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Abstract

We construct a transcendental entire function f with J(f) = C
such that f has arbitrarily slow growth; that is, log |f(z)| ≤ φ(|z|) log |z|
for |z| > r0, where φ is an arbitrary prescribed function tending to in-
finity.

For an entire function f we denote the Julia set by J(f). By definition,
it is the complement of the maximal open set F (f), the set of normality,
where the iterates fn form a normal family.

While for polynomials the Julia set always has empty interior, for tran-
scendental functions it may coincide with the whole complex plane C. The
first example with this property was given by Baker [1] and later Misiurewicz
[16] showed that this is the case for the exponential function. There are sev-
eral methods of constructing such examples (besides [1] and [16] we refer to
[3, p. 74], [4, p. 155, p. 172], [7, p. 167-168] [8, p. 225], [9, p. 625], [10, p.
610], [12]) but none of them seems to be applicable to entire functions of
arbitrarily slow growth, the main problem being to exclude the possibility
of a wandering component of the set of normality where the iterates tend to
infinity. That such a wandering component may indeed occur for functions
of arbitrarily slow growth was shown by Baker [2] and Hinkkanen [11]. No-
tice that for entire functions of order less than 1/2 there is always a sequence
of critical values tending to infinity (see [13, p. 1788]). This makes usual
arguments for the proof of the absence of wandering domains hard to apply.

Theorem 1 Let t 7→ φ(t) : [0,∞) → [1,∞) be an arbitrary increasing
function tending to ∞ as t → ∞. Then there exists an entire function f
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and r0 > 0 with the properties J(f) = C and

log |f(z)| ≤ φ(|z|) log |z|, |z| > r0.

We use the following notation: D(R) = {z : |z| < R}, ∆(R) = {z ∈ C :
|z| > R} and A(R,R′) = {z : R < |z| < R′}, where 0 < R < R′ < ∞. The
sequence (Pn(z))∞n=0 is called the P -orbit of the point z.

The proof of Theorem 1 is based on the following

Proposition 1 Let P be a polynomial, P (0) = 0, P (1) = 1, degP ≥
2.Assume that the P -orbits of all the critical points of P tend to infinity.
Let z1, . . . , zk−1 ∈ C and m1, . . . ,mk−1 ∈ N and suppose that Pmj (zj) = 0
for 1 ≤ j ≤ k − 1. Let zk ∈ C, ε > 0 and R > 0 be given.

Then there exists a polynomial Q, Q(0) = 0, Q(1) = 1, such that the
Q-orbits of all the critical points of Q tend to infinity, and there exist
z′1, . . . , z

′
k ∈ C and mk ∈ N such that |zj − z′j | < ε and Qmj (zj) = 0 for

1 ≤ j ≤ k. Moreover, |P (z)−Q(z)| < ε for z ∈ D(R), degQ = degP+1 and
if a1, . . . , ad are the zeros of P , then Q has a zero in each disk |z − aj | < ε,
and a zero in ∆(R).

For the proof of Proposition 1 we need the following two lemmas. In these
lemmas, we shall use some concepts from the theory of quasiconformal (and
quasiregular) maps; see [15] for a general introduction to quasiconformal
maps, and [5, 6] for a discussion of their role in complex dynamics.

Lemma 1 For every δ > 0 and R̂ > 0 there exists η > 0 such that every
quasiconformal homeomorphism φ : C → C fixing 0 and 1 with Beltrami
coefficient ‖µ‖∞ < η satisfies

|φ(z) − z| < δ, for z ∈ D(R̂).

