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The iteration theory of entire functions originated in the paper by Fatou [1]
and was developed mainly in the works of Baker [2-7]. The recent progress
in study of iteration of polynomials and rational functions stimulated the
increasing interest in the iteration theory of entire functions. Many modern
works in this subject are devoted to special classes of entire functions and to
concrete functions, e.g. the exponential function. At the same time the study
of dynamical properties of general entire functions initiated by Fatou and
Baker is itself of a considerable interest.

Denote by f™ the mth iterate of an entire function f. Let F(f) be the
maximal open set where the family of iterates {f™} is normal in the sense of
Montel;

J(f) = C\F({).

In what follows we consider only non-linear entire functions f. The Julia set
J(f) is then a non-empty perfect completely invariant set. If f is transcenden-
tal then J(f) is unbounded. The following result is due to Baker [2].

THEOREM B1. The Julia set coincides with the closure of the set of
repuisive periodic points. '

Define
I(f)=1{z€eC: f"z >0, n - 0}.
If fis a polynomial then I(f) is a domain containing co. In this case we have
(1 J(f) = aI(f).
We shall study the set I(f) for transcendental entire functions.

THEOREM 1. For every entire function f the set 1(f) is non-empty.

[339]
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It follows that I(f) is infinite (consider a trajectory {f"z: n=1, 2, ...},
z €I(f)). Furthermore for every entire function the equality (1) is satisfied. To
prove this take zeJ(f) and a neighbourhood V of z. Consider an arbitrary
point z, €I(f) and let z, = fz, # z,. The family {f"} is not normal in ¥,
hence there exists a pre-image z* €V of one of the points z,, z,. We have
z*¥el(f). On the other hand it is easily seen that IntI(f) = F(f). Thus
J(f) < dI(f). The opposite inclusion is evident.

For the function f(z) = e *+z+1, which occurs as an example in [1]
the set I(f) contains the right half-plane, thus

IntI(f) # O.

We shall use the following result of Wiman—Valiron theory [8, 9].
Let f(z) = ) c,z" be an entire transcendental function. The sequence

n=0
|ca| r"* tends to zero for every r > 0, thus it contains a maximal term. Denote

the index of this term by N (r). If there are several maximal terms, take the
largest of their indices. The function N (r) is called the central index.
Evidently, N (r) is increasing and N(r) = o if r = 0. Denote

M(r) =max {|f(): |z| =r}, r > 0.
For every r > 0, take a point w(r) with the following properties:

M@ =fwm), wEl=r.

1
THEOREM WYV. Let f be a transcendental entire function, a > <. If

2
2 lz—w@) <r(N@)™,
ihen
z N(r)
3) f2) = (W) fw@)(1+ey),
4 f@)=N() (L>Nmf (W) (W)™ (1+¢)
w(r)

where ¢; = ¢;(r, z) — 0 uniformly with respect to z if r = oo, r ¢ E. The exceptio-
nal set E depending of f and o has a finite logarithmic measure, i.e.

dt
lmE=j—<oo.
gl
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Proof of Theorem 1. The result is known for polynomials so we may
suppose that f is transcendental. Choose an r; > 2, r, ¢ E, so large that

M@r)>4r, r=ry;

(5) log(1+¢) <1, r=ry, r¢E; ’
6 Im(E Nn[r,, ©)) <1;
N(ry) > 10%.
Denote w(ry) by w; and consider the sector
C’1={z: logi < , argi< > }
wy N(r,) wy| N(ry)

The function
z N(ry)(logz~logw,)+log f(w,)
maps univalently the sector C; onto the square
W =¢+in: [E—log|f(wyll <5, In—arg f(w,)| <5}.

Using (3), (5) and Rouche’s theorem we prove that there exists a domain
C, < C] which is mapped univalently by the function log f onto the square

Q= {L: [¢—log|f W] <4, In—arg f(wy)| <4}.
Thus the image f(C,) contains the annulus
Ay =1z: e *M(ry) <|z| <e*M(r))).

In view of (6) we can take r, ¢ E such that

1
EM(“) <r, <2M(r,).

Write w, = w(r,). Then the sector

C, = {z:

5 }
<
N(ry)
is contained in A,.
Repeating this construction, we obtain a sequence of domains C; — oo,
Cj+1 < f(C)) such that there exists a uniform branch of f~! in C;,, for

which f~1(C;:+,) = C;. Let B; = f~/(C;,,) where f~/ is the composition of
the just mentioned branches. We have B;., = B;, thus \ B; # Q. If z
j=1

Z 4

<

log arg

wall NG | “w,

. J
belongs to this intersection then f’z€C;,,. Hence, z €I(f) and the theorem
is proved.
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Remark. Using the notation from the proof of Theorem 1, we can show
that diamB; =0, j > co. In view of (4) we obtain for z €C;:

) i . )
(7 Lf' (@I ?N(rk)(e-slmrk))mr")M(’k)rk-le 1> Ee 6N("k)"k+1 s’ !

By definition, diamC;,; < const r;,(N(rj+))”'. Putting in (7) k =j we
obtain '
r;-2e®

diam f "' C;,, < const —————,
Al NN (1)
Applying (7) repeatedly for k =j—1, ..., 1, we obtain
r- 2J g%

diam B; = diam f 7 C;,, < const 0 asj—oo.

