogram with vertices at ±πί and 1/2 + (2yV ± ττ)/, Z)y

+ =
Dj~/{ζ: χ = 1/2), and the sequence Λ, is chosen so that (2.1) is fulfilled and so that
Lemma 3 holds both with

~~ 2p 8 ' I ' 2p *

and with

a" = — min
'2p J ' 2p

We denote the image of So under the mapping w = exp ζΞ(ζ) by E. It is easy to see
that Ε is the region {w: 1 < |w| < oo} with a cut along some curve L which connects
w = -1 with w = oo. Let φ(>ν) = ^(ln w), where we choose a single-valued branch of
In w such that In 1 = 0. We draw curves C and C" in Ε which have the properties of
the curve C in Lemma 3 and which correspond to the choice a = α', β = β' and the
choice a = α", β — β", respectively. Let Co be the arc of the unit circle which connects
the ends of the curves C and C" lying on the unit circle and which does not go through
w = - 1 . The curve C" + Co + C divides the finite w-plane into two regions; we denote
the one which contains w = 0 by E~ and the other one by E+.

We put Φ(>ν) = exp εχρ(ρφ(νν)). If w Ε Ε(α', β') υ Ε(α", β"), then

— + ε < I Im φ (w) \ < — — ε. (2.36)
2p 2p
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From (2.27) it follows that

Re<p(o>) = , iw->-oo, (2.37)

From (2.36) and (2.37) it follows that for w G E(a', β') υ Ε(α", β"), and all the more so

for w G dE~,

(2.38)1Φ (w) | ^ exp {— sin (ρε) | w \^°W)P), w-+oo.

Taking (2.28) into account, we get that the Cauchy integral

1

2πί
(2.39)

converges absolutely for w & dE and defines analytic functions/_(w) in Ε and/+(w)

in Ε + . It is possible to show by standard methods ([18], Chapter II, §1, Example 4; [4],

pp. 242-243) that/_(w) can be continued analytically as an entire function/to C, and

f(w)

We show that

/_ (w) = 0 (— | , w • ~> ex», w 6 Ε ,

w

From (2.28) and (2.38) it follows that

dE-

We write (w G EJ)

From (2.43) it follows that

w 2ni

, M , . 1 1 f τΦ(τ) ,
Φ(τ)ίίτΗ Γ \ — K — d x .

dE-

2πί
Φ (τ) dx

w 2πί J τ — w
dE-

κ.
dE~

If w G E~ and dist(w, dE~) > 1/2, then we get easily from (2.43) that

1 Γ τΦ (τ)

2ni J τ — w
dE~

άτ 2/C.

I f w £ £ " and dist(w, dE~) < 1/2, then

2πΐ J τ —to 2m J

— f
2πι J

τΦ(τ)

τ — w 2πΐ J τ — to

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

-d(E+\C(w))
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where C(w) = (τ: |τ - w\ < 1/2). If |w| > R, where R is defined as in Lemma 3, then
C(w) c E(a', β') υ £ ( α " , β"). From (2.43), (2.38), and (2.47) we get that for
dist(w, dE~) < 1/2, |w| > R,

— f
2ni J

τΦ(τ)
άτ

τ'—w
dE~

2K + 2max{| τΦ (τ) | : τ£ C (w)) = 2/C + ο (1), α;-*: οο.

(2.48)
Then (2.41) follows from (2.44), (2.45), (2.46), and (2.48). The proof of (2.42) is similar.
From (2.40), (2.41), and (2.42) it follows that

0 I—) , w->oo, w&E+,
[w * (2.49)

0 (—) + Φ (w), w-+oo,we E+.
\w J

It follows immediately from (2.49) that 0 is an asymptotic value of/.
If / is the curve w = w(t) = exp £s(t), 0 < t < oo, then φ(>ν(0) Ξ /, and <&(w(t)) =

exp exp(pO- Since / c E, if we take into account our choice of the regions Dj{\) and the
form of S and E, which depends on it, we arrive at the conclusion that, for any
asymptotic curve Γ on which / approaches 0,

/ (/i+\ Γ) > / (ei+\ Γ) - / (/', Γ) > 2rt/y2 (/ - 1), / > /Ό,

whence it follows immediately that (0.1) is not fulfilled for Γ.

