Entire functions of slow growth whose Julia set coincides with the plane

Walter Bergweiler and Alexandre Eremenko*

November 19, 2000

Abstract

We construct a transcendental entire function f with $J(f)=\mathbf{C}$ such that f has arbitrarily slow growth; that is, $\log |f(z)| \leq \phi(|z|) \log |z|$ for $|z|>r_{0}$, where ϕ is an arbitrary prescribed function tending to infinity.

For an entire function f we denote the Julia set by $J(f)$. By definition, it is the complement of the maximal open set $F(f)$, the set of normality, where the iterates f^{n} form a normal family.

While for polynomials the Julia set always has empty interior, for transcendental functions it may coincide with the whole complex plane \mathbf{C}. The first example with this property was given by Baker [1] and later Misiurewicz [16] showed that this is the case for the exponential function. There are several methods of constructing such examples (besides [1] and [16] we refer to [3, p. 74], [4, p. 155, p. 172], [7, p. 167-168] [8, p. 225], [9, p. 625], [10, p. 610], [12]) but none of them seems to be applicable to entire functions of arbitrarily slow growth, the main problem being to exclude the possibility of a wandering component of the set of normality where the iterates tend to infinity. That such a wandering component may indeed occur for functions of arbitrarily slow growth was shown by Baker [2] and Hinkkanen [11]. Notice that for entire functions of order less than $1 / 2$ there is always a sequence of critical values tending to infinity (see [13, p. 1788]). This makes usual arguments for the proof of the absence of wandering domains hard to apply.

Theorem 1 Let $t \mapsto \phi(t):[0, \infty) \rightarrow[1, \infty)$ be an arbitrary increasing function tending to ∞ as $t \rightarrow \infty$. Then there exists an entire function f

[^0]and $r_{0}>0$ with the properties $J(f)=\mathbf{C}$ and
$$
\log |f(z)| \leq \phi(|z|) \log |z|, \quad|z|>r_{0}
$$

We use the following notation: $D(R)=\{z:|z|<R\}, \Delta(R)=\{z \in \mathbf{C}$: $|z|>R\}$ and $A\left(R, R^{\prime}\right)=\left\{z: R<|z|<R^{\prime}\right\}$, where $0<R<R^{\prime}<\infty$. The sequence $\left(P^{n}(z)\right)_{n=0}^{\infty}$ is called the P-orbit of the point z.

The proof of Theorem 1 is based on the following
Proposition 1 Let P be a polynomial, $P(0)=0, P(1)=1, \operatorname{deg} P \geq$ 2.Assume that the P-orbits of all the critical points of P tend to infinity. Let $z_{1}, \ldots, z_{k-1} \in \mathbf{C}$ and $m_{1}, \ldots, m_{k-1} \in \mathbf{N}$ and suppose that $P^{m_{j}}\left(z_{j}\right)=0$ for $1 \leq j \leq k-1$. Let $z_{k} \in \mathbf{C}, \epsilon>0$ and $R>0$ be given.

Then there exists a polynomial $Q, Q(0)=0, Q(1)=1$, such that the Q-orbits of all the critical points of Q tend to infinity, and there exist $z_{1}^{\prime}, \ldots, z_{k}^{\prime} \in \mathbf{C}$ and $m_{k} \in \mathbf{N}$ such that $\left|z_{j}-z_{j}^{\prime}\right|<\epsilon$ and $Q^{m_{j}}\left(z_{j}\right)=0$ for $1 \leq j \leq k$. Moreover, $|P(z)-Q(z)|<\epsilon$ for $z \in D(R), \operatorname{deg} Q=\operatorname{deg} P+1$ and if a_{1}, \ldots, a_{d} are the zeros of P, then Q has a zero in each disk $\left|z-a_{j}\right|<\epsilon$, and a zero in $\Delta(R)$.

For the proof of Proposition 1 we need the following two lemmas. In these lemmas, we shall use some concepts from the theory of quasiconformal (and quasiregular) maps; see [15] for a general introduction to quasiconformal maps, and $[5,6]$ for a discussion of their role in complex dynamics.

