Holomorphic curves omitting five planes in projective space

Alexandre Eremenko^{*}

Abstract

In 1928 H. Cartan proved an extension of Montel's normality criterion to holomorphic curves in complex projective plane \mathbf{P}^2 . He also conjectured that a similar result is true for holomorphic curves in \mathbf{P}^n for any n. Recently the author constructed a counterexample to this conjecture for any $n \ge 3$. In this paper we show how to modify Cartan's conjecture so that it becomes true, at least for n = 3.

1. Introduction. A classical theorem of Borel says that any holomorphic mapping $f : \mathbf{C} \to \mathbf{P}^n$ omitting p = n + 2 hyperplanes in general position must be linearly degenerate – that is the image $f(\mathbf{C})$ must be contained in a hyperplane. To state the theorem more precisely we choose the representation of \mathbf{P}^n as the hyperplane in \mathbf{P}^{n+1} defined in homogenous coordinates by the equation $x_0 + \ldots + x_{n+1} = 0$. This representation has the advantage that the n + 2 omitted hyperplanes can be described by symmetric equations $x_j = 0, \ 0 \le j \le n+1$.

Borel's Theorem. Let f_j be entire functions without zeros satisfying

$$f_1 + \ldots + f_p = 0.$$

Then there exists a partition of the set of functions $\{f_j\}$ into classes such that all functions in the same class are constant multiples of each other and the sum of the functions in each class is zero.

^{*}A part of this work was done when the author was visiting Université de Paris-Sud (Orsay). This work was also supported by NSF grant DMS-9500636

The case p = 3 of Borel's theorem is nothing but the Little Picard Theorem. Indeed, to say that an entire function f omits 0 and 1 is the same as to say f + g - 1 = 0, where f and g have no zeros.

According to the so-called Bloch Principle, to Borel's theorem there should correspond a normality criterion, just as Montel's theorem corresponds to Picard's theorem. We refer to [2, 6] and [7] for general discussion of this heuristic principle. But, as Bloch remarks in [1], cf. [6, p. 224] it is not at all clear at first sight what this normality criterion should be.

Set $D(a,r) = \{z \in \mathbf{C} : |z| < r\}$, D(r) = D(0,r) and let U denotes the set of holomorphic functions g in D(1) such that $g(z) \neq 0, z \in D(1)$. Such functions are called *units*. We are going to study infinite families $F = \{f\}$ of p-tuples $f = (f_1, \ldots, f_p), f_j \in U$, satisfying the equation

$$f_1 + \ldots + f_p = 0. \tag{1}$$

Given such a family F let \mathcal{F} denotes the filter formed by complements of finite subsets of F.

A subset of indices $S \subset \{1, \ldots, p\}$ is called a C-class if (i) there exists $k \in S$ such that f_j/f_k are uniformly bounded on compacta as $f \to \mathcal{F}$ for all $j \in S$ and

(ii) $\sum_{j \in S} f_j / f_k \to 0$ as $f \to \mathcal{F}$, uniformly on compacta.

Notice that by (ii) every C-class contains at least 2 elements.

Cartan's conjecture. Given a family F of p-tuples of units satisfying (1) there exists an infinite subfamily $L \subset F$ such that for $f \in L$ the set of indices $\{1, \ldots, p\}$ can be partitioned into C-classes.

For p = 3 this is nothing else but Montel's normality criterion. The conjecture was stated by Cartan in [3], where he proved

Cartan's Theorem. Given a family F of p-tuples of units satisfying (1) there exists an infinite subfamily $L \subset F$ such that for $f \in L$ one of the following holds:

a) the full set of indices $\{1, \ldots, p\}$ forms a C-class

or

b) there exist at least two disjoint C-classes.

This theorem implies Cartan's conjecture for p = 4 because if the case b) occurs then two C-classes make a partition of the set of indices. When $p \ge 5$ Cartan's theorem falls short of proving his conjecture because in the case b) there may not be enough C-classes to make a partition of $\{1, \ldots, p\}$. On [3, pp. 69-70] Cartan discusses the hypothetical case when p = 5 and there are only two C-classes each containing two elements but the remaining index does not belong to any C-class. He concludes that constructing such an example would be difficult.

