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Abstract

We describe the limit zero distributions of sequences of polynomials

with positive coefficients. We also characterize the polynomials with

real coefficients for which some power has positive coefficients.
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1 Introduction and results

If f is a polynomial with non-negative coefficients, then evidently

|f(z)| ≤ f(|z|), z ∈ C. (1.1)

The converse is not true. Linnik and Ostrovskii [8, p. 32] give the simple
example

f(z) = 1 + 2z − z2 + 3z3 + 3z4,

which satisfies (1.1) because f2 has positive coefficients.
Our first result is

Theorem 1. Let

f(z) = a0 + . . .+ adz
d, a0 > 0, ad > 0, (1.2)

be a real polynomial. The following conditions are equivalent:

∗Supported by NSF grant DMS-1361836.
†Supported by NSF grant PHY-0424082.
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(i) There exists a positive integer m such that all coefficients of fm are

strictly positive.

(ii) There exists a positive integer m0 such that for all m ≥ m0, all coeffi-

cients of fm are strictly positive.

(iii) The inequalities

|f(z)| < f(|z|), z 6∈ [0,∞), (1.3)

and

a1 > 0, ad−1 > 0 (1.4)

hold.

Corollary 1. Let g be an entire function with non-negative coefficients and

let f be a real polynomial satisfying condition (iii) of Theorem 1. Then all

but finitely many coefficients of g ◦ f are non-negative.

In the case that g(z) = ez, a much stronger result was obtained by Hay-
man [5, Theorem X]. He actually obtained for a real polynomial f a necessary
and sufficient condition for all but finitely many coefficients of exp f to be
positive.

Theorem 1 will allow us to answer the following question asked by Ofer
Zeitouni and Subhro Ghosh [13].

Let P be a polynomial. Consider the discrete probability measure µ[P ]
in the plane which has an atom of mass m/ degP at every zero of P of
multiplicity m. It is called the “empirical measure” in the theory of random
polynomials.

Let µn be a sequence of empirical measures of some polynomials with
positive coefficients, and suppose that µn → µ weakly. The question is how
to characterize all possible limit measures µ. We give such a characterization
in terms of logarithmic potentials.

Theorem 2. For a measure µ to be a limit of empirical measures of polyno-

mials with positive coefficients, it is necessary and sufficient that the following

conditions are satisfied:

µ is symmetric with respect to the complex conjugation, µ(C) ≤ 1, and

the potential

u(z) =

∫

|ζ|≤1

log |z − ζ|dµ(ζ) +

∫

|ζ|>1

log

∣

∣

∣

∣

1 − z

ζ

∣

∣

∣

∣

dµ(ζ) (1.5)
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has the property

u(z) ≤ u(|z|). (1.6)

The potential in Theorem 2 converges for every positive measure with the
property µ(C) <∞ to a subharmonic function u 6≡ −∞. If

∫

|ζ|>1

log |ζ|dµ(ζ) <∞ or

∫

|ζ|<1

log
1

|ζ|dµ(ζ) <∞,

then the definition of u in Theorem 2 can be simplified to

∫

C

log |z − ζ|dµ(ζ) or

∫

C

log

∣

∣

∣

∣

1 − z

ζ

∣

∣

∣

∣

dµ(ζ),

respectively. When both integrals exist, all three potentials differ from each
other by additive constants.

Obrechkoff [9] proved that empirical measures of polynomials with non-
negative coefficients satisfy

µ({z ∈ C∗ : | arg z| ≤ α}) ≤ 2α

π
µ(C∗), 0 ≤ α ≤ π/2. (1.7)

We call this the Obrechkoff inequality. The limits of these measures also
satisfy (1.7).

Combining our result with Obrechkoff’s theorem we conclude that (1.6)
and symmetry of the measure imply (1.7). In particular we find that Obresch-
koff’s inequality is satisfied not only by polynomials with non-negative coef-
ficients, but more generally by polynomials satisfying (1.1).

The converse does not hold; that is, the inequalities (1.1) and (1.6) do
not follow from Obrechkoff’s inequality. Indeed, let

P (z) = (z2 + 1)m(z2 − 2z cosβ + 1)

This polynomial has roots of multiplicity m at ±i, and simple roots at
exp(±iβ). Obrechkoff’s inequality is satisfied if β ≥ π/(2m + 2). On the
other hand, P (1) < |P (−1)| for all m and β ∈ (0, π/2).

Acknowledgment. We thank John P. D’Angelo and Ofer Zeitouni for help-
ful comments.
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2 Proof of Theorem 1

It is evident that (ii) ⇒ (i) ⇒ (iii). So it remains to prove that (iii) ⇒ (ii).
So suppose that (iii) holds.

The first coefficients of the polynomials fm will be estimated by the fol-
lowing two propositions. These results hold not only for polynomials, but
more generally for power series. We can restrict to the case that f(0) = 1.
So let

f(x) = 1 +
∞

∑

n=1

anx
n and f(x)m = 1 +

∞
∑

n=1

a(m)
n xn. (2.1)

Proposition 1. Let f be a formal power series given by (2.1). Suppose that

a1 > 0. Then for every N ∈ N there exists M ∈ N such that if 1 ≤ n ≤ N
and m ≥M , then a

(m)
n > 0.