Lemma 1 For every $\delta>0$ and $\hat{R}>0$ there exists $\eta>0$ such that every quasiconformal homeomorphism $\phi: \mathbf{C} \rightarrow \mathbf{C}$ fixing 0 and 1 with Beltrami coefficient $\|\mu\|_{\infty}<\eta$ satisfies

$$
|\phi(z)-z|<\delta, \quad \text { for } \quad z \in D(\hat{R}) .
$$

Proof. Assume that the lemma is incorrect. Then there is a sequence of quasiconformal homeomorphisms $\left(\phi_{n}\right)$, each fixing 0 and 1 , such that the corresponding Beltrami coefficients μ_{n} satisfy $\left\|\mu_{n}\right\|_{\infty} \rightarrow 0$, but

$$
\left|\phi_{n}\left(z_{n}\right)-z_{n}\right| \geq \delta>0
$$

for some $z_{n} \in D(\hat{R})$. As a family of quasiconformal maps with uniformly bounded distortion fixing 0 and 1 is normal [15, §II.5], we may assume that $\phi_{n} \rightarrow \phi$ as $n \rightarrow \infty$, uniformly on compacta in \mathbf{C}, and ϕ is a conformal homeomorphism. Our normalization implies that $\phi(z)=z$ and we obtain a contradiction.

Lemma 2 For every positive integer d and $\eta>0$ there exists $\gamma \in(0,1 / 2)$ with the following property:

Let h_{1} and h_{2} be holomorphic functions in $A(r / 2,4 r)$ such that $\left\|h_{i}\right\|_{\infty}<$ $\gamma, i=1,2$. Then there exists a quasiregular local homeomorphism ϕ : $A(r, 2 r) \rightarrow \mathbf{C}$ with boundary values

$$
\phi(z)=z^{d}\left(1+h_{1}(z)\right), \quad|z|=r
$$

and

$$
\phi(z)=z^{d}\left(1+h_{2}(z)\right), \quad|z|=2 r
$$

and the Beltrami coefficient μ of ϕ satisfies $\|\mu\|_{\infty}<\eta$.
Proof. We define $h(z):=(2-|z| / r) h_{1}(z)+(|z| / r-1) h_{2}(z)$. This function is smooth in the ring $A(r, 2 r)$ and has boundary values $h_{1}(z),|z|=r$, and $h_{2}(z),|z|=2 r$. The sup-norm of the derivative $D h: A(r, 2 r) \rightarrow \mathbf{R}^{2}$ tends to 0 when $\gamma \rightarrow 0$. Thus $\phi(z):=z^{d}(1+h(z))$ has all the required properties when γ is small enough.

Proof of Proposition 1. It follows from our hypotheses on the critical points of P that $J(P)$ is totally disconnected and $P^{n}(z) \rightarrow \infty$ for all $z \in \mathbf{C} \backslash J(P)$, see, e. g., [6, p. 67].

Let $d:=\operatorname{deg} P$. Recall (see [6, p. 34] or [18, p. 63, p. 147]) that the limit

$$
\begin{equation*}
u:=\lim _{n \rightarrow \infty} \frac{1}{d^{n}} \log \left|P^{n}\right| \tag{1}
\end{equation*}
$$

exists uniformly on compacta in $\mathbf{C} \backslash J(P)$ and u is a positive harmonic function there, satisfying

$$
\begin{equation*}
u(z) \sim \log |z|, \quad z \rightarrow \infty \tag{2}
\end{equation*}
$$

If we extend u by setting $u(z)=0$ for $z \in J(P)$ the resulting function is continuous, and we have $u(z)>0$ if and only if $z \in \mathbf{C} \backslash J(P)$.

We may assume without loss of generality that $z_{k} \in \mathbf{C} \backslash J(f)$, because this can be achieved by a small shift of z_{k}, using that $J(f)$ is totally disconnected. Performing another small shift of z_{k} if necessary, we may also assume that

$$
\begin{equation*}
0<u\left(z_{k}\right) \neq d^{j} u(c) \quad \text { for all } \quad c \in \operatorname{crit}(P) \quad \text { and } \quad j \in \mathbf{Z}, \tag{3}
\end{equation*}
$$

where $\operatorname{crit}(P)$ denotes the set of critical points of P. It follows from (3) that there exists $\kappa>0$ with the property

$$
\left|d^{n} u\left(z_{k}\right)-d^{j} u(c)\right|>\kappa d^{n} \quad \text { for all } \quad c \in \operatorname{crit}(P) \quad \text { and } \quad n \in \mathbf{N}, j \in \mathbf{Z},
$$

from which it follows in view of (1) that

$$
\begin{equation*}
\min _{j \in \mathbf{N}}\left|\log \frac{\left|P^{n}\left(z_{k}\right)\right|}{\left|P^{j}(c)\right|}\right| \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty \quad \text { and } \quad c \in \operatorname{crit}(P) \tag{4}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\min _{0 \leq j<n} \frac{\left|P^{n}\left(z_{k}\right)\right|}{\left|P^{j}\left(z_{k}\right)\right|} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty \tag{5}
\end{equation*}
$$

We fix arbitrary $\delta>0$ and apply Lemma 1 for some \hat{R} satisfying $\hat{R} \geq R+1, \hat{R} \geq 1+\max _{1 \leq j \leq d}\left|a_{j}\right|, \hat{R} \geq 1+\max _{1 \leq j \leq k}\left|z_{j}\right|$, and $\hat{R} \geq$ $1+\max _{|z|=R+1}|P(z)|$. Then, using η obtained from Lemma 1 and d, we apply Lemma 2 to obtain $\gamma \in(0,1 / 2)$.