It remains to determine the order of/. It is clear that

In In Μ (r, f) ^ 0 ( 1 ) -f In In max {| Φ (ay) | : |a>| = r, w£E+}

^ 0 (1) -f Ρ max { Re φ (w): \ w | = r, w 6 E+}

= O(l) + pmax{Rezs(Q :ReC«= lnr, ζ65}.

By virtue of (2.27) we have

l n l n A f ( r , f X ( l + o ( l ) ) p l n r , r-^oo. (2.50)

On the other hand, if w = w(i), 0 < t < oo, is a parametric representation of /, then

O(l) + lnln |0(B;(O)| = p/ + O(l) ( 2 5 1 )

= ( l+o( l ) )p ln |a/(/) | , t->oc,

since ln|w(/)| = Re £s(t) = (1 + o(t))t as / -> oo, by virtue of (2.1). From (2.50) and
(2.51) it follows that

l n l n A i ( r , / ) ~ p l n r , r-^oo, (2.52)

i.e., the order and the lower order of / are equal to p. Thus we have constructed the
required example for 1/2 < ρ < oo.

We pass to the case ρ = 1/2. We will need certain more complex arguments which
would have been valid also for 1/2 < ρ < oo with small additions. In order to avoid
burdening the proof, we will use certain geometrically obvious facts without formal
proof.

We take a semistrip S = S{np Dj(mj)} for which
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where D~ is a parallelogram with vertices at ±iri and 1/3 + (2jir ± ir)i, Dj+ =

Dj~~/{ζ: χ = 1/2), and Qj is a rectangle with vertices at 1/3 + (lirj ± ir)i and 2/3 +

(277/ ± TT)/. We define the set E, the curve L, and the analytic function φ(νν) = zs(ln w)

in Ε as above. Let the sequence (nj) be chosen so that (2.1) is satisfied and

l{r, L) = O(r2), r-»oo. (2.53)

The function Φ ν̂ν) = exp exp{q?(w)/2} is analytic in E,

In | Φ^α;) | = exp j — R e zs (In w) V cos 1— Im zs (In w)\ > 0

in £", and ΙηΙΦ ν̂ν)! = 0 on L.

We put U(r, w0) = {w: \w — wo| < r}. We choose the points b£, b + , bf, — 1, Z>f, 6~,

and Z>2~ on the arc {w: \w\ = 1, Re w < 0} so that they are encountered in that order as

we traverse the arc in a counterclockwise direction, and we let C2

+, C + , C*, L, Cf,

C ", and Cf be pairwise disjoint curves in C which connect these points, respectively,

with w = oo. The curve L is determined by S, and the curves C2

+, C + , Cj+, C,~, C~,

and C2~ can be drawn so that

dist (ay, L) < 0.51 w \~\ w£Cf, (2-54)

dist (w, Cf)>0, Ι^Γ2, © e C * . | t a > | > / ? 0 > 3 , / = 1, 2, (2.55)

/(r, 0 ^ = 0 ( 0 , r — oo, (2.56)

length (Cf Π 1/ (2, w0)) < 8, ^ 0 6 C*. / = 1, 2. (2.57)

We denote by G2 (by G, by Gj) that region which contains L: L c Gx c G c G2, and

which is bounded by the curves C£ (the curves C ±, the curves C^) and the shortest arc

of the unit circle connecting b^ (b±, Z>f).