Proof. Without loss of generality we assume that a1 = 1. This can be
achieved by a scaling of the independent variable. Then

a(m)
n ≥

(

m

n

)

− pnm
n−1An,

where pn is the number of partitions of n, and An depends on the first n
coefficients of the series. As the first term has degree n, with respect to m,
it dominates when m is large enough.

Proposition 2. Let f be a power series given by (2.1) with positive radius

of convergence. Suppose that a1 > 0. Then there exist δ > 0 and M ∈ N

such that if m ≥M and 1 ≤ n ≤ δm, then a
(m)
n > 0.

Proof. The proof is based on the saddle point method. We assume without
loss of generality that a1 = 1. Noting that

t
f ′(t)

f(t)
= t+O(t2) as t→ 0, (2.2)

we see that there exists t0 > 0 such that tf ′(t)/f(t) is increasing in the
interval [0, t0]. We deduce that there exists δ > 0 such that if x ∈ (0, δ], then
there exists a unique r ∈ (0, t0] such that

r
f ′(r)

f(r)
= x. (2.3)
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We apply this for x = n/m. We will always assume that 0 < x ≤ δ, with
δ so small that various conditions imposed later are also satisfied. All these
conditions will depend only on f . With

φ(z) = log f(z) − x log z and h(θ) = φ(reiθ)

we then have

2πa(m)
n =

∫

|z|=r

f(z)m

zn

dz

iz
=

∫ π

−π

emφ(reiθ)dθ =

∫ π

−π

emh(θ)dθ. (2.4)

We have

φ′(z) =
f ′(z)

f(z)
− x

z
, and h′(θ) = ireiθφ′(reiθ).

Our choice of r in (2.3), and this is the essential point in the saddle point
method, yields that

φ′(r) = 0 and h′(0) = 0. (2.5)

Next we note that

φ′′(z) =
f ′′(z)

f(z)
−

(

f ′(z)

f(z)

)2

+
x

z2
=: A(z) +

x

z2
, (2.6)

and

φ′′′(z) =
f ′′′(z)

f(z)
− 3

f ′′(z)f ′(z)

f(z)2
+ 2

(

f ′(z)

f(z)

)3

− 2x

z3
=: B(z) − 2

x

z3
, (2.7)

where A and B are bounded in some neighborhood of 0. With z = reiθ we
have

h′′(θ) = −z2φ′′(z) − zφ′(z) (2.8)

and
h′′′(θ) = −iz3φ′′′(z) − 3iz2φ′′(z) − izφ′(z). (2.9)

Noting that
x ∼ r as x→ 0, (2.10)

by (2.2) and (2.3) we obtain

|zφ′(z)| =

∣

∣

∣

∣

z
f ′(z)

f(z)
− x

∣

∣

∣

∣

≤ r + x+O(r2) = 2x+O(x2) for |z| = r
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as x→ 0, and thus |zφ′(z)| ≤ 3x for |z| = r if δ is sufficiently small. Similarly,
|z2φ′′(z)| ≤ 2x and |z3φ′′′(z)| ≤ 3x for for |z| = r and small δ by (2.6) and
(2.7). Thus

|h′′′(θ)| ≤ 12x for − π ≤ θ ≤ π (2.11)

by (2.9), provided δ is small. Thus we have the expansion

h(θ) = h(0) − τθ2 +R(θ) with |R(θ)| ≤ 2x|θ|3, (2.12)

where

τ = −1

2
h′′(0) =

1

2
r2φ′′(r) (2.13)

by (2.5) and (2.8). From (2.6) and (2.10) we deduce that

1

4
x ≤ τ ≤ 3

4
x (2.14)

for small δ.
We choose N = 109 and note that

8π
√
n exp

{

−n
1/3

32

}

< 1 for n ≥ N. (2.15)

Using Proposition 1 we conclude that the first N coefficients of fm are posi-
tive for large m, so it is sufficient to restrict our attention to the coefficients
a

(m)
n with n ≥ N .

We put

θn =
1

2
n−1/3, (2.16)

and split the integral in (2.4) into two parts:

I1 =

∫ θn

−θn

emh(θ)dθ and I2 =

∫

θn≤|θ|≤π

emh(θ)dθ. (2.17)

For |θ| ≤ θn we deduce from (2.12) that

| Im(mh(θ))| = | Im(mR(θ))| ≤ m|R(θ)| ≤ 2mxθ3
n = 2nθ3

n =
1

4
≤ π

3
,

and also

m|R(θ)| ≤ 2mxθnθ
2 =

1

n1/3
mxθ2 ≤ 1

N1/3
mxθ2 ≤ mτθ2,
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so that
Remh(θ) ≥ mh(0) − 2mτθ2.