Such example has been recently constructed in [4]. A simplified version will be given in section 4. Actually this example shows that Cartan's conjecture fails even if we replace condition (ii) in the definition of C-class by a weaker condition that every C-class contains at least two elements. Examination of the example as well as our strong belief in Bloch's Principle suggest the following

Modified Conjecture. Let F be an infinite family of p-tuples of units in D(1) satisfying (1). Then there exists an infinite subfamily $L \subset F$ such that for $f \in L$ the set of indices can be partitioned into C-classes in the disk $D(r_p)$ where $0 < r_p < 1$ and r_p depends only on p.

It will follow from this conjecture that in any hyperbolic disk of sufficiently small radius the partition of the set of indices into C-classes is possible.

We can prove this Modified Conjecture only for p = 5. The proof given in section 3 is based on the the same techniques used by Bloch and Cartan, that is Nevanlinna theory and estimates of potentials. A very good reference is [6]. The new ingredient is an elementary lemma from potential theory contained in section 2.

The author thanks D. Drasin, B. Korenblum and the referee for valuable suggestions.

2. An auxilliary result on harmonic functions

Lemma 1 Let u_1 and u_2 be harmonic functions in the disk $D(z_0, r)$. Denote by u_+ the least harmonic majorant of $u_1 \vee u_2$ and by u_- the greatest harmonic minorant of $u_1 \wedge u_2$. If $u_+ \geq 0$ and $u_-(z_0) + \delta u_+(z_0) \geq 0$ for some δ , $0 < \delta < 1$, then one of the functions u_1 , u_2 is non-negative in $D(z_0, ar)$, where $a = a(\delta)$ is given by

$$a(\delta) = \frac{\sqrt{2} - \sqrt{1+\delta}}{\sqrt{2} + \sqrt{1+\delta}}.$$
(2)

Furthermore, we actually have $u_i(z) \ge \epsilon u_+(z_0)$ for i = 1 or 2 in the disk $D(z_0, a'r)$, $a' < a(\delta)$, for some ϵ depending only on a'.

Remarks. We have $a(0) = 3 - 2\sqrt{2} \approx .1716$. It seems interesting to determine the largest value of $a(\delta)$ for which the Lemma is true, at least when $\delta = 0$. It is plausible that the extreme functions when $\delta = 0$ are

$$u_1(z) = \Re \frac{(1+z)(z^2 - 4z + 1)}{(1-z)(1+z^2)}$$
 and $u_2(z) = u_1(-z).$

This example shows that $a(0) \leq 2 - \sqrt{3} \approx .268$.

Proof of Lemma 1. It is enough to consider the case when r = 1 and $z_0 = 0$.

We always denote by \vee and \wedge the pointwise maximum and minimum of functions respectively. When |z| = 1 we have $u_+(z) = (u_1 \vee u_2)(z)$ and $u_-(z) = (u_1 \wedge u_2)(z)$. Thus

$$u_1 + u_2 = u_+ + u_-, (3)$$

so the condition $u_{-}(0) + \delta u_{+}(0) \ge 0$ combined with (3) implies

$$u_1(0) + u_2(0) \ge (1 - \delta)u_+(0).$$

It follows that one of the numbers $u_1(0)$, $u_2(0)$ is at least $(1 - \delta)u_+(0)/2$. Suppose that

$$u_1(0) \ge \frac{1-\delta}{2}u_+(0).$$
 (4)

Applying Harnack's inequality to the positive harmonic function u_+ we obtain

$$u_{+}(z) \ge \frac{1-r}{1+r}u_{+}(0), \quad |z| \le r.$$
 (5)

On the other hand, $u_+ - u_1$ is also a positive harmonic function, whose value at 0 is at most $(1 + \delta)u_+(0)/2$, in view of (4). Thus Harnack's inequality implies

$$(u_{+} - u_{1})(z) \le \frac{(1+\delta)(1+r)}{2(1-r)}u_{+}(0), \quad |z| \le r.$$
 (6)

Combining (5) and (6), we obtain for $|z| \leq r$

$$u_1(z) \ge \left(\frac{1-r}{1+r} - \frac{(1+\delta)(1+r)}{2(1-r)}\right)u_+(0) = \frac{2(1-r)^2 - (1+\delta)(1+r)^2}{2(1-r^2)}u_+(0).$$

The last expression is positive when $r < a(\delta)$, where $a(\delta)$ is given by (2).

