
SPECTRAL INCLUSION AND ANALYTIC CONTINUATION

A. ATZMON, A. EREMENKO and M. SODIN

Introduction

Let a be an element in a complex Banach algebra with unit, and let r be a
nonnegative number. The Gelfand spectral radius formula implies that the spectrum
of a is included in the disk {z ∈ C : |z| 6 r} if and only if

lim
n→∞‖a

n‖1/n 6 r.

Problem 1. Is there a similar criterion for spectral inclusion into other compact
sets?

In this paper we prove that for every compact set K ⊂ C with connected
complement, there exists a sequence {Pn}∞n=0 of monic polynomials with degPn = n,
and a nonnegative number r, such that the spectrum of a is included in K if and
only if

lim sup
n→∞

‖Pn(a)‖1/n 6 r. (1)

As shown in Section 2, the condition that the complement of K is connected is also
necessary for existence of such a sequence of polynomials.

We also obtain a solution to the following more general problem.

Problem 2. Given an analytic germ f(z) =
∑∞

k=0 fkz
−k−1 at ∞ with values in a

Banach space, and a domain Ω ∈ C̄ such that ∞ ∈ Ω, Ω 6= C̄, determine whether f
has analytic continuation to Ω.

By this we mean that f can be analytically continued along every path in Ω
starting at ∞.

We prove that for every such domain Ω there exists a sequence of monic
polynomials Pn(z) =

∑n
j=0 p

(n)
j z

j , degPn = n, and a number r > 0, such that f has
analytic continuation into Ω if and only if

lim sup
n→∞

∥∥∥∥∥∥
n∑
j=0

p
(n)
j fj

∥∥∥∥∥∥
1/n

6 r. (2)
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For Ω simply connected and f complex-valued, this result was proved by Havin
[3, 4] with {Pn}∞n=0 being the sequence of Faber polynomials associated with K =
C̄ \ Ω, and r the logarithmic capacity of K .

In Section 1 we state and prove our main results. Since the construction of
the polynomials which yield the solutions to these problems depends on the uni-
formization theorem, it is desirable to find more explicit constructions. This issue is
discussed in Section 2, where we give simple conditions for a sequence of polynomials
to determine spectral inclusion.

Throughout this paper, K will denote a non-empty compact set in C with
connected complement, and the domain C̄ \ K will be denoted by Ω. For r > 0,
we shall denote ∆r = {z ∈ C̄ : |z| > r}. In what follows, A will denote a complex
Banach algebra with unit e, and the spectrum of an element a in A will be denoted
by σ(a).

1. Main results

Let ψ be a formal Laurent series over C of the form

ψ = z +

∞∑
j=0

ψjz
−j . (3)

A straightforward computation shows that for every w ∈ C,

(ψ − w)−1 =

∞∑
n=0

Pn(w)z−n−1, (4)

where the sequence Pn(w) is determined recursively by the equations P0(w) = 1,
P1(w) = w − ψ0 and

Pn(w) = (w − ψ0)Pn−1(w)−
n−2∑
j=0

ψn−j−1Pj(w), n > 2.

These equations show that Pn is a monic polynomial of degree n. The sequence
{Pn}∞n=0 will be called, in the sequel, the standard sequence of polynomials associated
with ψ.

The compositional inverse ϕ of ψ is a formal Laurent series of the form

ϕ = w +

∞∑
j=0

ϕjw
−j . (5)

One can show that for n = 0, 1, . . . ,

(n+ 1)−1
(
ϕn+1

)′
= Pn(w) + O(w−2), (6)

where O(w−2) stands for a formal Laurent series of the form
∑∞

j=2 bjw
−j .

Equation (6) yields an alternative definition of the sequence of standard polyno-
mials associated with ψ. We recall that the Faber polynomials Fn associated with ψ
[5, Section 18] are defined by the equation

ψ′ (ψ − w)−1 =

∞∑
n=0

Fn(w)z−n−1, (7)
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or alternatively by the equation

ϕn(w) = Fn(w) + O(w−1), n = 0, 1, . . . . (8)

It follows from (6) and (8) that

F ′n = nPn−1, n = 0, 1, . . . . (9)

By the uniformization theorem (a simple proof for the special case of domains
in C̄ is given in [1, Chapter VI, §1]), there exists a unique number r(K) > 0, and a
unique normalized universal covering ψK : ∆r(K) → Ω which has a Laurent expansion
of the form (3) at infinity. The sequence of standard polynomials associated with
this Laurent series will be denoted by {PK

n }∞n=0, and the corresponding sequence of
Faber polynomials will be denoted by {FKn }∞n=0.