From (2.1) it follows that 1η|Φ,(νν)| < |w| 1 / 2 + o ( 1 ) for w -> oo, w G £. Consequently

there exists a positive constant A such that for any vv0 e L, |wo| > 1, and w e £ π

1/(1, w0)

Re exp | - i φ {w)\ <^A{\wo\+ \)"u. (2.58)

In our case it follows from (2.54) that

dist(tw, L ) < 0 . 5 | ^ | ~ 2 , w^Gz. (2.59)

If w0 Ε L and \wo\ > 2, then the curve L divides the disc U(\, w0) into two regions in

each of which the analytic function

ψ (w) = Φ, (ay) exp {—A( \wo\ + ψ*}

satisfies the inequality |Ψ(Η>)| < 1 (by virtue of (2.58)), and at boundary points of these

regions which lie in U(\, w0) we have

Therefore by a well-known theorem of Milloux (see [19], Chapter VIII, §4, Theorem 6),

In 1Ψ (w) | < - i- arc sin /I-\«> - ">o |\ A(\w0\ + \)η\
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whence

In Ι Φχ (w) I < A (I w0I + l)v< ( l - i - arc sin '

( 2 . 6 0 )

— | w — a>01 π

From (2.59) we get that for w e G2 and jwj > /?, there exists w0 e L η ί/(1, νν0) such
that dist(>v, L) < |wo |~2. Together with (2.60), this gives

In IΦι (α>) Ι < — (ΚΙ + l ) v * Κ Γ 1 (1 - \wQIT1,
JX

i.e., Φ/w) is bounded in G2 η £", and consequently

on C151, C^, and C2

±.

We put G' = G υ ί/(2, 0) and

φ,(») = — Γ Φ ι ( τ )

2 2 m J τ4 (τ —
dG

This Cauchy integral converges absolutely, since

) —
w)

l- f |Φι(τ)||τρ|έίτ|<^ΐ. Γ | τ[*\άτ\< οο (2.62)
Λ J 2Jt J2n

d'G' dG'

by virtue of (2.56). If we continue Φ2(Η>) analytically from G' into C, we get (see (2.40))

the entire function /:

Ό (ΰϋ) -ί- Φι to) £2J 4

It remains to show that

(see (2.41) and (2.42)); then we get

, , $ (2.63)

W' (2.64)

\w J λ ' ->°°, w% ,

and the treatment of this example is concluded just as in the case 1/2 < ρ < oo, using

(2.64) instead of (2.49). In order to prove (2.63), we write (see (2.44))

φ (W) = — 1 J _ Γ φ (τ) τ ~
4 άτ + - — Γ Φ ι ( τ ) τ " 3 άτ. (2.65)

The boundedness of the integrals in (2.65) can be proved from (2.61) and (2.62) in

roughly the same way as the boundedness of the integrals in (2.44). We consider, for

example, the second integral in (2.65). If dist(w, dG') > 1, then,by virtue of (2.56),
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ω
2πί J τ3 (τ —ay)

dG'

άτ

dG'

If dist(w, dG') < 1, w £ G and |w| > Ko + 1, then, letting

Ci"(ta>) = {G'\ t/(1 , W)}\JGU r(ny) = dG"

we get

J_fJ5d3
2πί J τ3 (τ —

dG'

w)

Φι (τ)

2πι J τ3 (τ — ay)
dG"(w)

άτ

(2.66)

1 Γ Φι (τ

2πΐ J τ3 (τ —
T{w)

w -> οο, ro^

w)

Here we have used (2.66) as well as (2.55) and (2.57) withy = 1. If dist(w, dG') < 1,

w G G and |w| > Ro + 1, then instead of G"(w) we choose

, w)f]G2)

and rely on (2.55) and (2.57) withy = 2.

Thus we have constructed the required examples for 1/2 < ρ < οο. We note that in

these examples (0.1) is also not satisfied for asymptotic curves on which / approaches oo.

By comparing with Theorem 2 (for 1/2 < ρ < oo) we get additional information: for the

functions we have constructed, the lower order is equal to the order (see (2.52)).

For ρ = oo, we argue in exactly the same way as in the corresponding case in the

proof of Theorem 2, except that we choose the entire function/ not only to be bounded

but also to approach 0 on γ.