Proof. Assume that the lemma is incorrect. Then there is a sequence of
quasiconformal homeomorphisms (φn), each fixing 0 and 1, such that the
corresponding Beltrami coefficients µn satisfy ‖µn‖∞ → 0, but

|φn(zn)− zn| ≥ δ > 0

for some zn ∈ D(R̂). As a family of quasiconformal maps with uniformly
bounded distortion fixing 0 and 1 is normal [15, §II.5], we may assume that
φn → φ as n → ∞, uniformly on compacta in C, and φ is a conformal
homeomorphism. Our normalization implies that φ(z) = z and we obtain a
contradiction. 2
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Lemma 2 For every positive integer d and η > 0 there exists γ ∈ (0, 1/2)
with the following property:

Let h1 and h2 be holomorphic functions in A(r/2, 4r) such that ‖hi‖∞ <

γ, i = 1, 2. Then there exists a quasiregular local homeomorphism φ :
A(r, 2r)→ C with boundary values

φ(z) = zd(1 + h1(z)), |z| = r

and
φ(z) = zd(1 + h2(z)), |z| = 2r

and the Beltrami coefficient µ of φ satisfies ‖µ‖∞ < η.

Proof. We define h(z) := (2 − |z|/r)h1(z) + (|z|/r − 1)h2(z). This function
is smooth in the ring A(r, 2r) and has boundary values h1(z), |z| = r, and
h2(z), |z| = 2r. The sup-norm of the derivative Dh : A(r, 2r) → R2 tends
to 0 when γ → 0. Thus φ(z) := zd(1 + h(z)) has all the required properties
when γ is small enough. 2

Proof of Proposition 1. It follows from our hypotheses on the critical points
of P that J(P ) is totally disconnected and Pn(z)→∞ for all z ∈ C\J(P ),
see, e. g., [6, p. 67].

Let d := degP . Recall (see [6, p. 34] or [18, p. 63, p. 147]) that the limit

u := lim
n→∞

1

dn
log |Pn| (1)

exists uniformly on compacta in C\J(P ) and u is a positive harmonic func-
tion there, satisfying

u(z) ∼ log |z|, z →∞. (2)

If we extend u by setting u(z) = 0 for z ∈ J(P ) the resulting function is
continuous, and we have u(z) > 0 if and only if z ∈ C\J(P ).

We may assume without loss of generality that zk ∈ C\J(f), because this
can be achieved by a small shift of zk, using that J(f) is totally disconnected.
Performing another small shift of zk if necessary, we may also assume that

0 < u(zk) 6= dju(c) for all c ∈ crit(P ) and j ∈ Z, (3)

where crit(P ) denotes the set of critical points of P . It follows from (3) that
there exists κ > 0 with the property

|dnu(zk)− dju(c)| > κdn for all c ∈ crit(P ) and n ∈ N, j ∈ Z,
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from which it follows in view of (1) that

min
j∈N

∣∣∣∣log
|Pn(zk)|
|P j(c)|

∣∣∣∣→∞ as n→∞ and c ∈ crit(P ). (4)

Similarly

min
0≤j<n

|Pn(zk)|
|P j(zk)|

→ ∞ as n→∞. (5)

We fix arbitrary δ > 0 and apply Lemma 1 for some R̂ satisfying
R̂ ≥ R + 1, R̂ ≥ 1 + max1≤j≤d |aj |, R̂ ≥ 1 + max1≤j≤k |zj |, and R̂ ≥
1 + max|z|=R+1 |P (z)|. Then, using η obtained from Lemma 1 and d, we
apply Lemma 2 to obtain γ ∈ (0, 1/2).

Now we are going to find a large integer n so that the following conditons
(6)-(11) are satisfied.

|Pn(zk)| > max

{
4

γ
(R+ 1),

2e(d+ 1)

a

}
, (6)

where a := limz→∞ z−dP (z),

r :=
γ|Pn(zk)|

4
>

16

γ
, (7)

|a−1z−dP (z) − 1| < γ, for z ∈ ∆(r/2), (8)

min
j∈N

∣∣∣∣log
|Pn(zk)|
|P j(c)|

∣∣∣∣ > log
4

γ
, c ∈ crit(P ), (9)

min
0≤j<n

|Pn(zk)|
|P j(zk)|

>
4

γ
, (10)

and

the P − orbits of all points z1 . . . , zk−1 are contained in D(r). (11)