The constant r(K) vanishes if and only if K consists of one or two points.
If Ω is simply connected, that is, K is connected, then r(K) coincides with the
logarithmic capacity c(K). If K is disconnected and contains more than two points,
then r(K) > c(K).

Examples. (i) If K is a disk of radius r centred at z0, then ψK (z) = z + z0,
r(K) = r and

PK
n (z) = FKn (z) = (z − z0)n.

(ii) If K = [−1, 1], then ψK (z) = z + 1/(4z), r(K) = 1/2,

PK
n (cos t) =

sin(n+ 1)t

2n sin t

and

FKn (cos t) = 2−n+1 cos nt.

These are the monic Chebyshev polynomials of the second and the first kind,
respectively.

(iii) If K = {−i, i}, then ψK (z) = cot(1/z), r(K) = 0,

PK
n (cotw) =

(−1)n

(n+ 1)! (1 + cot2 w)

dn+1

dwn+1
(cotw)

and

FKn (cotw) =
(−1)n−1

(n− 1)!

dn−1

dwn−1
(cotw).

Our main results are as follows.

Theorem 1. If a ∈ A, then σ(a) ⊂ K if and only if (1) holds with Pn = PK
n and

r = r(K).

Theorem 2. Let f(z) =
∑∞

k=0 fkz
−k−1 be an analytic germ at ∞ with values in

a Banach space. Then f has analytic continuation to Ω if and only if (2) holds with
Pn = PK

n and r = r(K).

Taking f in Theorem 2 to be the resolvent of an element a ∈ A, we obtain
Theorem 1. However, we start with an independent proof which applies also in a
more general case (see Remark (i) below).
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Proof of Theorem 1. Let r0 > r be such that |ψK (z)| > ‖a‖, for |z| > r0. Since
the resolvent z 7→ Ra(z) = (ze − a)−1 is a holomorphic A-valued function in ∆‖a‖
which vanishes at infinity, the function F = Ra ◦ ψK is a holomorphic A-valued
function which vanishes at infinity, and by (4), its Laurent expansion in ∆r0 is
given by

F(z) =

∞∑
n=0

PK
n (a)z−n−1, z ∈ ∆r0 . (10)

If σ(a) ⊂ K , then Ra is holomorphic in Ω, and therefore F(z) is holomorphic
in ∆r(K). Hence the series in (10) converges also in that domain. Thus, by the
Cauchy–Hadamard theorem, we obtain that (1) is satisfied.

Conversely, assume that condition (1) holds. Then it follows from (10) that F
has a holomorphic extension F1 onto ∆r(K). By the permanence principle, we obtain
from (10) that

(ψK (z)e− a)F1(z) = F1(z)(ψK (z)e− a) = e

holds for every z in the domain ∆′ = {z ∈ ∆r(K) : ψK (z) 6= ∞}. This implies that

C \K = ψK (∆′) ⊂ C \ σ(a),

and the proof is complete.

Remarks. (i) It follows from the proof given above that if ψ is a meromorphic
function in ∆r , r > 0, which maps ∆r onto Ω, and which has Laurent expansion
near infinity of the form (3), and if {Pn}∞n=0 is the standard sequence of polynomials
associated with ψ, then σ(a) ⊂ K if and only if (1) holds.

(ii) If Ω is the unbounded component of the resolvent set of a, then (10) gives
the Taylor series expansion of the resolvent on the universal covering of Ω. This
might be useful in spectral theory.

(iii) For K = [−1, 1],

lim sup
n→∞

|PK
n (0)|1/n = 1/2 and lim inf

n→∞ |P
K
n (0)|1/n = 0.

This shows that the upper limit in Theorem 1 cannot be replaced in general by a
limit, even for the zero element in a Banach algebra.