3. Proof of the Modified Conjecture for p = 5.

In view of Cartan's theorem we may assume that $\{1,3\}$ and $\{2,4\}$ are C-classes (in the full unit disk). Furthermore we may assume that $f_5 = -1$. Thus we have

$$f_1 + f_2 + f_3 + f_4 = 1, (7)$$

and by (ii) in the definition of a C-class

$$f_3/f_1 \to -1$$
 and $f_4/f_2 \to -1$, as $f \to \mathcal{F}$, (8)

uniformly on compacta in |z| < 1. Our goal is to show that either f_5/f_1 or f_5/f_2 tends to zero uniformly on compacta in $|z| < r^* = 2^{-8}$; that is the index 5 can be added to one of the C-classes which already exist. In other words we want to show that one of the functions f_1 or f_2 tends to infinity uniformly on compacta in $|z| < r^*$.

Set $g_1 = f_1 + f_3$, $g_2 = f_2 + f_4$ and $g = g'_1$ (derivative), so that by (7)

$$g_1 + g_2 = 1 (9)$$

and

$$g_1' = -g_2' = g. (10)$$

We conclude from (8) that

$$f_1/g_1 = (1 + f_3/f_1)^{-1} \to \infty, \quad f \to \mathcal{F}$$
 (11)

and similarly

$$f_2/g_2 \to \infty, \quad f \to \mathcal{F}$$
 (12)

uniformly on compact in |z| < 1.

Now it follows from (9) that

$$\log^{+}|g_{1}| = \log^{+}|1 - g_{2}| \le \log^{+}|g_{2}| + \log 2$$

and similarly $\log^+ |g_2| \le \log^+ |g_1| + \log 2$. Thus

$$\left|\log^{+}|g_{1}| - \log^{+}|g_{2}|\right| \le \log 2.$$
 (13)

Again from (9) we conclude that

$$|g_1| \lor |g_2| \ge 1/2, \tag{14}$$

so we may assume without loss of generality that

$$|g_1(0)| \ge 1/2. \tag{15}$$

Now we put $r^* = 2^{-8}$ and consider three cases.

Case 1.

$$|g_1(z)| \le 2e^e \text{ for } |z| \le r^*.$$
 (16)

We apply Cartan's lemma [6, Ch. VIII, §3] to estimate $|g_1|$ from below, using (15) and (16). For any given $\epsilon > 0$ we have

 $|g_1(z)| \ge C(\epsilon)$ for |z| = t

with some $t \in [r^* - \epsilon, r^*]$. So $|f_1(z)| \to \infty$ when |z| = t in view of (11), and hence, by the Minimum Principle, $f_1(z) \to \infty$ uniformly in $|z| \le r^* - \epsilon$.

Case 2. Now we assume that

$$|g_1(z_0)| \ge 2e^e$$
 for some $z_0, |z_0| \le r^*,$

but $|g(z)| \leq 1$ for all z in the disk $|z| \leq r^*$.

Then we integrate

$$g_1(z) = g_1(z_0) + \int_{z_0}^z g(\zeta) \, d\zeta$$

and obtain $|g_1(z)| \ge 1$, $|z| \le r^*$. Again (11) concludes the proof in this case.

Case 3. It remains to consider the possibility that there are points z_0 and z_1 in the disk $|z| \leq r^*$ such that

$$|g_1(z_0)| > 2e^e \tag{17}$$

and

$$|g(z_1)| \ge 1. \tag{18}$$

In view of (13) and (17) we have

$$|g_2(z_0)| \ge e^e. \tag{19}$$

Inequalities (11) and (17) imply

$$f_1(z_0) \to \infty. \tag{20}$$

For each $f \in F$ we fix reference points z_0 and z_1 in $D(r^*)$ satisfying (17) and (18)