Thus

Re emh(θ) = cos(Im(mh(θ)))eRe mh(θ) ≥ 1

2
emh(0)e−2mτθ2

(2.18)

for |θ| ≤ θn, and hence

Re I1 ≥
1

2
emh(0)

∫ θn

θn

e−2mτθ2

dθ =
emh(0)

2
√

2mτ

∫

√
2mτθn

√
2mτθn

e−t2dt.

As
√

2mτθn ≥
√

mx

2
θn =

n1/6

2
√

2
≥ 103/2

2
√

2
= 5

√
5 ≥ 10,

and also 2
√

2mτ ≤ 2
√

3mx/2 = 2
√

3n/2 =
√

6n, we conclude that

Re I1 ≥
emh(0)

√
6n

∫ 10

−10

e−t2dt ≥ 1

2

emh(0)

√
n
. (2.19)

Now we estimate Re I2 from above. For |θ| ≤ 1/16 we have

|R(θ)| ≤ 2x|θ|3 ≤ 1

8
xθ2 ≤ 1

2
τθ2,

and thus

Reh(θ) ≤ h(0) − 1

2
τθ2 ≤ h(0) − 1

8
xθ2,

by (2.12) and (2.14). For θn ≤ |θ| ≤ 1/16 this yields

Remh(θ) ≤ mh(0) − 1

8
mxθ2

n = mh(0) − 1

32
n1/3. (2.20)

Next we show that the last inequality also holds for 1/16 ≤ |θ| ≤ π, provided
that δ is sufficiently small. In fact, we have log f(z) = z + O(z2) as z → 0
and thus

Reh(θ) − h(0) = Re log f(reiθ) − log f(r) = r(cos θ − 1) +O(r2).

As 1 − cos(1/16) ≥ 10−3 this yields for small δ that

Reh(θ) − h(0) ≤ −10−3x
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and hence

Remh(θ) −mh(0) ≤ −10−3mx = −10−3n ≤ −10−3N2/3n1/3 = −103n1/3

for |θ| ≥ 1/16. Thus (2.20) holds for θn ≤ |θ| ≤ π so that

Re I2 ≤ 2πemh(0) exp

(

− 1

32
n1/3

)

.

Using (2.15) we see that Re I2 ≤ Re I1/2. Now we deduce from (2.4) and

(2.17) that a
(m)
n > 0.

The proof of Theorem 1 also requires the following result.

Lemma 1. Let u be a harmonic function in a neighborhood of a point r > 0,
and suppose that u satisfies (1.6). Then

(

d

d log r

)2

u(r) > 0,

unless u(z) ≡ a log |z| + b with some real constants a and b.

Proof. Put v(ζ) = u(reζ). Then v is harmonic in a neighborhood of 0, and
(1.6) becomes

v(x+ iy) ≤ v(x). (2.21)

This implies that vyy(0) ≤ 0. Hence vxx(0) ≥ 0 since v is harmonic. Thus
the statement of the Lemma is equivalent to vxx(0) 6= 0.

Subtracting a constant from v does not change condition (2.21), so we
may assume in addition that v(0) = 0. Consider the Taylor expansion of v
at 0. In view of (2.21), the first degree term is ax. We subtract this term
from v without altering (2.21), so that now v(ζ) = O(ζ2), ζ → 0.

Proving the Lemma by contradiction, suppose that vxx(0) = 0. Then
vyy = 0, because the function is harmonic, and (2.21) implies vxy = 0. Thus
all second degree terms in the Taylor expansion vanish.

Let w be the lowest degree homogeneous polynomial in the Taylor expan-
sion of v. Then

w(ρeit) = cρm cos(mt), (2.22)

where m ≥ 3 and c 6= 0, unless v is linear, that is u(z) = a log |z| + b. But
(2.22) is incompatible with (2.21). Indeed at the point ρ exp(2πi/m) the
right hand side of (2.22) is equal to ρm while at the point ρ cos(2π/m) it is
equal to ρm cosm(2π/m) < ρm, so for sufficiently small ρ the inequality (2.21)
is violated.
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Completion of the proof of Theorem 1. We may assume without loss of gen-
erality that f(0) = 1. Proposition 2 shows that the coefficients a

(m)
n of fm

are positive for m ≥M and n/m ≤ δ. Applying Proposition 2 to the reverse
polynomial

z−df(1/z)

we obtain the positivity of the coefficients a
(m)
n for n/m ≥ m(d− δ). Thus it

remains to prove the conclusion for x = n/m ∈ [δ, d− δ].
We use the same saddle point argument as in the proof of Proposition 2,

but now our reasoning is simpler. We use the same notation as there. In
particular, we choose r as the unique solution of (2.3). We note here that
f(r) = M(r, f) by (1.3) so that

r
f ′(r)

f(r)
=
d logM(r, f)

log r

is an increasing function of r by the Hadamard Three Circles Theorem, but
we actually have

h′′(0) = −r2φ′′(r) = − d

d log r

(

r
f ′(r)

f(r)

)

< 0 (2.23)

by Lemma 1. The exceptional function in Lemma 1 does not satisfy (1.3).
The condition x = n/m ∈ [δ, d − δ] corresponds to r ∈ [r0, R0] for suitable
values r0 and R0 depending only on f .

