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Abstract

A theorem of Picard type is proved for entire holomorphic map-
pings into projective varieties. This theorem has local nature in the
sense that the existence of Julia directions can be proved under nat-
ural additional assumptions. An example is given which shows that
Borel’s theorem on holomorphic curves omitting hyperplanes has no
such local counterpart.

Let Pm be complex projective space of dimension m and M ⊂ Pm be a
projective variety. By a divisor onM we mean an intersection of a hyperplane
in Pm with M . We study holomorphic curves f : C→M .

Theorem 1. Every holomorphic map f : C → M, omitting 2n + 1 divisors
such that any n+ 1 of them have empty intersection, is constant.

Remark. The dimension of M is not mentioned in this formulation. Only
the intersection pattern is relevant.

Corollary. Every holomorphic map C→ Pn, omitting 2n+1 hypersurfaces,
such that any n+ 1 of them have empty intersection, is constant.

This Corollary also follows from the results of M. Green [4] and V. F. Babets
[1]. Their proofs were based on Borel’s theorem (which we will state later).
We start with a simple proof of Theorem 1, independent of Borel’s theorem.
The method of the proof first appeared in [3]. It also provides a new proof of
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the classical Picard theorem [7, 9] as well as its generalizations to quasiregular
maps in Rn [2, 7, 5].

Proof of Theorem 1. Let P1, . . . , P2n+1 be the linear forms in m + 1
variables defining the divisors. Consider a homogeneous representation F =
(f0 : . . . : fm) of the curve f, where fj are entire functions without common
zeros. Define the subharmonic function

u = log ||F || = 1

2
log(|f0|2 + . . .+ |fm|2).

Suppose that f is not constant. Then we may assume that the Riesz measure1

µ of u is infinite (if this is not the case, we can replace f by f ◦ g with any
transcendental entire g).

The functions

uj = log |Pj ◦ F | = log |Pj(f0, . . . , fm)|, j = 1, . . . 2n+ 1,

are harmonic in C.
Let I ⊂ {1, . . . , 2n + 1}, card I = n + 1. Let π : Cm+1 → Pm be the

standard projection. If z ∈ Cm+1, ||z|| = 1 and π(z) ∈ M then for some
constants C1 and C2 we have

C1 ≤ max
j∈I
|Pj(z)| ≤ C2

This follows from the assumption that the intersection of any n+ 1 divisors
is empty. Using the homogeneity we conclude that

C2||F (z)|| ≤ max
j∈I
|Pj ◦ F (z)| ≤ C2||F (z)||, z ∈ C,

so
max
j∈I

uj = u+O(1), card I = n + 1. (1)

In particular
max

1≤j≤2n+1
uj = u+O(1). (2)

We use the notation D(a, r) = {z ∈ C : |z − a| < r}.
1We call it Cartan measure of f . Notice the formula T (r, f) =

∫ r
0
µ(D(0, t))dt/t.
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Lemma. Let µ be a Borel measure in C, µ(C) = ∞. Then there exist
sequences ak ∈ C, ak →∞ and rk > 0 such that

Mk = µ(D(ak, rk))→∞ (3)

and
µ(D(ak, 2rk)) ≤ 200µ(D(ak, rk)). (4)

This Lemma is due to S. Rickman [10]. His formulation contains a minor
mistake (see the discussion below). The Lemma was also used in [2]. In the
end of the paper we will prove the lemma for completeness.

Apply the Lemma to the Riesz measure µ of the function u. We obtain
two sequences ak and rk, such that (3) and (4) are satisfied. Consider the
functions defined in D(0, 2):

uk(z) =
1

Mk

(u(ak + rkz)− ũ(ak + rkz))

and

uj,k(z) =
1

Mk

(uj(ak + rkz)− ũ(ak + rkz)), 1 ≤ j ≤ 2n+ 1,

where ũ is the smallest harmonic majorant of u in the disc D(ak, 2rk). The
functions uk are Green potentials that is

uk(z) = −
∫
D(0,2)

G(z, .) dµk,

where G(z, .) is the Green function of D(0, 2) with pole at the point z and
µk is the Riesz measure of uk.

It follows from (4) that µk(D(0, 2)) ≤ 200 so after selecting a subsequence
we may assume that uk → v, where v is a subharmonic function, not identi-
cally equal to −∞. (Convergence holds in L1

loc(D(0, 2), dxdy), and the Riesz
measures converge weakly, see [6, Theorem 4.1.9]). In particular v is not
harmonic because the Riesz measure of D(0, 1) is at least one in view of (3).

All functions uj,k are harmonic and bounded from above in view of (2), so
we may assume that uj,k → vj, each vj being harmonic or identically equal
to −∞ in D(0, 2). From (1) and (3) follows

max
j∈I

vj = v, card I ≥ n+ 1. (5)
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Thus v is continuous. For every I ⊂ {1, . . . , 2n + 1} of cardinality n + 1 we
consider the set EI = {z ∈ D(0, 2) : v(z) = vj(z), j ∈ I}. From (5) follows
that the union of these sets coinsides with D(0, 2).

