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w ′′ + Aw = 0, A is entire,

of finite order:

ρ(A) = lim sup
r→∞

max|z|=r log log |A(z)|
log r

<∞.

When there is a pair of linearly independent solutions with all zeros
real?

If A is a polynomial, this is only possible when A = const
(Hellerstein, Chen and Williamson, 1984).

We show that such A are quite exceptional, in particular, ρ(A) is
either an odd integer, or half of an odd integer. Moreover, A has
completely regular growth in the sense of Levin–Pfluger.



If w1,w2 are linearly independent solutions, then F = w1/w2 is a
locally univalent meromorphic function, and every locally univalent
meromorphic function arises in this way: w1,w2 can be recovered
by the formulas

w1 = 1/
√
F ′, w2 = F/

√
F ′,

and

2A =
F ′′′

F ′
− 3

2

(
F ′′

F ′

)2

.

The expression in the RHS is called the Schwarzian. Let

E = w1w2 =
F

F ′
.



If A is transcendental, all non-trivial solutions of w ′′ + Aw = 0 are
of infinite order. However their product E can be of finite order,
for example, when A = p′′ − (p′)2 − e4p, with a polynomial p, then
there are two solutions

w1,2(z) = exp

(
−p(z)±

∫ z

0
e2p(ζ)dζ

)
,

whose product is w1w2 = e−2p.



Theorem 1 If zeros of E lie on finitely many rays, then E is of
finite order if and only if A is of finite order.

Langley’s Theorem (2020). Suppose that E is of finite order and
has only real zeros, and A is non-constant. Then F−1 has infinitely
many singularities over 0,∞, but the number m of singularities
over points in C∗ is finite. Moreover,
If the sequence of zeros of E is infinite and one-sided then m ≥ 2
and ρ(E ) ≥ m − 1/2.
If the sequence of zeros of E is two-sided, then m ≥ 4, and
ρ(E ) ≥ m − 1.

This suggests that one has to study locally univalent meromorphic
functions whose inverses have infinitely many singularities over
0,∞ and finitely many singularities over points in C∗.



Let F : C→ C be a local homeomorphism. An asymptotic curve is
a curve γ : [0, 1)→ C such that

γ(t)→∞ and f (γ(t))→ a ∈ C.

This a is called an asymptotic value. If there are only finitely many
asymptotic values aj , then there are disjoint disks Dj ⊂ C
containing them. An unbounded component of F−1(Dj) is called a
tract over aj .
Tracts are in bijective correspondence with singularities of F−1.
A local homeomorphism which commutes with complex
conjugation is called symmetric.
For every local homeomorphism F : C→ C there is a
homeomorphism φ such that F ◦ φ is a meromorphic function,
either in the unit disk or in C. This is a corollary of the
Uniformization Theorem.



Theorem 2 Let F : C→ C be a symmetric local homeomorphism
with all zeros and poles real, and such that F−1 has infinitely
many singularities over 0,∞ and m <∞ singularities over points
in C∗. Then there is a symmetric homeomorphism φ : C→ C such
that F0 = F ◦ φ is a meromorphic function and its Schwarzian 2A
and E = F/F ′ have the following properties:
a) If the sequence of zeros and poles of F is finite, then m ≥ 1 and
ρ(A) = ρ(E ) = m,
b) If the sequence of zeros and poles of F is infinite and one-sided,
then m ≥ 2 and ρ(A) = ρ(E ) = m − 1/2,
c) If the sequence of zeros and poles of F is two-sided, then m ≥ 4
and ρ(A) = ρ(E ) = m − 1,
d) A and E are of completely regular growth in the sense of
Levin–Pfluger.
e) All indicated values of m can actually occur.



An entire function f is of completely regular growth in the sense of
Levin–Pfluger, if

r−ρ log |f (rz)|, ρ = ρ(f )

has a non-zero limit when r →∞ in the space of Schwartz
distributions D ′(C), or equivalently in L1loc with respect to the
Lebesgue measure.
The limit function necessarily has the form rρh(θ) and h is called
the indicator of f . Theorem 2 permits to find easily the indicators
of A and E . They are determined up to a positive multiple by the
number m and by the presence of infinitely many of positive or
negative zeros.

In particular, Theorem 2 implies that A and E = F0/F
′
0 are of

normal type.



This can be compared with the classical

Theorem of R. Nevanlinna (1932) Let F : C→ C be a local
homeomorphism whose inverse has m <∞ singularities. Then
there is a homeomorphism φ : C→ C such that F0 = F ◦ φ is a
meromorphic function whose Schwarzian is a polynomial of degree
m − 2.

In comparison with this, we allow infinitely many singularities over
two points, but have an important additional condition that all
zeros and poles are real.



Theorem 3. If w ′′ + Aw = 0 has three pairwise linearly
independent solutions whose zeros are real, then A = const.