We again have (2.12) and (2.13), except that in (2.12) we only have the
estimate |R(θ)| ≤ c1|θ|3 with some constant c1. Instead of (2.14) we now
deduce from (2.23) that c2 ≤ τ ≤ c3 for certain positive constants c2 and c3.

We use
θm = m−3/8 (2.24)

instead of (2.16) and split the integral into two parts

I1 =

∫ θm

−θm

emh(θ)dθ and I2 =

∫

θm≤|θ|≤π

emh(θ)dθ.

For |θ| ≤ θm and large m we again find that

| Im(mh(θ))| ≤ m|R(θ)| ≤ c1mθ
3
m = c1m

−1/8 ≤ π

3
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and
m|R(θ)| ≤ c1mθmθ

2 ≤ c2mθ
2 ≤ mτθ2.

As before this yields (2.18) for |θ| ≤ θm and hence

Re I1 ≥
1

2
emh(0)

∫ θm

θm

e−2mτθ2

dθ ≥ emh(0)

2
√

2mτ

∫ 10

−10

e−t2dt ≥ emh(0)

√
mτ

≥ emh(0)

√
c3m

.

For θm ≤ |θ| ≤ c2/(2c1) we have

|R(θ)| ≤ c2
2
θ2 ≤ τ

2
θ2

and thus
Remh(θ) ≤ mh(0) − mτ

2
θ2

m ≤ mh(0) − c2
2
m1/4. (2.25)

By hypothesis (1.3), and since r ∈ [r0, R0], there exists ε > 0 such that

Reh(θ) ≤ h(0) − ε

for c2/(2c1) ≤ |θ| ≤ π. Thus (2.25) also holds for θ in this range, provided
m is large. Hence

Re I2 ≤ 2πemh(0) exp
(

−c2
2
m1/4

)

.

For large m we again find that Re I2 < Re I1 and thus a
(m)
n > 0.

3 Examples and remarks

It follows from Theorem 1 that if P is a polynomial of degree at most 3,
then P has positive coefficients if and only if (1.3) is satisfied. The first non-
trivial case occurs when degP = 4, the first two and the last two coefficients
are positive while the middle one is negative. Therefore we consider the
polynomial

Pc(z) = 1 + z + cz2 + z3 + z4.

Proposition 3.

a) Pc satisfies (1.1) if and only if c ≥ −7/8.
b) Pc satisfies (1.3) if and only if c > 7/8.
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Proof. Instead of Pc we consider the Laurent polynomial

z−2Pc(z) = z−2 + z−1 + c+ z + z2 = (w + 1/2)2 − 5/4 − c,

where
w(z) = z + z−1.

Function w(z) maps the unit circle onto the interval [−2, 2], and the circles
|z| = r onto ellipses whose horizontal axes are longer than vertical axes. This
property persists when we shift such an ellipse horizontally. So the maximum
of |ζ2 − 5/4 − c| on such a shifted ellipse can occur only at its intersection
with the real line. We conclude that the statements a) and b) hold.

If f is as in (2.1) with a1 = 0, then clearly a
(m)
1 = 0 for all m. The

following example shows that if the hypothesis (1.4) is omitted in Theorem 1,
then every power of f may actually have some negative coefficients.

Example 1. Let

f(z) = 1 + z3 + z4 − az5 + z6 + z7 + z10.

It is easy to see that a is a sufficiently small positive number, then f satis-
fies (1.3). However, we have a

(m)
5 = −ma < 0 and a

(m)
10m−5 = −ma < 0 for

all m.

It is an interesting problem to describe the polynomials with the prop-
erty that their sufficiently high powers have non-negative coefficients. Such
polynomials must have property (1.3) unless they are of the form zpg(zq) for
some non-negative integers p and q ≥ 2. We conjecture that for polynomials
of the form

f(z) = a0 + a2z
2 + a3z

3 + . . . + ad−3z
d−3 + ad−2z

d−2 + adz
d,

with a0 > 0, a2 > 0, a3 > 0, ad−3 > 0, ad−2 > 0, ad > 0, and satisfying (1.3),
all sufficiently high powers fm have non-negative coefficients.

Now we show that Theorem 1 may fail for entire functions.

Example 2. Let Q(z) = a0 + . . . + adz
d be any polynomial with a0, a1 6= 0

that satisfies (1.1) but does not satisfy (1.3), for example, Q = P−7/8. Then
all positive powers of Q have some negative coefficients.
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Now define

f(z) = 1 + z +Q(z)
∞

∑

j=1

znj

nj !
,

where nj is any sequence with the property nj+1/nj → ∞. Then f satisfies
(1.3) but it is easy to see that every power has some negative coefficients.

