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Abstract

In 1928 H. Cartan proved an extension of Montel’s normality cri-
terion to holomorphic curves in complex projective plane P2. He also
conjectured that a similar result is true for holomorphic curves in Pn

for any n. Recently the author constructed a counterexample to this
conjecture for any n ≥ 3. In this paper we show how to modify Car-
tan’s conjecture so that it becomes true, at least for n = 3.

1. Introduction. A classical theorem of Borel says that any holomorphic
mapping f : C → Pn omitting p = n + 2 hyperplanes in general position
must be linearly degenerate – that is the image f(C) must be contained in a
hyperplane. To state the theorem more precisely we choose the representation
of Pn as the hyperplane in Pn+1 defined in homogenous coordinates by the
equation x0 + . . . + xn+1 = 0. This representation has the advantage that
the n + 2 omitted hyperplanes can be described by symmetric equations
xj = 0, 0 ≤ j ≤ n+ 1.

Borel’s Theorem. Let fj be entire functions without zeros satisfying

f1 + . . .+ fp = 0.

Then there exists a partition of the set of functions {fj} into classes such
that all functions in the same class are constant multiples of each other and
the sum of the functions in each class is zero.
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The case p = 3 of Borel’s theorem is nothing but the Little Picard The-
orem. Indeed, to say that an entire function f omits 0 and 1 is the same as
to say f + g − 1 = 0, where f and g have no zeros.

According to the so-called Bloch Principle, to Borel’s theorem there
should correspond a normality criterion, just as Montel’s theorem corre-
sponds to Picard’s theorem. We refer to [2, 6] and [7] for general discussion
of this heuristic principle. But, as Bloch remarks in [1], cf. [6, p. 224] it is
not at all clear at first sight what this normality criterion should be.

Set D(a, r) = {z ∈ C : |z| < r}, D(r) = D(0, r) and let U denotes the
set of holomorphic functions g in D(1) such that g(z) 6= 0, z ∈ D(1). Such
functions are called units. We are going to study infinite families F = {f}
of p-tuples f = (f1, . . . , fp), fj ∈ U , satisfying the equation

f1 + . . .+ fp = 0. (1)

Given such a family F let F denotes the filter formed by complements of
finite subsets of F .

A subset of indices S ⊂ {1, . . . , p} is called a C-class if
(i) there exists k ∈ S such that fj/fk are uniformly bounded on compacta
as f → F for all j ∈ S
and
(ii)

∑
j∈S fj/fk → 0 as f → F , uniformly on compacta.

Notice that by (ii) every C-class contains at least 2 elements.

Cartan’s conjecture. Given a family F of p-tuples of units satisfying (1)
there exists an infinite subfamily L ⊂ F such that for f ∈ L the set of indices
{1, . . . , p} can be partitioned into C-classes.

For p = 3 this is nothing else but Montel’s normality criterion. The
conjecture was stated by Cartan in [3], where he proved

Cartan’s Theorem. Given a family F of p-tuples of units satisfying (1)
there exists an infinite subfamily L ⊂ F such that for f ∈ L one of the
following holds:
a) the full set of indices {1, . . . , p} forms a C-class
or
b) there exist at least two disjoint C-classes.
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This theorem implies Cartan’s conjecture for p = 4 because if the case
b) occurs then two C-classes make a partition of the set of indices. When
p ≥ 5 Cartan’s theorem falls short of proving his conjecture because in the
case b) there may not be enough C-classes to make a partition of {1, . . . , p}.
On [3, pp. 69-70] Cartan discusses the hypothetical case when p = 5 and
there are only two C-classes each containing two elements but the remaining
index does not belong to any C-class. He concludes that constructing such
an example would be difficult.