§3

For the definition of 9(r,f), see the Introduction. If £ c [0, oo) is a locally measura-

ble set, and mes Ε denotes the linear measure of E, then the upper density D*(E) is

defined by

D* (E) = Urn" — mes (£Π[0, r]).
r-oo r

THEOREM 5. For any function <p(r) which approaches +oo as r -* +oo , there exist an

entire function f satisfying (0.4) and two subsets

k=i k=i

such that

Q(r, f)->O for r-voo, r£E'\jE", (3.1)

| f ( 2 ) | < l for \z\£E', Rez^tO and for \z\£E'' Rez^O, (3-2)

T{r,f)=o(\nM(r,f)) for r-+oo, r£Ef\jE". (3.3)

There also exist an entire function f of order p, 0 < ρ < oo, and sets E' and E" of the form

described above for which (3.1)—(3.3) are satisfied.

The proof is the same as the proofs of Theorems 1 and 2, except that we take for the
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Tk not curves, as in §1, but sets

Vta.1 = {z: 2 ^ | z | < 2 « + 1, | arg ζ | </ιπ/(/ι + 1)},

T2n = {z:2<^\z\^2n + 2, \argz — π\<ηπ/(η + 1)}, «€N,

and instead of rk+x < rk/3 we require that rk+l < rk/(k + 2). The relation (2.3) follows
from (3.1), since

T(r, / )<Θ(Γ, f)ln+M(r, f),

For 1/2 < ρ < oo it is possible to repeat the proof of Theorem 4 taking

Dj (my) = Dj (i + 2) = Q (1) U <?/ Π £/« (Q (1)),

where

Q2n-i={z: \<x<2n, —

Q2n={z: l<x<2n+\y

In this case, (2.52) will be satisfied, in addition.
We did not mention the case ρ = oo in Theorem 5, since for ρ = oo it is easy to find

appropriate examples, and even well-known examples, of entire functions with properties
which are, in a certain sense, stronger; for example, E(z + 2πϊ), where E(z) is the
Mittag-Leffler function (see [15], Chapter VI, §4) or the functions in [20] (Part IV,
Chapter 3, §3).

We note that it follows from the hypotheses ak = o(b'k) and ak = o(bk) as k —» oo in
Theorem 5 that D*(E') = D*(E") = D*(E' υ Ε") = 1. As was mentioned in the
Introduction, Theorem 5 improves one of the results of [7]. Theorem 5 also improves a
result of Piranian [21] which asserts the existence of an entire function / with property
(0.4) such that on every ray issuing from ζ = 0 there exists an infinite sequence of
pairwise disjoint segments of length 1 on which \f(z)\ < 1. Finally, Theorem 5 improves
a result of Paley [22] which asserts the existence of an entire function of .arbitrary order
p, 0 < ρ < oo, for which (3.3) is satisfied for some sequence (rk), rk -> oo.

None of the properties (3.1), (3.2) or (3.3) can hold for an entire function/ which
satisfies (0.3). This remark has already been made in the Introduction about (3.1). From
a result of Valiron (see [6], pp. 133-136) it follows easily that for entire functions which
satisfy (0.3) we always have that T{r, f) ~ In M(r, f) as r -> oo. A weaker property than
(3.2) given in the example of Piranian is already inconsistent with (0.3). In fact, Hayman
[3] has shown that it follows from (0.3) that the sets {r > 1: \f(rew)\ < 1} are bounded
for almost all θ G [0, 2π] and have finite logarithmic length for all θ e [0, 2π].

In conclusion we discuss one more question related to the form of asymptotic curves.
It is well known that there exist entire functions / of finite order for which it is possible
to construct an asymptotic curve on which / approaches α φ oo such that all α-points of
/ lie on this curve, and there exist entire functions such that on each asymptotic curve
with asymptotic value a there lie at most a finite number of α-points. The canonical
Weierstrass product

oo

/(ζ) = Π E (Zk~1/P> [PV>
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provides an example of the first type if tg ρττ > 0 and of the second type if tg ρπ < 0
(see [23], Chapter II). The problems become considerably more complex if we take into
account several asymptotic values simultaneously. We quote a problem of Winkler (see
[2], Problem 2.42).