Remark 1. In [2, p. 209], [3] and various other papers, D’Angelo studies the
Cauchy-Schwarz type condition

|r(z, w)|2 ≤ r(z, z)r(w,w) (3.1)

for polynomials r : Cn × Cn → C. For r(z, w) = f(zw) with a polynomial
f : C → C this condition takes the form

|f(zw)|2 ≤ f(|z|2)f(|w|2) for all z, w ∈ C. (3.2)

It turns out that this condition is equivalent to the condition (1.1) that we
considered.

Indeed, setting w = z in (3.2) we obtain (1.1) with z replaced by z2. On
the other hand, if (1.1) holds, then

|f(zw)|2 ≤ f(|z||w|)2 ≤ f(|z|2)f(|w|2),

where the second inequality holds by the Hadamard Three Circles Theorem.
Similarly, the strict inequality

|f(zw)|2 < f(|z|2)f(|w|2) for z 6= w (3.3)

is equivalent to the strict inequality (1.3) occurring in Theorem 1, (iii). The
proof is the same, using that equality in the Hadamard Three Circles The-
orem occurs only for monomials. Alternatively, one may use the stronger
convexity property given by Lemma 1.

Identifying a polynomial with the vector of coefficients, we define Kd ⊂
Rd+1 as the set of all polynomials of degree at most d which satisfy (1.1) or,
equivalently, which satisfy (3.2). This is a closed cone in Rd+1, which is also
closed with respect to multiplication.

The subset of Kd consisting of polynomials satisfying (1.3) is not open in
Rd+1, but the interior int(K) of Kd consists of all polynomials of degree d
with a0 > 0 and ad > 0 which satisfy (1.3) and (1.4). So condition (iii) of

12



Theorem 1 can be restated as f ∈ int(Kd). Now it can be deduced from the
first inclusion of [3, Theorem 7.1] that if f ∈ int(Kd), then there existsm ∈ N

such that the coefficients of fm are non-negative. Noting that f ∈ int(Kd) is
an open condition, one obtains in fact that the coefficients of fm are positive.
With these observations one can thus deduce the implication (iii) ⇒ (i) in
Theorem 1 from [3, Theorem 7.1].

We mention that the inclusion quoted is not proved in [3], but it is stated
that it can be derived from [1] and [12].

Our methods are completely different from those in [1, 3, 12]. Moreover,
they yield additional results such as Propositions 1 and 2, as well as those
mentioned in the following remark.

Remark 2. Our method allows to prove the positivity of certain coefficients
of fm even if f does not satisfy (1.3). We illustrate this by an example. Let
Q = P−7/8 be the polynomial already considered above and write

Q(x)m =
4m
∑

n=0

a(m)
n xn.

The arguments in Example 1 show that |Q(z)| < Q(|z|) if z /∈ [0,∞) and
|z| 6= 1. In other words, the condition (1.3) is violated only at certain points
on the unit circle. We define x by (2.3) with r = 1, that is,

x =
Q′(1)

Q(1)
= 2.

Our proof shows that given ε > 0, there exists m0 ∈ N such that a
(m)
n > 0

whenever m ≥ m0 and |n/m− 2| ≥ ε.
Quite generally, let f be a polynomial of degree d with real coefficients

and write

f(x)m =
dm
∑

n=0

a(m)
n xn.

Suppose that |f(z)| < f(|z|) for r1 ≤ |z| ≤ r2 and z /∈ [r1, r2], and put
xj = rjf

′(xj)/f(xj) for j = 1, 2. Then there exists m0 ∈ N such that

a
(m)
n > 0 whenever m ≥ m0 and n/m ∈ [x1, x2].

Remark 3. Polynomials with positive coefficients are important as gener-
ating functions of bounded random variables whose values are non-negative
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integers. In general, for a probability measure ν on the real line, one defines
the characteristic function

F (z) =

∫

R

e−itzdν(t). (3.4)

If the measure decays sufficiently fast at infinity, the characteristic function
is analytic in a horizontal strip a < Im z < b where a ≤ 0 ≤ b. Characteristic
functions have the property

|F (x+ iy)| ≤ F (iy), y ∈ (a, b), x ∈ R, (3.5)

which is analogous to (1.1). Functions satisfying (3.5) are called ridge func-
tions. When the measure ν is discrete and has finitely many atoms bj at
non-negative integers j, then

F (z) =
d

∑

j=0

bje
−ijz = P (e−iz),

where P is a polynomial with positive coefficients.
Analytic ridge functions and their relation to analytic characteristic func-

tions were studied much, see, for example, [4, 10, 11]. It is interesting, to
what extent our results can be generalized to this case.

4 Characterization of limit measures

In this section we use some facts about subharmonic functions and potential
theory which can be found in [7]. We recall that the Riesz measure of a
subharmonic function u is (2π)−1∆u, where the Laplacian is understood as
a Schwartz distribution. In particular the empirical measure of a polynomial
P of degree d is the Riesz measure of the subharmonic function (log |P |)/d.
For the general properties of convergence of subharmonic functions we refer
to [7, Theorem 3.2.13]. This result will be used repeatedly and is stated for
the convenience of the reader as Theorem A in the Appendix.