A modern way to prove Nevanlinna’s theorem is to show that

a) To show that the Riemann surface spread over the sphere
corresponding to the function F−1 is a result of gluing of finitely
many logarithmic ends, and then writing an explicit quasiregular
uniformization of it.

b) If the quasiconformal dilatation of this explicit uniformization is
small, the quasiconformal uniformization is close to a conformal
one in view of Teichmüller-Wittich–Belinskii distortion theorem.

We recall that a logarithmic end is a Riemann surface spread over
the sphere uniformized by the restriction of function f = L ◦ exp
onto the upper half-plane, where L is a linear-fractional function.



Our method follows the same general idea, but in addition to the
logarithmic end we need one more type of end, which we call a
B-end. It is uniformized by the restriction of a function of the form

f (z) = a exp

(∫ z

0
R(ζ)e−ζ

2
dζ

)
+ b

onto the upper half-plane. Here R is a rational function such that
f is meromorphic in C.
So our proof consists of the same two parts as the proof of
Nevanlinna’s theorem:
a) Topological part, which shows that the Riemann surface spread
over the sphere corresponding to F−1 in the theorem can be split
into at most two logarithmic ends, finitely many B-ends and a
compact part.
c) Analytic part, where we use the explicit uniformization of the
parts, and construct a quasiregular uniformization of the whole
surface, which has controlled dilatation, allowing to use the
Teichmüller–Wittich–Belinski theorem. This permits to make
conclusions about the asymptotic behavior of F .



Let D be a bordered surface, and f : D → C a topologically
holomorphic map, which means that in local coordinates it looks
like z 7→ zn for some integer n ≥ 1. For example, local
homeomorphisms are topologically holomorphic, with n = 1 at all
points.
A Riemann surface spread over the sphere is a pair (D, f ), where
D is a bordered surface, and f a topologically holomorphic map,
modulo the following equivalence relation: f1 = f2 ◦ φ, where
φ : D1 → D2 is a homeomorphism. We call f a uniformization
function of this Riemann surface.
By the Uniformization theorem, when D is open and simply
connected, there is always a holomorphic uniformization function
defined in a plane region.



Let (D1, f1), (D2, f2) be two Riemann surfaces spread over the
sphere. Let I1 ⊂ ∂D1 and I2 ⊂ ∂D2 be two boundary arcs, and
φ : I1 → I2 is an orientation reversing homeomorphism (we assume
that ∂Dj are equipped with their standard orientations). Assume
that

f2(φ(z)) = f1(z), z ∈ I1.

Then one can glue (D1, f1) with (D2, f2) and obtain a new
Riemann surface spread over the sphere (D, f ) such that D is
divided by an arc into two subregions, and the restrictions f f on
these subregions are equivalent to the initial elements.



Topological part of the proof of the Theorem 2.
Notice that singularities of the Riemann surface spread over C
corresponding to F−1 lie over finitely many points. We cut it by
making simple cuts which project into some intervals (aj , aj + ε],
where aj are all asymptotic values in C∗, and ε > 0 is small enough.
Preimages of these cuts γj are disjoint curves in C tending to ∞.
Connecting their starting points by some Jordan curve, we break
the plane into unbounded regions Dj and a bounded region G .
This picture can be made symmetric with respect to the real line.
So at most two regions Gj are symmetric and contain rays of the
real line, and all other Gj can be made disjoint from the real line
and they are paired by the symmetry.



Suppose that F has infinitely many positive zeros and poles. Then
the region G0 (containing a positive ray) is symmetric and contains
these zeros and poles. We show that restriction of F onto G0s has
no asymptotic curves with asymptotic values 0 or ∞, and maps G0

onto a logarithmic end which can be uniformized by

a tan z + b.

Similar logarithmic end we obtain if F has infinitely many negative
zeros and poles.

Restrictions of F onto all other regions Gj have no zeros, no poles,
and the only asymptotic curves with asymptotic values over C ∗ are
those along the boundary curves of Gj . We show that this implies
that this restrictions are equivalent to B-ends.
This completes the first (topological) part of the proof.



Analytic part.
Notice that our explicit uniformizing functions of pieces have
exponential asymptotics on the boundary curves of their regions
Gj . So one can transplant them to appropriate angular sectors so
that their behaviors on the boundary rays almost match.
To make them match completely, one performs quasiconformal
deformations in these sectors, which are close to identity maps.
Gluing these pieces together, we obtain a quasiregular
uniformization of the Riemann surface corresponding to F−1

(minus a compact piece) by a quasiregular map F1 which is
actually conformal except the set of finite logarithmic area:∫ ∫

E

dxdy

1 + x2 + y2
<∞.



This last condition is the condition of
Teichmüller–Wittich–Belinskii theorem which ensures the existence
of a quasiconformal homeomorphism φ such that F = F0 ◦ ψ,
where F0 : C→ C is a meromorphic function. This
homeomorphism has the property

φ(z) ∼ z ,

which allows us to derive all asymptotic properties of F0 claimed in
the Theorem 2.