Conditions (9) and (10) can be satisfied in view of (4) and (5) respectively.
We define a quasiregular map Q1 : C→ C in the following way:

Q1(z) = P (z), z ∈ D(r), (12)

Q1(z) = azd
(

1− z

Pn(zk)

)
, z ∈ ∆(2r), (13)

and in the annulus A(r, 2r) we interpolate using Lemma 2 with h1(z) =
a−1z−dP (z) − 1 and h2(z) = −z/Pn(zk). The conditions of Lemma 2 are
satisfied in view of (7) and (8).
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If U := ∆(2|Pn(zk)|) then U is Q1-invariant and all Q1-orbits in U tend
to infinity. The map Q1 has the following properties:

(i) the Q1-orbits of the critical points of Q1 tend to infinity.
Indeed, the critical set of Q1 consists of the critical set of P and one addi-
tional point w := dPn(zk)/(d + 1). The P -orbits of the critical points of P
do not intersect the annulus A(r, 2|Pn(zk)|) in view of (9), so their Q1-orbits
also do not intersect this annulus, but do intersect the set U , and thus tend
to infinity. Furthermore, Q1(w) = awd/(d + 1) ∈ U in view of (6), so the
Q1-orbit of w also tends to infinity.

(ii) (Q1)n+1(zk) = 0.
Indeed, (Q1)2((Q1)n−1(zk)) = (Q1)2(Pn−1(zk)) = Q1(Pn(zk)) = 0, because
P j(zk) ∈ D(r) for j < n in view of (10) and P (z) = Q1(z) for z ∈ D(r) by
definition.

(iii) Q
mj
1 (zj) = 0 for 1 ≤ j ≤ k − 1.

This follows from (11) since Q1(z) = P (z) for z ∈ D(r).

Thus Q1 has all the required properties, except that it is not holomor-
phic in the annulus A(r, 2r). To make it holomorphic we use a method of
M. Shishikura [17]; see also [5, §§8-9] for an account of Shishikura’s method.
The image of the annulus A(r, 2r) is contained in the invariant domain U ,
which is disjoint from A(r, 2r). This permits us to define a new conformal
structure σ in C such that it coincides with the standard conformal struc-
ture σ0 in U , and Q1 : (C, σ) → (C, σ) is holomorphic. The distortion of
this structure with respect to the standard one is measured by the sup-norm
of the Beltrami coefficient which is the same as that of Q1, namely at most
η (see Lemmas 1 and 2). By the basic existence theorem for quasiconfor-
mal mappings [15, Chapter 5], there exists a conformal homeomorphism
ψ : (C, σ0)→ (C, σ). We can normalize it by ψ(0) = 0 and ψ(1) = 1. Then
Q := ψ−1 ◦Q1 ◦ψ is easily seen to be a polynomial. The dynamics of Q are
similar to those of Q1, namely from (i)-(iii) it follows that the Q-orbits of
the critical points of Q tend to infinity, and with z′j := ψ−1(zj), 1 ≤ j ≤ k,
and mk = n+ 1 we have Qmj (z′j) = 0 for 1 ≤ j ≤ k.

Finally we notice that ψ : (C, σ0) → (C, σ0) is quasiconformal and the
sup-norm of its Beltrami coefficient is at most η. The same is true for ψ−1

and so by Lemma 1 we have

|ψ(z) − z| < δ and |ψ−1(z)− z| < δ for z ∈ D(R̂).

