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Abstract

We construct a transcendental entire function f with J(f) = C
such that f has arbitrarily slow growth; that is, log|f(2)| < ¢(|z|) log |z|
for |z| > 7o, where ¢ is an arbitrary prescribed function tending to in-
finity.

For an entire function f we denote the Julia set by J(f). By definition,
it is the complement of the maximal open set F(f), the set of normality,
where the iterates f™ form a normal family.

While for polynomials the Julia set always has empty interior, for tran-
scendental functions it may coincide with the whole complex plane C. The
first example with this property was given by Baker [1] and later Misiurewicz
[16] showed that this is the case for the exponential function. There are sev-
eral methods of constructing such examples (besides [1] and [16] we refer to
[3, p. 74], [4, p. 155, p. 172], [7, p. 167-168] [8, p. 225], [9, p. 625], [10, p.
610], [12]) but none of them seems to be applicable to entire functions of
arbitrarily slow growth, the main problem being to exclude the possibility
of a wandering component of the set of normality where the iterates tend to
infinity. That such a wandering component may indeed occur for functions
of arbitrarily slow growth was shown by Baker [2] and Hinkkanen [11]. No-
tice that for entire functions of order less than 1/2 there is always a sequence
of critical values tending to infinity (see [13, p. 1788]). This makes usual
arguments for the proof of the absence of wandering domains hard to apply.

Theorem 1 Let t — ¢(t) : [0,00) — [1,00) be an arbitrary increasing
function tending to oo as t — oo. Then there exists an entire function f
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and ro > 0 with the properties J(f) = C and
log|f(2)| < ¢(|z])log |2, [z] > .

We use the following notation: D(R) = {z: |2|] < R}, A(R) ={2z€ C:
|z| > R} and A(R,R') ={z: R < |z| < R}, where 0 < R < R’ < co. The
sequence (P"(2))>2, is called the P-orbit of the point z.

The proof of Theorem 1 is based on the following

Proposition 1 Let P be a polynomial, P(0) = 0, P(1) = 1,degP >
2.Assume that the P-orbits of all the critical points of P tend to infinity.
Let z1,...,2z,-1 € C and mq,...,mi_1 € N and suppose that P™i(z;) = 0
for1<j<k—1. Let z; € C, € >0 and R > 0 be given.

Then there exists a polynomial Q, Q(0) = 0, Q(1) = 1, such that the
Q-orbits of all the critical points of () tend to infinity, and there exist

215,24, € C and my, € N such that |z — zj| < € and Q™ (z;) = 0 for
1 <j < k. Moreover, |P(2)—Q(z)| < € forz € D(R), deg(@ = deg P+1 and
if a1,...,aq are the zeros of P, then Q has a zero in each disk |z — aj| <,

and a zero in A(R).

For the proof of Proposition 1 we need the following two lemmas. In these
lemmas, we shall use some concepts from the theory of quasiconformal (and
quasiregular) maps; see [15] for a general introduction to quasiconformal
maps, and [5, 6] for a discussion of their role in complex dynamics.

Lemma 1 For every § > 0 and R > 0 there exists n > 0 such that every
quasiconformal homeomorphism ¢ : C — C fizing 0 and 1 with Beltrami
coefficient ||pl|co < m satisfies

|p(2) — 2| <8, for z¢€ D(R).

Proof. Assume that the lemma is incorrect. Then there is a sequence of
quasiconformal homeomorphisms (¢, ), each fixing 0 and 1, such that the
corresponding Beltrami coefficients pu, satisty ||unllco — 0, but

|on(2zn) — 20| =0 >0

N

for some z, € D(R). As a family of quasiconformal maps with uniformly
bounded distortion fixing 0 and 1 is normal [15, §IL.5], we may assume that
¢n — ¢ as n — oo, uniformly on compacta in C, and ¢ is a conformal
homeomorphism. Our normalization implies that ¢(z) = z and we obtain a
contradiction. a



Lemma 2 For every positive integer d and n > 0 there exists v € (0,1/2)
with the following property:

Let hy and hy be holomorphic functions in A(r/2,4r) such that ||h;||c <
v, © = 1,2. Then there exists a quasiregular local homeomorphism ¢ :
A(r,2r) — C with boundary values

$(z) =211+ M(2), o =r

and
o(z) = zd(l + hao(2)), |z| =2r

and the Beltrami coefficient p of ¢ satisfies ||p)|oo < 1.