Such example has been recently constructed in [4]. A simplified version
will be given in section 4. Actually this example shows that Cartan’s con-
jecture fails even if we replace condition (ii) in the definition of C-class by a
weaker condition that every C-class contains at least two elements. Exami-
nation of the example as well as our strong belief in Bloch’s Principle suggest
the following

Modified Conjecture. Let F be an infinite family of p-tuples of units in
D(1) satisfying (1). Then there exists an infinite subfamily L ⊂ F such that
for f ∈ L the set of indices can be partitioned into C-classes in the disk D(rp)
where 0 < rp < 1 and rp depends only on p.

It will follow from this conjecture that in any hyperbolic disk of sufficiently
small radius the partition of the set of indices into C-classes is possible.

We can prove this Modified Conjecture only for p = 5. The proof given
in section 3 is based on the the same techniques used by Bloch and Cartan,
that is Nevanlinna theory and estimates of potentials. A very good reference
is [6]. The new ingredient is an elementary lemma from potential theory
contained in section 2.

The author thanks D. Drasin, B. Korenblum and the referee for valuable
suggestions.

2. An auxilliary result on harmonic functions

Lemma 1 Let u1 and u2 be harmonic functions in the disk D(z0, r). Denote
by u+ the least harmonic majorant of u1∨u2 and by u− the greatest harmonic
minorant of u1 ∧ u2. If u+ ≥ 0 and u−(z0) + δu+(z0) ≥ 0 for some δ, 0 <
δ < 1, then one of the functions u1, u2 is non-negative in D(z0, ar), where
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a = a(δ) is given by

a(δ) =

√
2−
√

1 + δ√
2 +
√

1 + δ
. (2)

Furthermore, we actually have ui(z) ≥ εu+(z0) for i = 1 or 2 in the disk
D(z0, a

′r), a′ < a(δ), for some ε depending only on a′.

Remarks. We have a(0) = 3 − 2
√

2 ≈ .1716. It seems interesting to
determine the largest value of a(δ) for which the Lemma is true, at least
when δ = 0. It is plausible that the extreme functions when δ = 0 are

u1(z) = <(1 + z)(z2 − 4z + 1)

(1− z)(1 + z2)
and u2(z) = u1(−z).

This example shows that a(0) ≤ 2−
√

3 ≈ .268.

Proof of Lemma 1. It is enough to consider the case when r = 1 and z0 = 0.
We always denote by ∨ and ∧ the pointwise maximum and minimum

of functions respectively. When |z| = 1 we have u+(z) = (u1 ∨ u2)(z) and
u−(z) = (u1 ∧ u2)(z). Thus

u1 + u2 = u+ + u−, (3)

so the condition u−(0) + δu+(0) ≥ 0 combined with (3) implies

u1(0) + u2(0) ≥ (1− δ)u+(0).

It follows that one of the numbers u1(0), u2(0) is at least (1 − δ)u+(0)/2.
Suppose that

u1(0) ≥ 1− δ
2

u+(0). (4)

Applying Harnack’s inequality to the positive harmonic function u+ we ob-
tain

u+(z) ≥ 1− r
1 + r

u+(0), |z| ≤ r. (5)

On the other hand, u+−u1 is also a positive harmonic function, whose value
at 0 is at most (1 + δ)u+(0)/2, in view of (4). Thus Harnack’s inequality
implies

(u+ − u1)(z) ≤ (1 + δ)(1 + r)

2(1− r) u+(0), |z| ≤ r. (6)
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Combining (5) and (6), we obtain for |z| ≤ r

u1(z) ≥
(

1− r
1 + r

− (1 + δ)(1 + r)

2(1− r)

)
u+(0) =

2(1− r)2 − (1 + δ)(1 + r)2

2(1− r2)
u+(0).

The last expression is positive when r < a(δ), where a(δ) is given by (2).