Proof of Theorem 2. For a subharmonic function u we put

B(r, u) = max
|z|≤r

u(z)
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and notice that condition (1.6) can be rewritten as

B(r, u) = u(r), r ≥ 0, (4.1)

in view of the Maximum Principle. This implies that u(r) is strictly increas-
ing for non-constant subharmonic functions u satisfying (1.6). Moreover, the
Hadamard Three Circles Theorem implies that u(r) = B(r, v) is convex with
respect to log r, so u(r) is continuous for r > 0.

First we prove the necessity of our conditions. Let fn be a sequence of
polynomials with non-negative coefficients. Then un = log |fn|/ deg fn are
subharmonic functions whose Riesz measures µn are the empirical measures
of fn. As the µn are probability measures, every sequence contains a subse-
quence for which the weak limit µ exists. This µ evidently satisfies µ(C) ≤ 1,
and µ is symmetric with respect to complex conjugation. Consider the po-
tential u defined by (1.5). This is a subharmonic function, u 6≡ −∞, and we
have un + cn → u for suitable constants cn.

For a complete discussion of the mode of convergence here we refer to the
Appendix; what we need is that un(r) + cn → u(r) at every point r > 0 and
for all other points

lim sup
n→∞

un(z) + cn ≤ u(|z|).

As the polynomials fn have non-negative coefficients, they satisfy (1.1), and
the un satisfy (1.6). Thus u satisfies (1.6).

In the rest of this section we prove sufficiency. We start with a measure
µ such that the associated potential u in (1.5) satisfies (1.6) and

u(z) = u(z). (4.2)

The idea is to approximate u by potentials of the form (log |fn|)/ deg fn,
where the fn are polynomials with real coefficients that satisfy the assump-
tions of Theorem 1. Applying Theorem 1 we find that fm

n has positive coef-
ficients for some m. But fm

n has the same empirical measure as fn, which is
close to µ.

If u(z) = k log |z|, then we approximate u with

un(z) = kn log |z| + (1 − kn) log |z + n|,

where kn is a sequence of rational numbers such that kn → k, 0 ≤ kn ≤ 1.
For the rest of the proof we assume that u(z) is not of the form k log |z|.

15



The approximation of u will be performed in several steps. In each step
we modify the function obtained on the previous step, and starting with u
obtain subharmonic functions u1, . . . , u5. Each modification will preserve the
asymptotic inequality

u(z) ≤ O(log |z|), z → ∞.

It is well known that every subharmonic function in the plane which satisfies
this inequality can be represented in the form (1.5) plus a constant, and we
will call functions of this form simply “potentials”, see, for example [6, Thm.
4.2] (case q = 0).

1. Fix ε > 0 and define

u1(z) = max{u(zeiα) : |α| ≤ ε}.

It is easy to see that u is the potential of some finite measure, and that
u1 → u when ε → 0. This implies that the Riesz measure of u1 is close (in
the weak topology) to that of u.

Evidently, u1 satisfies (1.6) and (4.2), and u1(re
iθ) = u(r) for |θ| ≤ ε.

Thus u1(re
iθ) = u(r) does not depend on θ for |θ| ≤ ε.

2. Choose δ ∈ (0, ε) and consider the solution v of the Dirichlet problem in
the sector

D = {z : | arg z| < δ}
with boundary conditions u1(z) and satisfying v(z) = O(log |z|) as z → ∞.
To prove the existence and uniqueness of v, we map D conformally onto the
upper half-plane, and apply Poisson’s formula to solve the Dirichlet problem.
The growth restriction near ∞ ensures that the solution of the Dirichlet
problem is unique.

Let u2 be the result of “sweeping out the Riesz measure” of u1 out of the
sector D. This means that

u2(z) =

{

v(z) for z ∈ D,
u1(z) otherwise.

Evidently, u2 is subharmonic in the plane and satisfies (4.2). We shall prove
that u2 also satisfies the strict version of (1.6), namely

u2(z) < u2(|z|) for z /∈ [0,∞). (4.3)
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In order to do so, we note first that u1 is not harmonic in any neighborhood
of the positive ray. This follows since u1(r) is not of the form u1(r) = c log r
and u1(re

iθ) does not depend on θ for |θ| ≤ ε. Because u1 is subharmonic and
v is harmonic this implies that v(r) > u1(r) for r > 0. As u1 satisfies (1.6)
we see that u2 satisfies (4.3) for δ ≤ | arg z| ≤ π. In order to prove that u2

satisfies (4.3) also for | arg z| ≤ δ, let G be the plane cut along the negative
ray and define

ψα(z) = zα/π for z ∈ G,

with the branch of the power chosen such that ψ(z) > 0 for z > 0. We claim
that for α ∈ (δ, ε), the function vα = u2 ◦ φα, extended by continuity to
the negative ray, is subharmonic in the plane. Indeed, near the negative ray
this function does not depend on arg z and it is subharmonic at all points
except the negative ray, thus it is also subharmonic in a neighborhood of the
negative ray.