Proof. We define h(z) := (2 — |z|/r)h1(2) + (|z|/7 — 1)ha(z). This function
is smooth in the ring A(r,2r) and has boundary values h;(z), |z| = r, and
ha(2), |z| = 2r. The sup-norm of the derivative Dh : A(r,2r) — R? tends
to 0 when v — 0. Thus ¢(z) := 2%(1 + h(2)) has all the required properties
when ~ is small enough. a

Proof of Proposition 1. It follows from our hypotheses on the critical points
of P that J(P) is totally disconnected and P™(z) — oo for all z € C\J(P),
see, e. g., [6, p. 67].

Let d := deg P. Recall (see [6, p. 34] or [18, p. 63, p. 147]) that the limit

1 n
u = nlggo n log | P"| (1)
exists uniformly on compacta in C\J(P) and u is a positive harmonic func-
tion there, satisfying

u(z) ~log|z|, 2z — oo. (2)

If we extend u by setting u(z) = 0 for z € J(P) the resulting function is
continuous, and we have u(z) > 0 if and only if z € C\J(P).

We may assume without loss of generality that z; € C\J(f), because this
can be achieved by a small shift of zx, using that J(f) is totally disconnected.
Performing another small shift of z; if necessary, we may also assume that

0 < u(zy) # du(c) forall ce€crit(P) and jc€Z, (3)

where crit(P) denotes the set of critical points of P. It follows from (3) that
there exists k > 0 with the property

|d"u(z;) — d’u(c)| > kd™ for all c¢ € crit(P) and neN, je€ Z,



from which it follows in view of (1) that

[P (21)|
[P (c)|

min

1
JEN 8 TBi)

—o00 as m—oo and c € crit(P). (4)

Similarly ()
25

Sl L DA — 00.
AT PY 00 as n— 0o (5)

We fix arbitrary ¢ > 0 and apply Lemma 1 for some R satisfying
R>R+1, R>1 + maxi<j<q |a;|, R>1 + maxi<j<k |2;|, and R >
1 + max|,—p41 |P(2)|. Then, using n obtained from Lemma 1 and d, we
apply Lemma 2 to obtain v € (0,1/2).

Now we are going to find a large integer n so that the following conditons
(6)-(11) are satisfied.

P ()] >max{%(R+1), @} (6)

where a := lim,_,o, 27%P(2),

AP 16

4 > 7’ (7)

la™127P(2) — 1| <7, for z¢€ A(r/2), (8)
4

%11&1 log ||]317|‘ > log ¢ € crit(P), 9)

min 7’Pn( )‘ > é
0j<n [PI(zk)] ~ 77

and
the P — orbits of all points zj...,z,_1 are contained in D(r).  (11)

Conditions (9) and (10) can be satisfied in view of (4) and (5) respectively.
We define a quasiregular map @1 : C — C in the following way:

Q1(z) = P(z), z¢€ D(r), (12)

z

Q1(z) = az® (1 — P"(zk)> ,  z€A((2r), (13)

and in the annulus A(r,2r) we interpolate using Lemma 2 with hi(z) =
a™1279P(z) — 1 and hy(z) = —2/P™(2;). The conditions of Lemma 2 are
satisfied in view of (7) and (8).




If U := A(2|P™(%)|) then U is Q;-invariant and all Q;-orbits in U tend
to infinity. The map @; has the following properties:

(i) the Qq-orbits of the critical points of Q1 tend to infinity.

Indeed, the critical set of (1 consists of the critical set of P and one addi-
tional point w := dP™(zx)/(d + 1). The P-orbits of the critical points of P
do not intersect the annulus A(r, 2| P"(2)|) in view of (9), so their Q-orbits
also do not intersect this annulus, but do intersect the set U, and thus tend
to infinity. Furthermore, Q1(w) = aw?/(d + 1) € U in view of (6), so the
Q1-orbit of w also tends to infinity.

(i) (Q1)™*(zk) = 0.