3. Proof of the Modified Conjecture for p = 5.
In view of Cartan’s theorem we may assume that {1, 3} and {2, 4} are

C-classes (in the full unit disk). Furthermore we may assume that f5 = −1.
Thus we have

f1 + f2 + f3 + f4 = 1, (7)

and by (ii) in the definition of a C-class

f3/f1 → −1 and f4/f2 → −1, as f → F , (8)

uniformly on compacta in |z| < 1. Our goal is to show that either f5/f1 or
f5/f2 tends to zero uniformly on compacta in |z| < r∗ = 2−8; that is the
index 5 can be added to one of the C-classes which already exist. In other
words we want to show that one of the functions f1 or f2 tends to infinity
uniformly on compacta in |z| < r∗.

Set g1 = f1 + f3, g2 = f2 + f4 and g = g′1 (derivative), so that by (7)

g1 + g2 = 1 (9)

and
g′1 = −g′2 = g. (10)

We conclude from (8) that

f1/g1 = (1 + f3/f1)−1 →∞, f → F (11)

and similarly
f2/g2 →∞, f → F (12)

uniformly on compacta in |z| < 1.
Now it follows from (9) that

log+ |g1| = log+ |1− g2| ≤ log+ |g2|+ log 2
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and similarly log+ |g2| ≤ log+ |g1|+ log 2. Thus∣∣∣log+ |g1| − log+ |g2|
∣∣∣ ≤ log 2. (13)

Again from (9) we conclude that

|g1| ∨ |g2| ≥ 1/2, (14)

so we may assume without loss of generality that

|g1(0)| ≥ 1/2. (15)

Now we put r∗ = 2−8 and consider three cases.

Case 1.
|g1(z)| ≤ 2ee for |z| ≤ r∗. (16)

We apply Cartan’s lemma [6, Ch. VIII, §3] to estimate |g1| from below, using
(15) and (16). For any given ε > 0 we have

|g1(z)| ≥ C(ε) for |z| = t

with some t ∈ [r∗ − ε, r∗]. So |f1(z)| → ∞ when |z| = t in view of (11), and
hence, by the Minimum Principle, f1(z)→∞ uniformly in |z| ≤ r∗ − ε.
Case 2. Now we assume that

|g1(z0)| ≥ 2ee for some z0, |z0| ≤ r∗,

but |g(z)| ≤ 1 for all z in the disk |z| ≤ r∗.
Then we integrate

g1(z) = g1(z0) +
∫ z

z0
g(ζ) dζ

and obtain |g1(z)| ≥ 1, |z| ≤ r∗. Again (11) concludes the proof in this case.

Case 3. It remains to consider the possibility that there are points z0 and z1

in the disk |z| ≤ r∗ such that

|g1(z0)| > 2ee (17)
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and
|g(z1)| ≥ 1. (18)

In view of (13) and (17) we have

|g2(z0)| ≥ ee. (19)

Inequalities (11) and (17) imply

f1(z0)→∞. (20)

For each f ∈ F we fix reference points z0 and z1 in D(r∗) satisfying (17)
and (18)

Our plan is the following. We are going to apply Lemma 1 to the harmonic
functions u1 = log |f1| and u2 = log |f2| in an appropriately chosen disk
D(z0, r), with r > 1/2. The least harmonic majorant of u1∨u2 is positive by
(11), (12) and (14). We need an estimate for the greatest harmonic minorant
u− of the function u1 ∧ u2 at the point z0 from below. This is the same as
the average of u− over the circle |z − z0| = r. To estimate this average from
below we will use the derivative g and the subharmonic function w = log |g|.
We will show that (up to a small error term) w is a subharmonic minorant for
log |g1| ∧ log |g2| < u1∧u2, and thus w(z0) is a minorant for u−(z0). However
instead of a lower estimate of w at z0 we only have an estimate at a nearby
point z1 (see (18)). We will handle this with the help of Lemma 3. Now we
go into details.

For a holomorphic function h in the unit disk and positive number r <
1− r∗ we define

mz0(r, h) =
∫ π

−π
log+ |h(z0 + reiθ)|dθ

2π
, |z0| < r∗.