Now we are going to find a large integer n so that the following conditons (6)-(11) are satisfied.

$$
\begin{equation*}
\left|P^{n}\left(z_{k}\right)\right|>\max \left\{\frac{4}{\gamma}(R+1), \frac{2 e(d+1)}{a}\right\} \tag{6}
\end{equation*}
$$

where $a:=\lim _{z \rightarrow \infty} z^{-d} P(z)$,

$$
\begin{gather*}
r:=\frac{\gamma\left|P^{n}\left(z_{k}\right)\right|}{4}>\frac{16}{\gamma}, \tag{7}\\
\left|a^{-1} z^{-d} P(z)-1\right|<\gamma, \quad \text { for } \quad z \in \Delta(r / 2), \tag{8}\\
\min _{j \in \mathbf{N}}\left|\log \frac{\left|P^{n}\left(z_{k}\right)\right|}{\left|P^{j}(c)\right|}\right|>\log \frac{4}{\gamma}, \quad c \in \operatorname{crit}(P), \tag{9}\\
\min _{0 \leq j<n} \frac{\left|P^{n}\left(z_{k}\right)\right|}{\left|P^{j}\left(z_{k}\right)\right|}>\frac{4}{\gamma}, \tag{10}
\end{gather*}
$$

and
the P - orbits of all points $z_{1} \ldots, z_{k-1}$ are contained in $D(r)$.
Conditions (9) and (10) can be satisfied in view of (4) and (5) respectively.
We define a quasiregular map $Q_{1}: \mathbf{C} \rightarrow \mathbf{C}$ in the following way:

$$
\begin{gather*}
Q_{1}(z)=P(z), \quad z \in D(r) \tag{12}\\
Q_{1}(z)=a z^{d}\left(1-\frac{z}{P^{n}\left(z_{k}\right)}\right), \quad z \in \Delta(2 r), \tag{13}
\end{gather*}
$$

and in the annulus $A(r, 2 r)$ we interpolate using Lemma 2 with $h_{1}(z)=$ $a^{-1} z^{-d} P(z)-1$ and $h_{2}(z)=-z / P^{n}\left(z_{k}\right)$. The conditions of Lemma 2 are satisfied in view of (7) and (8).

If $U:=\Delta\left(2\left|P^{n}\left(z_{k}\right)\right|\right)$ then U is Q_{1}-invariant and all Q_{1}-orbits in U tend to infinity. The map Q_{1} has the following properties:
(i) the Q_{1}-orbits of the critical points of Q_{1} tend to infinity.

Indeed, the critical set of Q_{1} consists of the critical set of P and one additional point $w:=d P^{n}\left(z_{k}\right) /(d+1)$. The P-orbits of the critical points of P do not intersect the annulus $A\left(r, 2\left|P^{n}\left(z_{k}\right)\right|\right)$ in view of (9), so their Q_{1}-orbits also do not intersect this annulus, but do intersect the set U, and thus tend to infinity. Furthermore, $Q_{1}(w)=a w^{d} /(d+1) \in U$ in view of (6), so the Q_{1}-orbit of w also tends to infinity.
(ii) $\left(Q_{1}\right)^{n+1}\left(z_{k}\right)=0$.

Indeed, $\left(Q_{1}\right)^{2}\left(\left(Q_{1}\right)^{n-1}\left(z_{k}\right)\right)=\left(Q_{1}\right)^{2}\left(P^{n-1}\left(z_{k}\right)\right)=Q_{1}\left(P^{n}\left(z_{k}\right)\right)=0$, because $P^{j}\left(z_{k}\right) \in D(r)$ for $j<n$ in view of (10) and $P(z)=Q_{1}(z)$ for $z \in D(r)$ by definition.
(iii) $Q_{1}^{m_{j}}\left(z_{j}\right)=0$ for $1 \leq j \leq k-1$.