"Let /(z) be an entire function (of sufficiently high order) with η (> 2) different
asymptotic values ak. Suppose that yk is a path such that/(z) —> ak (z —» oo, ζ Ε yk). Let
n(r, ak, yk) be the number of zeros of /(z) — ak on yk and in \z\ < r. Can we find a
function /(z) such that

η ( Γ α Ύ } ftfe>0 as r->oo, (3.4)
n(r,ak)

for h = 1, 2, . . . , « ? Can we take bk = 1?"
We give here an affirmative answer to the first question; the second remains open.
We consider the entire function

ζ

/ \^y = = \ τ̂>> 1 = = ·"> "» · · · ·

0 *

It is easy to verify that

f(ze^) = e~^f(z), * = 0, 1, . . . . 2/1-1 . (3.5)

The functions/(z) and/'(z) = z~n sin ζ" are of order ρ and of normal type. Let yk be
the ray {r exp(i7rk/n): 0 < r < oo}, 0 < k < 2n — 1. It is easy to see that the ray γ 0 is
an asymptotic curve which corresponds to the asymptotic value

= \ x~n sin xn dx = r cos — Γ ~~

(see, for example, [24], No. 710). From (3.5) we get that / approaches ak = aoe
mk/n,

k = 0, 1, . . . , In — 1, on the asymptotic curve yfc. We fix the value of φ, 0 < φ < π/η.
Then

ei(ni)(p

f (rei<p) = — fn {exp (if cos ηφ — f sin
J l J

0
—exp (— if cos rap + f sin /ιφ)} di

β-/(η-ι)φ r

= 0(1) — — - — fn exp (— i f cos rap + f" sin rap) dt

2
ρ ( ) φ 2

= 0(1) — - 1 - ^ τ n exp (— ixeirv») dx

= — (1 + ο (1)) — (r^Y~2n exp (— irV^), r -> ĉ c,

where the last equality is obtained after integrating the preceding integral twice by parts.
Hence we find that (0 < ψ < ·η / ή)

In I / (re**) \ — rn sin rap, r -> oo. (3.6)
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Hence /has completely regular growth in the angie (ζ: Ο < arg ζ <π/η) in the sense of
Levin and Pfluger [23]. Using (3.5), (3.6) and the results of [23] (Chapter III, §1), we get
that / is a function of completely regular growth with indicator Λ(φ, f) = |sin ηφ\,
φ e [0, 2π]. Since the indicator A(<p,/) is positive on [0, 2π] except at a finite number of
points, it follows that f — ak has completely regular growth and that

Λ (φ, / — flte) = I sin /ΐφ |v q>€[0,2rt]f k = 0, 1, ; . . , 2n— 1. (3.7)

Using a well-known formula (see [23], Chapter IV, §1, proof of Theorem 3) and (3.7), we
get

We put Xj = (77

Furthermore,

lim
r-»oo

i)x/nJ =

η (r, ak)

0, 1, . . .

ιν+ι), / I

2π

. It is

; % + 2 )

0

easy

< /

>Ψ> /

to see

(*2V+l),

that

ν = o,

2n

1,2, . . . .

'r1 X'r1 Z1'11 sin
J

Then
oo

a0 = lim / (xj) = 5] {/ (Jf/«) — / (*/)},
' /=0

where the alternating convergent series satisfies the hypotheses of Leibniz' theorem.
Then a0 > f(x2v) and a0 <f(x2v+\)> ν = 0, 1, . . . . Taking into account the fact that
f'(x) Φ 0 in (Xj, xJ+l), we get that / has exactly one a0-point of the first order in each
interval (Xj, xj+ x),j = 0, 1, 2, . . . . Now we easily find that n(r, a0, y0) — r"/π as r —» oo.
Taking (3.5) into account, we get that

η (r, ak, yk) ~ rn/n, k = 0, 1, . . . , 2/2 — 1. (3.9)

Then (3.4) with bk = l/2/i, k = 0, 1, . . . , In - 1, follows from (3.8) and (3.9).

Received 20/SEPT/77
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