Proof of Theorem 2. It follows from the monodromy theorem that f has an-
alytic continuation to Ω if and only if the function g = f ◦ ψK has holomorphic
extension to ∆r(K). Assume that the Laurent expansion of g at infinity is given by
g(z) =

∑∞
n=0 gnz

−n−1, and denote by u the identity function on C, and by ϕK the
compositional inverse of ψK . Applying the residue theorem, changing variables and
using (6), we obtain that for every nonnegative integer n,

gn = −res∞[ung]

= −res∞[un(f ◦ ψK )]

= −res∞[ϕnKϕ
′
Kf]

= −(n+ 1)−1res∞[(ϕn+1
K )′f]

= −res∞[PK
n f] =

n∑
j=0

p
(n)
j fj ,

and this implies the desired conclusion, by the Cauchy–Hadamard formula.
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Remarks. (i) Havin’s theorem mentioned in the introduction is proved in [7,
Chapter II, §1] along the same lines as our proof of Theorem 2. However, for
disconnected K , one cannot replace in Theorems 1 and 2 the polynomials PK

n by
the Faber polynomials FKn . To see this, we recall that the Faber polynomials FKn are
defined by equation (7). If K is disconnected, then ψK has infinitely many poles. Let
z0 ∈ ∆r(K) be the pole with largest absolute value, |z0| = r0. Taking in (7) A = C and
a ∈ K , we conclude from the Cauchy–Hadamard formula that

lim sup
n→∞

|FKn (a)|1/n = r0 > r(K).

On the other hand, σ(a) = {a}, so by Theorem 1,

lim sup
n→∞

|PK
n (a)|1/n 6 r(K).

(ii) One can show that in Theorem 2 the standard polynomials can be replaced
by the polynomials FKn (w)− FKn (w0), where w0 is an arbitrary point in K .

(iii) In Theorem 2, the assumption that the germ f is analytic at infinity can
be omitted; that is, the criterion can be applied to formal Laurent germs as well.
For this, one should apply a formal version of the Bürmann–Lagrange theorem
[5, Theorem 18c].

2. Sequences determining spectral inclusion

We say that a sequence of polynomials {Pn}∞n=0 and a number r ∈ [0,∞) determine
spectral inclusion into K if for every a ∈ A, the condition σ(a) ⊂ K is equivalent
to condition (1). Similarly, we say that a sequence of polynomials {Pn}∞n=0 and a
number r ∈ [0,∞) determine analytic continuation to Ω if every analytic germ f at
∞ with values in a Banach space has analytic continuation to Ω if and only if (2)
holds. If a sequence of polynomials and a nonnegative number determine analytic
continuation to Ω, then they determine spectral inclusion into K = C̄ \ Ω. We shall
see in the sequel that the converse is not true.

First, we derive some conditions for a sequence of polynomials {Pn}∞n=0 and a
number r > 0 to determine spectral inclusion into K . The following conditions are
necessary:

lim sup
n→∞

|Pn(w)|1/n > r, for w ∈ C \K, (11)

and

lim sup
n→∞

max
K
|Pn|1/n 6 r. (12)

The first condition follows from the fact that the spectrum of every element w of
the Banach algebra C coincides with the singleton {w}, and the second condition
follows from the fact that the spectrum of the function a : z 7→ z in the Banach
algebra C(K) of all complex-valued continuous functions with the supremum norm
coincides with K .

It also follows from these observations that a necessary condition for the existence
of a sequence of polynomials which determines spectral inclusion into K with some
number r > 0 is that the complement C \ K is connected. Otherwise, if V is a
bounded component of the complement, then by the maximum principle, for every
w ∈ V , and every polynomial P , we have that |P (w)| 6 maxK |P |, and consequently,
conditions (11) and (12) cannot be satisfied simultaneously.
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Sufficient conditions for spectral inclusion are given by the following.

Theorem 3. If {Pn}∞n=0 and r satisfy (11), and for every ρ > r there exists a
neighbourhood V of K such that

lim sup
n→∞

sup
V

|Pn|1/n 6 ρ, (13)

then {Pn}∞n=0 and r determine spectral inclusion into K .