The limit of these subharmonic functions vα as α → δ+ 0 is the function
vδ which is thus subharmonic. But the Riesz measure of this function vδ is
supported on the negative ray, thus

vδ(z) =

∫ 1

0

log |z + t|dν(t) +

∫ ∞

1+

log
∣

∣

∣
1 +

z

t

∣

∣

∣
dν(t),

with some non-negative measure ν. It is evident from this expression that
for every r > 0 the function t 7→ vδ(re

it) is strictly decreasing on [0, π].
Thus for every r > 0, our function t 7→ u2(re

it) is strictly decreasing in the
interval [0, δ]. This, together with the fact that u2 satisfies (4.2), completes
the proof that u2 satisfies (4.3).

3. Now we approximate our function u2 by a function u3 which is harmonic
near 0. We set

u3(z) = u2(z + ε).

Then u3 is harmonic near the origin, and using (4.3) and monotonicity of u2

on the positive ray, we obtain

u3(z) = u2(z + ε) < u2(|z + ε|) ≤ u2(|z| + ε) = u3(|z|)

for z 6= [0,∞), so (4.3) is satisfied by u3.

4. The subharmonic function u3 we constructed has the following properties:

a) it satisfies (4.3),
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b) it is harmonic near the origin,

c) it is harmonic in a neighborhood of the positive ray.

To construct a function which, in addition, is also harmonic near ∞ we
consider the function

v(z) = u3(1/z) + k log |z|,

where k = µ3(C), and µ3 is the Riesz measure of u3. It is easy to see that
this function is subharmonic, if we extend it to 0 appropriately. Notice that v
satisfies (4.3), and it is harmonic in an angular sector containing the positive
ray (in fact in the sector | arg z| < δ). The function w(z) = v(z + ε) also
satisfies (4.3) by the same argument that we used in Step 3 to show that
u3 satisfies (4.3). Moreover, it is harmonic near the origin and near infinity.
Thus the function

u4(z) = w(1/z) + k log |z|
has all properties a), b), c) and in addition

d) it is harmonic in a punctured neighborhood of infinity.

5. As u4 is harmonic in a neighborhood of the origin, it has a representation

u4(z) = u4(0) +

∫

log

∣

∣

∣

∣

1 − z

ζ

∣

∣

∣

∣

dν4(ζ).

Here ν4 denotes the Riesz measure of u4. As u4 satisfies (4.2), we can write

u4(x+ iy) = u4(0) + cx+O(z2), z = x+ iy → 0,

where

c =
d

dx

(
∫

log

∣

∣

∣

∣

1 − x

ζ

∣

∣

∣

∣

dν4(ζ)

)
∣

∣

∣

∣

x=0

= −
∫

Re ζ

|ζ|2 dν4(ζ).

Property (4.3) of u4 implies that c ≥ 0. We may achieve c > 0 by adding
to u4 the potential ε log |1 + z|. This procedure changes c to c + ε. This
also makes positive the linear term in the expansion at ∞. Thus we obtain
a function u5, close to our original potential u in the weak topology, which
besides (4.2) and (4.3) also satisfies

u5(x+ iy) = ν5(C) log |z| + b/x+O(z−2), z → ∞, (4.4)

u5(x+ iy) = u5(0) + ax+O(z2), z = x+ iy → 0, (4.5)

18



with positive constants a and b.

6. In our final step we replace the Riesz measure of u5 by a nearby discrete
probability measure with finitely many atoms, each having rational mass.

Let µ be the Riesz measure of u5. If µ(C) < 1 we change µ to a probability
measure by adding an atom sufficiently far at the negative ray. Evidently,
this procedure does not destroy our conditions (4.2) and (4.3), and we also
still have (4.4) and (4.5) for certain positive constants a and b.

By our construction, the support of µ is disjoint from the open set

H = {z : | arg z| < δ} ∪ {z : |z| < δ} ∪ {z : |z| > 1/δ},

and replacing δ by a smaller number if necessary we may assume that this
also holds after the atom on the negative ray was added.

Let µk be any sequence of symmetric discrete measures each having
finitely many atoms of rational mass, supported outside H, and µk → µ
weakly. Let wk be the potential of µk. Clearly the wk satisfy (4.2). We show
that they also satisfy (4.3), provided k is large.

First we consider small |z|, noting that the wk are harmonic for |z| < δ.
For z = reiθ with 0 < r < δ we thus have the expansion

wk(z) =
∞

∑

n=0

an,kr
n cosnθ. (4.6)

Hence
∂2

∂θ2
wk(z) = −a1,kr cos θ + Φk(z) (4.7)

with

Φk(z) = −
∞

∑

n=2

an,kr
nn2 cosnθ.