Since log+ |h| is subharmonic, mz0(r, h) increases with r. We will omit the
index z0 in this notation with understanding that the point z0 specified above
is always used. In what follows we use the notation Ck for absolute constants
(they may be different in each occurence). We need the Lemma on the
Logarithmic Derivative. It is convenient to start with the formulation as in [5,
Sect. 2.2.2]: for holomorphic functions gi we have for 1/2 < r < R < 1− r∗

m(r, g/gi) ≤ C1 + C2 logm(R, gi) + C3 log
1

R− r + C4 log+ log+ 1

|gi(z0)| .
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In view of (17) and (19) the last term can be omitted. We also need to
eliminate the term with log(R − r). This can be done with the following
lemma which goes back to E. Borel (see, for example [6, Ch. VIII, Lemma
1.4]).

Lemma 2 Let S ≥ 0 be an increasing function on [0, b], b > 0 and γ > 0.
Then there exists a subset E ⊂ [0, b] of measure at most 2e−S(0)/γ , such that

S(r + e−S(r)/γ) ≤ S(r) + γ log 2, r /∈ E.

We choose S(r) = logm(r, gi) (so that S(0) ≥ 1 by (17) and (19)),
γ = S(0)/(3 log 2) and put R = r + e−S(r)/γ in the Lemma on Logarithmic
Derivative. The exceptional set E in Lemma 2 has measure at most 1/4, and
the Lemma on Logarithmic Derivative becomes: there exists r,

1/2 = 27r∗ < r < 1− r∗ (21)

such that
m(r, g/gi) ≤ C1 + C2 logm(r, gi), i = 1, 2; (22)

where C1 and C2 are absolute constants. We fix this r satisfying (21) and
(22) until the end of the proof. (Of course r, as well as z0 and z1, depends
on f .)

Denote by u+ the least harmonic majorant of log |f1| ∨ log |f2| in the disk
|z − z0| < r. Then by (11), (12) and (14)

u+ → +∞, f → F . (23)

uniformly in D(z0, r). Using (11), (12) positivity and harmonicity of u+ we
obtain

m(r, gi) ≤ m(r, fi) ≤
∫ π

−π
u+(z0 + reiθ)

dθ

2π
= u+(z0), i = 1, 2. (24)

Thus (22), (24) and (23) imply for i = 1, 2

m(r, g/gi) ≤ C1 + C2 logm(r, gi) ≤ C1 + C2 log u+(z0) ≤ o(u+(z0)) (25)

as f → F . It follows from (24) and (25) that

m(r, g) ≤ m(r, g1) +m(r, g/g1) ≤ (1 + o(1))u+(z0), f → F . (26)

Now we need the following
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Lemma 3 Let g be an analytic function in the disk |z− z0| ≤ r and suppose
that |g(z1)| ≥ 1 for some z1 ∈ D(z0, r). Then∫ π

−π
log |g(z0 + reiθ)|dθ

2π
+ δm(r, g) ≥ 0,

where δ = 4r|z0 − z1|/(r − |z0 − z1|)2.

Proof. Assume without loss of generality that z0 = 0 and put |z1| = t.
Then by Poisson’s formula

0 ≤ log |g(z1)|

≤ r + t

r − t

∫ π

−π
log+ |g(reiθ)|dθ

2π
− r − t
r + t

∫ π

−π
log− |g(reiθ)|dθ

2π

=
r − t
r + t

∫ π

−π
log |g(reiθ)|dθ

2π
+

4rt

r2 − t2m(r, g).

This proves the lemma.

In our situation we have |z0 − z1| ≤ 2r∗ = 2−7, so by (21) the number δ
from Lemma 3 has the following bound:

δ ≤ 8rr∗

(r − 2r∗)2
≤ 16r∗

r
≤ 2−3. (27)

We apply Lemma 3 to our function g and use (18) (27) and (26) to obtain∫ π

−π
log |g(z0 + reiθ)|dθ

2π
+
(

1

8
+ o(1)

)
u+(z0) ≥ 0, f → F . (28)

Finally we estimate |g| from above:

log |g| ≤ log |gi|+ log+ |g/gi|, i = 1, 2.