Proof. Let a ∈ A, and assume that (11) holds and w ∈ σ(a). By the spectral
mapping theorem, Pn(w) ∈ σ(Pn(a)), n = 0, 1, 2, . . . , and therefore, since the spectral
radius of an element in a Banach algebra does not exceed its norm, |Pn(w)| 6
‖Pn(σ(a))‖. Thus by (11), lim supn→∞ |Pn(w)|1/n 6 r, and therefore by (12), w ∈ K .
This proves that σ(a) ⊂ K .

Conversely, assume σ(a) ⊂ K . Let ρ > r, and consider an open neighbourhood
V of K such that (13) holds. Let Γ be a 1-cycle in V \ K which has index 1 with
respect to every point of K . Then, by the analytic functional calculus for elements
in a Banach algebra,

Pn(a) =
1

2πi

∫
Γ

Pn(z)Ra(z) dz, n = 0, 1, . . . ,

whence

‖Pn(a)‖ 6
(

1

2π

∫
Γ

‖Ra(z)‖ |dz|
)

sup
V

|Pn|, n = 0, 1, . . . .

By (13) this implies that lim supn→∞ ‖Pn(a)‖1/n 6 ρ, and since this holds for every
ρ > r, we obtain (11).

Remarks. (i) One can deduce Theorem 1 also from Theorem 3.
(ii) As a simple application of Theorem 3, we obtain that if a set K is finite, then

the sequence of polynomials Qn(z) =
∏

λ∈K(z−λ)n, n = 0, 1, . . . , and r = 0, determine
spectral inclusion into K . This also follows from the spectral mapping theorem and
Gelfand’s formula.

Example. Here is a sequence of polynomials which determines spectral inclu-
sion into K = {z : |z| 6 1} with r = 1, but not analytic continuation into ∆1 = C̄\K
for any r. Let Pn(z) = zn − anzn−1 with an = 2 + 1/n. Then |Pn(z)|1/n → |z| for every
z ∈ C, and the convergence is uniform in {z : |z| 6 3/2}, so conditions (11) and (13)
are satisfied for K and r = 1. Thus {Pn}∞n=0 and r = 1 determine spectral inclusion
into K by Theorem 3. If we consider the power series f(z) =

∑∞
n=0 cnz

−n−1 with
c0 = 1 and cn = cn−1an, then its maximal region of convergence is ∆2, hence f has
no analytic continuation to any region containing the circle |z| = 2. But, on the
other hand, res∞[Pnf] = 0 for all n, so (2) holds for every r > 0.

Now we discuss briefly how to construct sequences of polynomials which satisfy
conditions (11) and (13) if ∂Ω is regular for the Dirichlet problem. Let UK be the
equilibrium potential for K , that is, UK (w) = c(K), w ∈ K , UK(w) > c(K), w ∈ Ω,
and UK is harmonic in Ω \ {∞}. A sequence of polynomials {Pn}∞n=0 is called nearly
extremal for K if

lim
n→∞ |Pn(w)|1/n = expUK (w) uniformly on compacta in C \K. (14)
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Using Theorem 3, one can show that every nearly extremal sequence determines
spectral inclusion into K with r = c(K).

Examples of nearly extremal sequences are the sequence of Fekete polynomials
for K [6, Chapter V], and if K is connected, the sequence of classical Faber
polynomials [7, Chapter II]. Also, any classical system of orthogonal polynomials is
nearly extremal for [−1, 1] (see [8]).

If K has zero capacity, then the Evans potential [6] can be used instead of the
equilibrium potential. In this case, UK (w) = −∞ for w ∈ K and UK (w) > −∞ for
w ∈ Ω, so any sequence of polynomials satisfying (14) determines spectral inclusion
into K with r = 0.

This fact is related to a result of Halmos. In [2] he proved that σ(a) has
zero capacity if and only if a is quasialgebraic, that is, there is a sequence of
monic polynomials {Qn}∞n=0 for which the sequence dn = degQn is increasing, such
that limn→∞ ‖Qn(a)‖1/dn = 0. The argument above gives one part of this result: if
cap(σ(a)) = 0, then a is quasialgebraic. Indeed, if K = σ(a) has zero capacity, and
the sequence of polynomials {Pn}∞n=0 satisfies (14) with Evans’ potential UK , then by
Theorem 3, limn→∞ ‖Pn(a)‖1/n → 0, and therefore the element a is quasialgebraic.
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