This follows from (11) since $Q_{1}(z)=P(z)$ for $z \in D(r)$.
Thus Q_{1} has all the required properties, except that it is not holomorphic in the annulus $A(r, 2 r)$. To make it holomorphic we use a method of M. Shishikura [17]; see also [5, $\S \S 8-9]$ for an account of Shishikura's method. The image of the annulus $A(r, 2 r)$ is contained in the invariant domain U, which is disjoint from $A(r, 2 r)$. This permits us to define a new conformal structure σ in \mathbf{C} such that it coincides with the standard conformal structure σ_{0} in U, and $Q_{1}:(\mathbf{C}, \sigma) \rightarrow(\mathbf{C}, \sigma)$ is holomorphic. The distortion of this structure with respect to the standard one is measured by the sup-norm of the Beltrami coefficient which is the same as that of Q_{1}, namely at most η (see Lemmas 1 and 2). By the basic existence theorem for quasiconformal mappings [15, Chapter 5], there exists a conformal homeomorphism $\psi:\left(\mathbf{C}, \sigma_{0}\right) \rightarrow(\mathbf{C}, \sigma)$. We can normalize it by $\psi(0)=0$ and $\psi(1)=1$. Then $Q:=\psi^{-1} \circ Q_{1} \circ \psi$ is easily seen to be a polynomial. The dynamics of Q are similar to those of Q_{1}, namely from (i)-(iii) it follows that the Q-orbits of the critical points of Q tend to infinity, and with $z_{j}^{\prime}:=\psi^{-1}\left(z_{j}\right), \quad 1 \leq j \leq k$, and $m_{k}=n+1$ we have $Q^{m_{j}}\left(z_{j}^{\prime}\right)=0$ for $1 \leq j \leq k$.

Finally we notice that $\psi:\left(\mathbf{C}, \sigma_{0}\right) \rightarrow\left(\mathbf{C}, \sigma_{0}\right)$ is quasiconformal and the sup-norm of its Beltrami coefficient is at most η. The same is true for ψ^{-1} and so by Lemma 1 we have

$$
|\psi(z)-z|<\delta \quad \text { and } \quad\left|\psi^{-1}(z)-z\right|<\delta \quad \text { for } \quad z \in D(\hat{R}) .
$$

If $\delta<1$ and $|z| \leq R$, then $|\psi(z)| \leq R+\delta<r$ and hence $\left|Q_{1}(\psi(z))\right|=$
$|P(\psi(z))| \leq \hat{R}-1$. We deduce that if $\delta \rightarrow 0$, then

$$
Q(z)=\psi^{-1}\left(Q_{1}(\psi(z))\right)=\psi^{-1}(P(\psi(z))) \rightarrow P(z)
$$

uniformly for $z \in D(R)$. This implies that Q and z_{j}^{\prime} have all the required properties for sufficiently small δ.
Proof of Theorem 1. We fix a dense sequence $\left(z_{j}\right)_{j=1}^{\infty}$ in \mathbf{C} with $z_{1}=3 / 4$, a sequence of positive numbers $\left(\epsilon_{j}\right)$ with the property

$$
\begin{equation*}
\sum_{j=1}^{\infty} \epsilon_{j}<1 \tag{14}
\end{equation*}
$$

and an increasing sequence $\left(R_{j}\right) \rightarrow \infty$ with the property

$$
\begin{equation*}
\sum_{j=1}^{\infty} \frac{1}{R_{j}}<\infty \tag{15}
\end{equation*}
$$

Starting with $k=2, P_{2}(z)=4 z^{2}-3 z, m_{1}=1$ and $z_{1}=z_{1,2}=3 / 4$, we apply Proposition 1 repeatedly, and obtain a sequence $\left(P_{k}\right)$ of polynomials and a sequence $\left(m_{k}\right)$ of positive integers with the following properties: $\operatorname{deg} P_{k}=k, P_{k}(0)=0, P_{k}(1)=1$, and for every $j \in \mathbf{N}$ and $k>j$, there is a point $z_{j, k}$ satisfying

$$
\left|z_{k}-z_{k, k+1}\right|<\epsilon_{k+1} \quad \text { and } \quad\left|z_{j, k}-z_{j, k+1}\right|<\epsilon_{k+1} \quad \text { for } \quad j<k
$$

such that

$$
\begin{equation*}
P_{k}^{m_{j}}\left(z_{j, k}\right)=0 . \tag{16}
\end{equation*}
$$

In addition, the zeros $a_{j, k}$ of P_{k} satisfy

$$
\left|a_{k, k}\right|>R_{k} \quad \text { for } \quad k \geq 3 \quad \text { and } \quad\left|a_{j, k}-a_{j, k+1}\right|<\epsilon_{k+1} \quad \text { for } \quad k \geq 2, j \leq k,
$$

and the sequence $\left(P_{k}\right)$ converges uniformly on compacta in \mathbf{C} to an entire function f.