We conclude that at least one set EI0 has positive area. By the uniqueness
theorem for harmonic functions all functions vj for j ∈ I0 are equal. Applying
(5) to I0 we conclude that v is harmonic. This is a contradiction which proves
the theorem.

Circles de remplissage and Julia directions. In Rickman’s formulation
of the Lemma there is an extra property

rk/|ak| → 0, k →∞. (6)

The following example shows that this property is not granted in general.
Take

µ(E) =
∫
E

dxdy

x2 + y2
, E ⊂ C.

Then all annuli {z : 2m ≤ |z| ≤ 2m+1} have equal measure and we cannot find
a sequence of discs D(ak, rk) satisfying (3) and (6). However the following is
true.

(*)Let µ be a measure in C such that the sequence

Am = µ({z : tm ≤ |z| ≤ tm+1})

is unbounded for some t > 1. Then there exist sequences ak →∞ and rk > 0
such that the conditions (4), (3) and (6) are satisfied.

It is clear that the assumption that Am is unbounded does not depend
on t > 1. To prove (*) we pick a sequence (m) of natural numbers such that
Am → ∞. There is a covering of the annulus {z : tm ≤ |z| ≤ tm+1} by
Nm → ∞ discs such that at least one of these discs, say Dm, still has large
measure and satisfies (6). Now take this disc Dm in place of D(0, R/4) in
the proof of the Lemma (see Appendix at the end of the paper). This proof
will give us a disc D(am, rm) which satisfies (4), (3) and (6).

A number θ ∈ [0, 2π) is called a Julia direction for a holomorphic curve
f : C→M if for every system of divisors D1, . . . , Dq such that any n+ 1 of
them have empty intersection, and for any ε > 0 all but at most 2n of these
divisors have infinitely many preimages in the angle {z : | arg z − θ| < ε}.
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Using the statement (*) instead the Lemma we prove the following:

Theorem 2. If the Riesz measure µ corresponding to a holomorphic curve
f has the property

lim sup
m→∞

µ({z : 2m ≤ |z| ≤ 2m+1} → ∞

then f has at least one Julia direction.
Actually under the assumptions of this theorem there exists a sequence of

discs D(ak, rk) satisfying (6) such that in the union of these discs all but at
most 2n divisors have infinitely many preimages. Any accumulation point of
the set {arg ak} is a Julia direction. Such sequence of discs is called “circles
de remplissage”.

The condition on the measure µ in Theorem 2 is best possible. Actually
there is an explicit description of all meromorphic functions (that is holomor-
phic curves in P1) having no Julia directions, which is due to A. Ostrovski
(see, for example [8]).

The classical theorem of E. Borel can be formulated in the following way:

Let f : C → Pn be a meromorphic curve with linearly independent compo-
nents i. e., whose image is not contained in a hyperplane. Let L1, . . . , Ln+2

be hyperplanes in general position. Then f cannot omit ∪jLj .

In the following example a curve f : C → Pn with linearly independent
components omits locally 2n hyperplanes in general position. That is there
exists a covering of the plane by a finite set of angular sectors such that f
omits 2n hyperplanes in each sector of the set. So there is no analogue of
Julia directions for Borel’s theorem and the estimate 2n for the number of
exceptional divisors is best possible even in the case when M = Pn and f is
linearly non-degenerate.

Example. For simplicity we construct the example only for n = 2. The
coordinate representation of f is (f0 : f1 : f2) where fj(z) = sin(εjz), ε =
exp(2πi/3), j = 0, 1, 2. The hyperplanes are defined by the vectors

(1, 0, 1) , (1, 0, 2) , (1, 1, 0) , (1, 2, 0) , (0, 1, 1) , (0, 1, 2).

A direct computation (or drawing a picture) shows that the system is admis-
sible. In the angle 0 < arg z < π/3, we have f2 = o(f0) and f2 = o(f1) as
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z →∞. So the hyperplanes defined by (1, 0, 1) , (1, 0, 2) , (0, 1, 1) and (0, 1, 2),
are omitted in this angle. In the angle π/4 < arg z < 3π/4 we have f2 = o(f0)
and f1 = o(f0), so the hyperplanes defined by (1, 0, 1) , (1, 0, 2) , (1, 1, 0) and
(1, 2, 0) are omitted in this angle. The other angles are studied similarly using
the property that f(εz) is obtained from f(z) by permutation of coordinates.

Appendix. Proof of the Lemma. Take a large number R > 0, so that
µ(D(0, R/4)) is large. Denote δ(z) = (R−|z|)/4. Then find such a ∈ D(0, R)
that

µ(D(a, δ(a)) >
1

2
sup

z∈D(0,R)
µ(D(z, δ(z))). (7)

Take r = δ(a). Then the disc D(a, 2r) can be covered by at most 100 discs
of the form D(z, δ(z)), so by (7)

µ(D(a, 2r)) ≤ 200µ(D(a, r)).

Putting z = 0 in (7) we get

µ(D(a, r)) ≥ 1

2
µ(D(0, R/4)).

So we have constructed the disc of arbitrarily large measure and property
(4). This proves the lemma.

The author thanks Min Ru and Yum-Tong Siu for helpful comments.
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