Our plan is the following. We are going to apply Lemma 1 to the harmonic functions $u_1 = \log |f_1|$ and $u_2 = \log |f_2|$ in an appropriately chosen disk $D(z_0, r)$, with r > 1/2. The least harmonic majorant of $u_1 \vee u_2$ is positive by (11), (12) and (14). We need an estimate for the greatest harmonic minorant u_- of the function $u_1 \wedge u_2$ at the point z_0 from below. This is the same as the average of u_- over the circle $|z - z_0| = r$. To estimate this average from below we will use the derivative g and the subharmonic function $w = \log |g|$. We will show that (up to a small error term) w is a subharmonic minorant for $\log |g_1| \wedge \log |g_2| < u_1 \wedge u_2$, and thus $w(z_0)$ is a minorant for $u_-(z_0)$. However instead of a lower estimate of w at z_0 we only have an estimate at a nearby point z_1 (see (18)). We will handle this with the help of Lemma 3. Now we go into details.

For a holomorphic function h in the unit disk and positive number $r < 1 - r^*$ we define

$$m_{z_0}(r,h) = \int_{-\pi}^{\pi} \log^+ |h(z_0 + r e^{i heta})| rac{d heta}{2\pi}, \quad |z_0| < r^*.$$

Since $\log^+ |h|$ is subharmonic, $m_{z_0}(r, h)$ increases with r. We will omit the index z_0 in this notation with understanding that the point z_0 specified above is always used. In what follows we use the notation C_k for absolute constants (they may be different in each occurrence). We need the Lemma on the Logarithmic Derivative. It is convenient to start with the formulation as in [5, Sect. 2.2.2]: for holomorphic functions g_i we have for $1/2 < r < R < 1 - r^*$

$$m(r, g/g_i) \le C_1 + C_2 \log m(R, g_i) + C_3 \log \frac{1}{R-r} + C_4 \log^+ \log^+ \frac{1}{|g_i(z_0)|}.$$

In view of (17) and (19) the last term can be omitted. We also need to eliminate the term with $\log(R - r)$. This can be done with the following lemma which goes back to E. Borel (see, for example [6, Ch. VIII, Lemma 1.4]).

Lemma 2 Let $S \ge 0$ be an increasing function on [0, b], b > 0 and $\gamma > 0$. Then there exists a subset $E \subset [0, b]$ of measure at most $2e^{-S(0)/\gamma}$, such that

$$S(r + e^{-S(r)/\gamma}) \le S(r) + \gamma \log 2, \quad r \notin E.$$

We choose $S(r) = \log m(r, g_i)$ (so that $S(0) \ge 1$ by (17) and (19)), $\gamma = S(0)/(3\log 2)$ and put $R = r + e^{-S(r)/\gamma}$ in the Lemma on Logarithmic Derivative. The exceptional set E in Lemma 2 has measure at most 1/4, and the Lemma on Logarithmic Derivative becomes: there exists r,

$$1/2 = 2^7 r^* < r < 1 - r^* \tag{21}$$

such that

$$m(r, g/g_i) \le C_1 + C_2 \log m(r, g_i), \quad i = 1, 2;$$
 (22)

where C_1 and C_2 are absolute constants. We fix this r satisfying (21) and (22) until the end of the proof. (Of course r, as well as z_0 and z_1 , depends on f.)

Denote by u_+ the least harmonic majorant of $\log |f_1| \vee \log |f_2|$ in the disk $|z - z_0| < r$. Then by (11), (12) and (14)

$$u_+ \to +\infty, \quad f \to \mathcal{F}.$$
 (23)

uniformly in $D(z_0, r)$. Using (11), (12) positivity and harmonicity of u_+ we obtain

$$m(r,g_i) \le m(r,f_i) \le \int_{-\pi}^{\pi} u_+(z_0 + re^{i\theta}) \frac{d\theta}{2\pi} = u_+(z_0), \quad i = 1, 2.$$
 (24)

Thus (22), (24) and (23) imply for i = 1, 2

$$m(r, g/g_i) \le C_1 + C_2 \log m(r, g_i) \le C_1 + C_2 \log u_+(z_0) \le o(u_+(z_0))$$
(25)

as $f \to \mathcal{F}$. It follows from (24) and (25) that

$$m(r,g) \le m(r,g_1) + m(r,g/g_1) \le (1+o(1))u_+(z_0), \quad f \to \mathcal{F}.$$
 (26)

Now we need the following

Lemma 3 Let g be an analytic function in the disk $|z - z_0| \leq r$ and suppose that $|g(z_1)| \geq 1$ for some $z_1 \in D(z_0, r)$. Then

$$\int_{-\pi}^{\pi} \log |g(z_0 + re^{i\theta})| \frac{d\theta}{2\pi} + \delta m(r,g) \ge 0,$$

where $\delta = 4r|z_0 - z_1|/(r - |z_0 - z_1|)^2$.