—)
N(rl)---N(rj+l)
It is evident that I(f) nJ(f) = @ for polynomials f. We shall prove that
I(f) nJ(f) # O for any transcendental entire function f. To do this we need
two well-known lemmas which we prove for completeness.

LEMMA 1. Let D be a multi-connected component of the set F(f) of an
entire function f. Then f" = oo uniformly on compacts in D.

Proof. Let y be a Jordan curve in D whose interior domain D, contains
points of J(f). If for a subsequence m, we have [f™ <M on y then by
maximum principle |f™ < M in D, and |(f™*)] < M in D,. This contradicts
to the existence of repulsive periodic points in D; (Theorem B 1).

LEMMA 2. Let D be a multi-connected component of the set F(f) of an
entire function f and let y be a Jordan curve, non-homotopic to a point
in D. Then the index with respect to 0 satisfies indyf"y # 0 for all sufficiently
large n.

Proof. Let ind,f ™y = 0 for a subsequence n,. This means that f™(z) # 0
in the interior component D, of C\y. By Lemma 1 we have f ™y — c0. Using
the minimum principle we conclude that f™* — oo in D,. This contradicts the
Theorem BI1.

The following result is due to Baker [3].

THEOREM B2. Let f be a transcendental entire function. Then every
unbounded component of the set F(f) is simply-connected.

The Lemma 1 and Theorem B 2 imply

CoroLLARY (Baker [6]). Every multi-connected component D of the set
F(f) of a transcendental entire function f wanders. This means that
f"Dfm"D =Q for every n>m>0.

In the papers [4-7] Baker constructs the examples of entire functions
with multi-connected wandering components of the set of Fatou F(f).
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THEOREM 2. Let f be a transcendental entire function. Then I(f)

NJ(f) # 0.

Proof. Two cases are to be considered.

(1). The set F(f) has a multi-connected component D. Denote D,
= f™D and let K,, be the unbounded component of the complement C\D,,.
Let y be a Jordan curve in D non-homotopic to a point in D, y,, = f™y. We
have y,, > ©, 7, < D,, and ind,7,, # 0 by Lemmas 1 and 2, respectively. We
conclude that y, separates 0 and K,,. Thus K,, — c. Fix a large number m.
We have f* - in D, D,, n D, = @ for n > m. Hence, D, < K,,, D, < K,, for
sufficiently large n > m. Consequently, 0D < I(f) and J(f)nI(f) # O.

(2). All components of F(f) are simply-connected. Let us show that

D8

——

B; cJ(f)

1 —
Zo5 =

j=1

(the sets B; were introduced in the proof of the Theorem 1). Suppose that
this is not the case. Then there exists a neighbourhood V of the point z,,
V < F(f). Using the remark following Theorem 1, we find a number »n such
that B, = V. We have f"B, = C,.,, consequently f n+1 B contains the annu-
lus

{z: e *M(rps1) <lz| <e*M(r,1)}.

Thus the set F(f) contains an arbitrarily large annulus. This is a contradic-
tion to the assumption. Theorem 2 is proved.

It is plausible that the set I(f) has no bounded connected components.
We shall prove a weaker statement.

THEOREM 3. The closure I—(ﬂ of I(f) has no bounded components.

Proof. Let I, be a bounded component of I(f). Then there exists a
domain A homeomorphic to an annulus which separates I, from o0, A NI (f)
= (. The functions f" in A do not take the values from I(f), thus A = F(f)
by Montel’s theorem. Let K be the bounded component of C\A. In view of
(1) K nJ(f) # @ consequently A4 is contained in a multiconnected compo-
nent of F(f). By Lemma 1 A4 < I(f), contrary to the assumption.

Papers [10-13] are devoted to the study of a class S of entire functions
having many dynamical properties similar to the properties of rational
functions. By definition f.€8S iff there exists a finite set A = C such that

®) fr CO\f7HA) ~C\A

is an unramified covering map. Some results on the class S proved in [11]
remain true for a larger class B which we are now going to define. An entire
function f €B iff there exists a bounded set A such that (8) is an unramified
covering. Evidently S « B. The function f(z) = z"!sinzeB\S.
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THEOREM 4. Let f €B be a transcendental entire function. If f"z — co then

zeJ(f).
CoroLLARY. If f €B is transcendental then J(f) = m

This fact was noted in [14] for a subclass of S.
For any.entire function f let

Og(r, f) = mes {0 €[0, 2n]: |f(ré®) <R}
THEOREM 5. Let f €B and for some R >0

©) lim - [ 6x ¢, f)dt > O,

r—o 1

then the area of I(f) is zero.

For example, area(I(cexp)) =0 and area(J(cexp)) = 0 which was pro-
ved independently in [10-11] and [15]. The condition (9) cannot be remo-
ved, because area(I(sin)) > 0 [15] and sineS < B.

The proofs of Theorems 4 and 5 are the same as in [11] for the class S.

The paper [14] is devoted to the study of the structure of the sets I(f).
for the simplest functions of class S, as e.g. asinz+b. For such functions I(f)
is the so-called “Cantor bouquet”, ie. an uncountable union of curves
tending to oco. It is plausible that the set I(f) always has the following
property: every point z€I(f) can be joined with oo by a curve in I(f).
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