As the wk are harmonic for |z| < δ, the convergence to u5 is locally uniformly
there, and ∂2wk/∂θ

2 also converges there locally uniformly to ∂2u5/∂θ
2. For

0 < η < b and large k we thus have a1,k > η by (4.5). Moreover, for 0 < r0 < δ
there exists C > 0 such that |wk(z)| ≤ C for |z| = r0 and all k. By Cauchy’s
inequalities we obtain |an,kr

n
0 | ≤ C1 and hence

|Φk(z)| ≤ C2r
2 for r ≤ r0/2.

This inequality, together with (4.7) shows that wk satisfies (4.3) for |z| < r1
with some r1 independent of k.
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The case of large |z| is treated similarly, using (4.4) and the transforma-
tion

u(z) 7→ log |z| + u(1/z), (4.8)

as we did before. Thus there exists r2 > 0 such that wk satisfies (4.3) for
|z| > r2.

We finally consider the case that r1 ≤ |z| ≤ r2. Recall that by the first
statement of Lemma 1, ∂2u/∂θ2 is negative on the positive ray, so we have a
positive constant c such that (∂2/∂θ2)u(reiθ) < −c in some angular sector

S := {z : | arg z| < β, r1 ≤ |z| ≤ r2}.

We conclude that

L(r) := u(r) − u(reiβ) ≥ c1 > 0 for r1 ≤ r ≤ r2.

On the interval [r1, r2] the convergence wk → u is uniform, because u and wk

are harmonic in S. On the other hand, on the compact set

K := {z : r1 ≤ |z| ≤ r2, | arg z| ≥ β}

we have wk(z) ≤ u(z)+ c1/2 for all sufficiently large k. This follows from the
general convergence properties of potentials of weakly convergent measures
summarized in the Appendix. We conclude that wk satisfies (4.3) also for
r1 ≤ |z| ≤ r2, and hence for all z ∈ C.

Now wk is the empirical measure of some polynomial

f(z) = a0 + a1z + . . .+ ad−1 + adz
d,

and (4.3) implies that f satisfies (1.3). Clearly, a0 > 0 and ad > 0. Moreover,
since a1,k > 0 in (4.6), we see that a1 > 0. The analogous expansion after the
transformation (4.8) yields that ad−1 > 0. Thus the hypotheses of Theorem 1
are satisfied. Hence fm has positive coefficients for some m. As the empirical
measure of f and fm coincide, we see that u5 is a limit of empirical measures
of polynomials with positive coefficients. As we may choose u5 arbitrarily
close to our original potential u by choosing ε sufficiently small, we see that u
is also a limit of empirical measures of polynomials with positive coefficients.
This completes the proof.
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Appendix: Convergence of potentials

We frequently used various convergence properties of potentials of weakly
convergent measures which we state here for the reader’s convenience. An
excellent references for all this material is [7].

Let µn → µ be a sequence of weakly convergent positive measures. This
means that for every continuous function φ with bounded support

∫

φdµn →
∫

φdµ, n→ ∞.

If we restrict here to C∞-functions φ with bounded support, we obtain con-
vergence in the space D′ of Schwartz distributions. Actually, for positive
measures weak convergence is equivalent to D′-convergence.

Now the sequence of subharmonic functions

un(z) =

∫

|ζ|≤1

log |z − ζ|dµn(ζ) +

∫

|ζ|>1

log

∣

∣

∣

∣

1 − z

ζ

∣

∣

∣

∣

dµn(ζ)

converges in D′ to the potential of the limit measure µ.
We cite Theorem 3.2.13 from [7] which says that this convergence of

potentials also holds in several other senses.

Theorem A. Let uj 6≡ −∞ be a sequence of subharmonic functions con-

verging in D′ to the subharmonic function u. Then the sequence is uniformly

bounded from above on any compact set. For every z we have

lim sup
n→∞

un(z) ≤ u(z). (4.9)

More generally, if K is a compact set, and f ∈ C(K), then

lim sup
n→∞

sup
K

(un − f) ≤ sup
K

(u− f).

If dσ is a positive measure with compact support such that the potential of

dσ is continuous, then there is equality in (4.9) and u(z) > −∞ for almost

every z with respect to dσ. Moreover, ujdσ → udσ weakly.

In this paper we deal with subharmonic functions satisfying (4.1), so u(r)
is increasing and convex with respect to log r on (0,∞). Choosing the length
element on [0, R] as dσ in Theorem A, we conclude that un → u almost
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everywhere on the positive ray. For convex functions with respect to the
logarithm this is equivalent to the uniform convergence on compact subsets
of (0,∞). In particular, un(r) → u(r) at every point r > 0. As the un

satisfy (1.6), we conclude that

lim sup
n→∞

un(reiθ) ≤ u(r).

Choosing the uniform measure on the circle |z| = r as dσ in Theorem A,
we conclude that u(reiθ) ≤ u(r) almost everywhere with respect to dσ. As
u is upper semi-continuous, we conclude that u(reiθ) ≤ u(r). Thus (1.6) is
preserved in the limit.
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