Proof. Assume without loss of generality that $z_0 = 0$ and put $|z_1| = t$. Then by Poisson's formula

$$0 \le \log |g(z_1)|$$
$$\le \frac{r+t}{r-t} \int_{-\pi}^{\pi} \log^+ |g(re^{i\theta})| \frac{d\theta}{2\pi} - \frac{r-t}{r+t} \int_{-\pi}^{\pi} \log^- |g(re^{i\theta})| \frac{d\theta}{2\pi}$$
$$= \frac{r-t}{r+t} \int_{-\pi}^{\pi} \log |g(re^{i\theta})| \frac{d\theta}{2\pi} + \frac{4rt}{r^2 - t^2} m(r,g).$$

This proves the lemma.

In our situation we have $|z_0 - z_1| \leq 2r^* = 2^{-7}$, so by (21) the number δ from Lemma 3 has the following bound:

$$\delta \le \frac{8rr^*}{(r-2r^*)^2} \le \frac{16r^*}{r} \le 2^{-3}.$$
(27)

We apply Lemma 3 to our function g and use (18) (27) and (26) to obtain

$$\int_{-\pi}^{\pi} \log |g(z_0 + re^{i\theta})| \frac{d\theta}{2\pi} + \left(\frac{1}{8} + o(1)\right) u_+(z_0) \ge 0, \quad f \to \mathcal{F}.$$
 (28)

Finally we estimate |g| from above:

$$\log |g| \le \log |g_i| + \log^+ |g/g_i|, \quad i = 1, 2.$$

These inequalities together with (11) and (12) imply

$$\log |g| \le \log |g_1| \wedge \log |g_2| + \log^+ |g/g_1| + \log^+ |g/g_2|$$
$$\le \log |f_1| \wedge \log |f_2| + \log^+ |g/g_1| + \log^+ |g/g_2|.$$

We integrate this inequality over the circle $|z - z_0| = r$ and use (25) to estimate the integrals involving logarithmic derivatives:

$$\int_{-\pi}^{\pi} (\log|f_1| \wedge \log|f_2|)(z_0 + re^{i\theta}) \frac{d\theta}{2\pi} \ge \int_{-\pi}^{\pi} \log|g(z_0 + re^{i\theta})| \frac{d\theta}{2\pi} + o(u_+(0)),$$

which with (28) gives

$$\int_{-\pi}^{\pi} (\log |f_1| \wedge \log |f_2|) (z_0 + re^{i\theta}) \frac{d\theta}{2\pi} + \left(\frac{1}{8} + o(1)\right) (u_+(z_0) \ge 0, \quad f \to \mathcal{F},$$

so we are in position to apply Lemma 1 with $\delta < 1/8$. Using this Lemma we conclude that either $\log |f_1|$ or $\log |f_2|$ tends to infinity in the disk

$$D(z_0, a'r), (29)$$

where a' < a(1/8) and r > 1/2 (see (21)). A simple computation with (2) shows that a(1/8) > 1/7, so we may take a' = 1/10 and then a'r > 1/20. We also have $|z_0| \le r^* = 2^{-8}$, thus the disk (29) contains $D(0, r^*)$ and this finishes the proof.