Indeed, (Q1)*((Q1)"~*(2r)) = (Q1)*(P"~!(2k)) = Q1(P"(2k)) = 0, because
PI(z) € D(r) for j < n in view of (10) and P(z) = Q1(z) for z € D(r) by
definition.

(iii) Q17 (2j) =0for 1 <j <k —1.
This follows from (11) since Q1(z) = P(z) for z € D(r).

Thus ()1 has all the required properties, except that it is not holomor-
phic in the annulus A(r,2r). To make it holomorphic we use a method of
M. Shishikura [17]; see also [5, §§8-9] for an account of Shishikura’s method.
The image of the annulus A(r,2r) is contained in the invariant domain U,
which is disjoint from A(r,2r). This permits us to define a new conformal
structure ¢ in C such that it coincides with the standard conformal struc-
ture op in U, and @Q; : (C,0) — (C,0) is holomorphic. The distortion of
this structure with respect to the standard one is measured by the sup-norm
of the Beltrami coefficient which is the same as that of 1, namely at most
n (see Lemmas 1 and 2). By the basic existence theorem for quasiconfor-
mal mappings [15, Chapter 5|, there exists a conformal homeomorphism
¥ (C,009) = (C,0). We can normalize it by 1(0) = 0 and (1) = 1. Then
Q =y toQ 0 is easily seen to be a polynomial. The dynamics of @ are
similar to those of @1, namely from (i)-(iii) it follows that the Q-orbits of
the critical points of @ tend to infinity, and with z; =97(z), 1<j <k,
and my =n + 1 we have Q™ (2}) =0for 1 <j <k.

Finally we notice that ¢ : (C,00) — (C,09) is quasiconformal and the
sup-norm of its Beltrami coefficient is at most 7. The same is true for )~!
and so by Lemma 1 we have

lp(z) —z| <6 and [p ' (z)—z| < for ze D(R).

If 6 <1 and |2|] < R, then [¢(z)] < R+ 6 < r and hence |Q1(¢(2))] =



|P(1(2))| < R — 1. We deduce that if § — 0, then
Q(z) =¥~ (Q1(¥(2)) = ¥~ (P(¥(2)) — P(2),

uniformly for z € D(R). This implies that @ and zj have all the required
properties for sufficiently small §. O

Proof of Theorem 1. We fix a dense sequence (zj)Jo-‘;l in C with 2z =3/4, a
sequence of positive numbers (e;) with the property

o0
D e <1, (14)
j=1

and an increasing sequence (R;) — oo with the property

— 1
Y — <o (15)
=

Starting with k = 2, Py(2) = 42> — 32z, m; = 1 and 2, = 212 = 3/4,
we apply Proposition 1 repeatedly, and obtain a sequence (Py) of polynomi-
als and a sequence (my) of positive integers with the following properties:
deg P, = k, P;(0) =0, P(1) = 1, and for every j € N and k > j, there is a
point z;; satisfying

|2k — 2o k1| < €k+1 and  |zjk — zjpq1| < eppr for j <k
such that
P (234) = 0. (16)
In addition, the zeros a;j of Py satisfy
lagx| > R for k>3 and |ajr—ajr1]| <exp1 for k>2,5 <k,

and the sequence (Py) converges uniformly on compacta in C to an entire
function f.

It follows that the limits w; := limy_, 2; exist for all j € N and
|zj —w;| — 0 as j — oo. Thus the sequence (w;) is dense in C. Passing
to the limit as & — oo in (16), we conclude that 7 (w;) = 0. This means
that the preimages of zero are dense in C. Thus J(f) = C.

Finally we have to estimate the growth. We have

Pk(z+1):ﬁ<1—i),

j=1 Cj.k

6



with ¢;, = ajr — 1. Thus |cjr — ¢jry1] < €xq1 for & > 2,5 < 2 and
|ckk| > Ry — 1 for k > 3. Passing to the limit when k£ — oo and taking (15)
into account we conclude that

f(z+1):£[1<1—cij>

where |¢j| = [limg oo cjk| > Rj —1 =307 1€, > Rj — 2. Thus f is an
entire function of genus zero. Using standard estimates for canonical prod-
ucts (see, for example, [14]) we can choose (R;) so that the growth of f is
arbitrarily slow.
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