If δ < 1 and |z| ≤ R, then |ψ(z)| ≤ R + δ < r and hence |Q1(ψ(z))| =
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|P (ψ(z))| ≤ R̂− 1. We deduce that if δ → 0, then

Q(z) = ψ−1(Q1(ψ(z))) = ψ−1(P (ψ(z))) → P (z),

uniformly for z ∈ D(R). This implies that Q and z′j have all the required
properties for sufficiently small δ. 2

Proof of Theorem 1. We fix a dense sequence (zj)
∞
j=1 in C with z1 = 3/4, a

sequence of positive numbers (εj) with the property

∞∑
j=1

εj < 1, (14)

and an increasing sequence (Rj)→∞ with the property

∞∑
j=1

1

Rj
<∞. (15)

Starting with k = 2, P2(z) = 4z2 − 3z, m1 = 1 and z1 = z1,2 = 3/4,
we apply Proposition 1 repeatedly, and obtain a sequence (Pk) of polynomi-
als and a sequence (mk) of positive integers with the following properties:
degPk = k, Pk(0) = 0, Pk(1) = 1, and for every j ∈ N and k > j, there is a
point zj,k satisfying

|zk − zk,k+1| < εk+1 and |zj,k − zj,k+1| < εk+1 for j < k

such that
P
mj
k (zj,k) = 0. (16)

In addition, the zeros aj,k of Pk satisfy

|ak,k| > Rk for k ≥ 3 and |aj,k − aj,k+1| < εk+1 for k ≥ 2, j ≤ k,

and the sequence (Pk) converges uniformly on compacta in C to an entire
function f .

It follows that the limits wj := limk→∞ zj,k exist for all j ∈ N and
|zj − wj| → 0 as j → ∞. Thus the sequence (wj) is dense in C. Passing
to the limit as k → ∞ in (16), we conclude that fmj (wj) = 0. This means
that the preimages of zero are dense in C. Thus J(f) = C.

Finally we have to estimate the growth. We have

Pk(z + 1) =

k∏
j=1

(
1− z

cj,k

)
,
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with cj,k = aj,k − 1. Thus |cj,k − cj,k+1| < εk+1 for k ≥ 2, j ≤ 2 and
|ck,k| > Rk − 1 for k ≥ 3. Passing to the limit when k →∞ and taking (15)
into account we conclude that

f(z + 1) =
∞∏
j=1

(
1− z

cj

)
where |cj | = | limk→∞ cj,k| > Rj − 1 −

∑∞
n=j+1 εn > Rj − 2. Thus f is an

entire function of genus zero. Using standard estimates for canonical prod-
ucts (see, for example, [14]) we can choose (Rj) so that the growth of f is
arbitrarily slow.

Acknowledgement. We thank the referee for a very careful reading of
the manuscript and helpful suggestions.

References

[1] I. N. Baker, Limit functions and sets of non-normality in iteration theory,
Ann. Acad. Sci. Fenn. 467 (1970).

[2] I. N. Baker, Some entire functions with multiply-connected wandering
domains, Ergodic Theory Dynamical Systems 5 (1985), 163-169.

[3] I. N. Baker, P. J. Rippon, Iteration of exponential functions, Ann. Acad.
Sci. Fenn. 9 (1984), 49-77.

[4] W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math.
Soc. (N.S.) 29 (1993), 151-188.

[5] A. F. Beardon, Iteration of rational functions, Springer, New York 1991.

[6] L. Carleson, T. W. Gamelin, Complex dynamics, Springer, New York
1993.

[7] R. L. Devaney, Julia sets and bifurcation diagrams for exponential maps,
Bull. Amer. Math. Soc. (N.S.) 11 (1984), 167-171.

[8] R. L. Devaney, Dynamics of entire maps, in: Dynamical Systems and Er-
godic Theory, Banach Center Publ., vol. 23, Polish Scientific Publishers,
Warsaw, 1989, pp. 221-228.

[9] A. Eremenko and M. Yu. Lyubich, The dynamics of analytic transforms,
Leningrad Math. J. 1 (1990), 563-634.

7



[10] M. Herman, Are there critical points on the boundaries of singular
domains? Comm. Math. Phys. 99 (1985), 593-612.

[11] A. Hinkkanen, On the size of Julia sets, in: Complex Analysis and its
applications, Pitnam Research Notes in Mathematics Series 305 (1995),
178-189.

[12] C. M. Jang, Julia set of the function z exp(z + µ), Tôhoku Math. J. 44
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