4. A counterexample to Cartan's conjecture. For |z| < 1 and positive integer n put

$$g_{1,n} = \sqrt{n} \int_{-1}^{z} e^{-n\zeta^2} d\zeta$$

and

$$g_{2,n} = g_{1,n}(-z) = \sqrt{n} \int_{z}^{1} e^{-n\zeta^2} d\zeta,$$

so that

$$g_{1,n} + g_{2,n} = \sqrt{n} \int_{-1}^{1} e^{-n\zeta^2} d\zeta = c_n = \sqrt{\pi} + o(1), \quad n \to \infty.$$
(30)

Elementary estimates show that

$$|g_{i,n}(z)| \le 2\sqrt{n}e^n, \quad |z| < 1, \quad i = 1, 2$$

and

$$|g_{1,n}(z)| \le \sqrt{n}e^{-n/2}, \quad \Re z < -\frac{\sqrt{3}}{2}, \ |z| < 1.$$

Thus if we put

$$f_{1,n}(z) = \exp\{n(14(z+1) - 1/3)\}$$

and $f_{2,n}(z) = f_{1,n}(-z)$ then

$$g_{1,n}(z) = o(f_{1,n}(z)), \quad n \to \infty,$$
 (31)

uniformly in D(1), and

$$g_{2,n}(z) = o(f_{2,n}(z)), \quad n \to \infty,$$
 (32)

uniformly in D(1).

Evidently $f_{1,n}$ and $f_{2,n}$ are units. So are $f_{3,n} := -f_{1,n} + g_{1,n}$ and $f_{4,n} := -f_{2,n} + g_{2,n}$ in view of (31) and (32). If we put $f_{5,n} := -c_n$ then it is also a unit (just a constant) and

$$f_{1,n} + f_{2,n} + f_{3,n} + f_{4,n} + f_{5,n} = 0$$

in view of (30).

It remains to notice that $f_{5,n}$ cannot belong to any C-class. Indeed, none of the sequences $f_{i,n}$, $1 \leq i \leq 4$ is bounded from above or away from zero on compacta in D(1). Thus by (30) none of the quotients $f_{i,n}/f_{5,n}$ can be normal in D(1).

Addition of April 24, 1996. P. M. Tamrazov constructed an example which shows that the expression (2) gives the largest value of $a(\delta)$ for which the statement of Lemma 1 is true, for every $\delta \in (0, 1)$. Thus Lemma 1 gives the best possible estimate and the conjecture stated in the Remark after Lemma 1 is wrong.

We describe the example with P. M. Tamrazov's permission. Let

$$P(z,t) = \Re \frac{e^{it} + z}{e^{it} - z}$$

be the Poisson kernel. Put

$$u_{\epsilon} = P(.,\pi) - \frac{1+\delta}{4} \left(P(.,\epsilon) + P(.,-\epsilon) \right).$$

A straightforward computation shows that u_{ϵ} has a positive zero which tends to $a(\delta)$ as $\epsilon \to 0$, where $a(\delta)$ is given by (2). On the other hand, if ϵ_1 and ϵ_2 are two different numbers on $(0, \pi)$ then u_{ϵ_1} and u_{ϵ_2} satisfy all conditions of Lemma 1 because in this case $u_+ = P(., \pi) > 0$ and

$$u_{-}(0) = P(0,\pi) - \frac{(1+\delta)}{4} \left(P(0,\epsilon_1) + P(0,-\epsilon_1) + P(0,\epsilon_2) + P(0,-\epsilon_2) \right) = -\delta,$$

so $\delta u_+(0) + u_-(0) = 0$.

References

- [1] André Bloch, Sur les systèmes de fonctions holomorphes a variétés linéaires lacunaires, Ann. École Norm. Supèr., 43 (1926), 309-362.
- [2] André Bloch, La conception actuelle de la théorie des fonctions entières et méromorphes, *Enseignement mathématique*, 1926.
- [3] Henri Cartan, Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires et leurs applications, Ann. École Normale Supèr., 45 (1928), 255–346.
- [4] Alexandre Eremenko, A counterexample to Cartan's conjecture on holomorphic curves omitting hyperplanes, Preprint, Purdue University, April, 1995, Accepted in Proc. AMS.
- [5] Walter K. Hayman, *Meromorphic Functions*, Clarendon press, Oxford, 1964.
- [6] Serge Lang, Introduction to Complex Hyperbolic Spaces, Springer-Verlag, NY, 1987.
- [7] Lawrence Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly, 82 (1975), 813-817.

Purdue University West Lafayette IN 47907 e-mail: eremenko@math.purdue.edu