It follows that the limits $w_{j}:=\lim _{k \rightarrow \infty} z_{j, k}$ exist for all $j \in \mathbf{N}$ and $\left|z_{j}-w_{j}\right| \rightarrow 0$ as $j \rightarrow \infty$. Thus the sequence $\left(w_{j}\right)$ is dense in C. Passing to the limit as $k \rightarrow \infty$ in (16), we conclude that $f^{m_{j}}\left(w_{j}\right)=0$. This means that the preimages of zero are dense in \mathbf{C}. Thus $J(f)=\mathbf{C}$.

Finally we have to estimate the growth. We have

$$
P_{k}(z+1)=\prod_{j=1}^{k}\left(1-\frac{z}{c_{j, k}}\right)
$$

with $c_{j, k}=a_{j, k}-1$. Thus $\left|c_{j, k}-c_{j, k+1}\right|<\epsilon_{k+1}$ for $k \geq 2, j \leq 2$ and $\left|c_{k, k}\right|>R_{k}-1$ for $k \geq 3$. Passing to the limit when $k \rightarrow \infty$ and taking (15) into account we conclude that

$$
f(z+1)=\prod_{j=1}^{\infty}\left(1-\frac{z}{c_{j}}\right)
$$

where $\left|c_{j}\right|=\left|\lim _{k \rightarrow \infty} c_{j, k}\right|>R_{j}-1-\sum_{n=j+1}^{\infty} \epsilon_{n}>R_{j}-2$. Thus f is an entire function of genus zero. Using standard estimates for canonical products (see, for example, [14]) we can choose $\left(R_{j}\right)$ so that the growth of f is arbitrarily slow.

Acknowledgement. We thank the referee for a very careful reading of the manuscript and helpful suggestions.

References

[1] I. N. Baker, Limit functions and sets of non-normality in iteration theory, Ann. Acad. Sci. Fenn. 467 (1970).
[2] I. N. Baker, Some entire functions with multiply-connected wandering domains, Ergodic Theory Dynamical Systems 5 (1985), 163-169.
[3] I. N. Baker, P. J. Rippon, Iteration of exponential functions, Ann. Acad. Sci. Fenn. 9 (1984), 49-77.
[4] W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), 151-188.
[5] A. F. Beardon, Iteration of rational functions, Springer, New York 1991.
[6] L. Carleson, T. W. Gamelin, Complex dynamics, Springer, New York 1993.
[7] R. L. Devaney, Julia sets and bifurcation diagrams for exponential maps, Bull. Amer. Math. Soc. (N.S.) 11 (1984), 167-171.
[8] R. L. Devaney, Dynamics of entire maps, in: Dynamical Systems and Ergodic Theory, Banach Center Publ., vol. 23, Polish Scientific Publishers, Warsaw, 1989, pp. 221-228.
[9] A. Eremenko and M. Yu. Lyubich, The dynamics of analytic transforms, Leningrad Math. J. 1 (1990), 563-634.
[10] M. Herman, Are there critical points on the boundaries of singular domains? Comm. Math. Phys. 99 (1985), 593-612.
[11] A. Hinkkanen, On the size of Julia sets, in: Complex Analysis and its applications, Pitnam Research Notes in Mathematics Series 305 (1995), 178-189.
[12] C. M. Jang, Julia set of the function $z \exp (z+\mu)$, Tôhoku Math. J. 44 (1992), 271-277.
[13] J. K. Langley, On the multiple points of certain meromorphic functions, Proc. Amer. Math. Soc. 123 (1995), 1787-1795.
[14] B. Ya. Levin, Lectures on entire functions, Transl. Math. Monographs, vol. 150, AMS, Providence RI, 1996.
[15] O. Lehto, K. I. Virtanen, Quasiconformal mappings in the plane, Springer, Berlin - Heidelberg - New York 1973.
[16] M. Misiurewicz, On iterates of e^{z}, Ergodic Theory Dynamical Systems 1 (1981), 103-106.
[17] M. Shishikura, On the quasi-conformal surgery of rational functions, Ann. Sci. École Norm. Sup. (4) 20 (1987), 1-29.
[18] N. Steinmetz, Rational iteration, Walter de Gruyter, Berlin 1993.
W. B.: Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, D-24098 Kiel, Germany
bergweiler@math.uni-kiel.de
A. E.: Purdue University, West Lafayette IN 47907, USA
eremenko@math.purdue.edu

[^0]: *Supported by EPSRC grant GR/L 35546 at Imperial College and by NSF grant DMS9800084