These inequalities together with (11) and (12) imply

log |g| ≤ log |g1| ∧ log |g2|+ log+ |g/g1|+ log+ |g/g2|

≤ log |f1| ∧ log |f2|+ log+ |g/g1|+ log+ |g/g2|.

9



We integrate this inequality over the circle |z − z0| = r and use (25) to
estimate the integrals involving logarithmic derivatives:∫ π

−π
(log |f1| ∧ log |f2|)(z0 + reiθ)

dθ

2π
≥
∫ π

−π
log |g(z0 + reiθ)|dθ

2π
+ o(u+(0)),

which with (28) gives∫ π

−π
(log |f1| ∧ log |f2|)(z0 + reiθ)

dθ

2π
+
(

1

8
+ o(1)

)
)u+(z0) ≥ 0, f → F ,

so we are in position to apply Lemma 1 with δ < 1/8. Using this Lemma we
conclude that either log |f1| or log |f2| tends to infinity in the disk

D(z0, a
′r), (29)

where a′ < a(1/8) and r > 1/2 (see (21)). A simple computation with (2)
shows that a(1/8) > 1/7, so we may take a′ = 1/10 and then a′r > 1/20.
We also have |z0| ≤ r∗ = 2−8, thus the disk (29) contains D(0, r∗) and this
finishes the proof.

4. A counterexample to Cartan’s conjecture. For |z| < 1 and positive
integer n put

g1,n =
√
n
∫ z

−1
e−nζ

2

dζ

and

g2,n = g1,n(−z) =
√
n
∫ 1

z
e−nζ

2

dζ,

so that

g1,n + g2,n =
√
n
∫ 1

−1
e−nζ

2

dζ = cn =
√
π + o(1), n→∞. (30)

Elementary estimates show that

|gi,n(z)| ≤ 2
√
nen, |z| < 1, i = 1, 2

and

|g1,n(z)| ≤
√
ne−n/2, <z < −

√
3

2
, |z| < 1.
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Thus if we put
f1,n(z) = exp{n(14(z + 1)− 1/3)}

and f2,n(z) = f1,n(−z) then

g1,n(z) = o(f1,n(z)), n→∞, (31)

uniformly in D(1), and

g2,n(z) = o(f2,n(z)), n→∞, (32)

uniformly in D(1).
Evidently f1,n and f2,n are units. So are f3,n := −f1,n + g1,n and f4,n :=

−f2,n + g2,n in view of (31) and (32). If we put f5,n := −cn then it is also a
unit (just a constant) and

f1,n + f2,n + f3,n + f4,n + f5,n = 0

in view of (30).
It remains to notice that f5,n cannot belong to any C-class. Indeed, none

of the sequences fi,n, 1 ≤ i ≤ 4 is bounded from above or away from zero
on compacta in D(1). Thus by (30) none of the quotients fi,n/f5,n can be
normal in D(1).

Addition of April 24, 1996. P. M. Tamrazov constructed an example which
shows that the expression (2) gives the largest value of a(δ) for which the
statement of Lemma 1 is true, for every δ ∈ (0, 1). Thus Lemma 1 gives the
best possible estimate and the conjecture stated in the Remark after Lemma
1 is wrong.

We describe the example with P. M. Tamrazov’s permission. Let

P (z, t) = <e
it + z

eit − z

be the Poisson kernel. Put

uε = P (. , π)− 1 + δ

4
(P (. , ε) + P (. ,−ε)) .

A straightforward computation shows that uε has a positive zero which tends
to a(δ) as ε→ 0, where a(δ) is given by (2). On the other hand, if ε1 and ε2
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are two different numbers on (0, π) then uε1 and uε2 satisfy all conditions of
Lemma 1 because in this case u+ = P (. , π) > 0 and

u−(0) = P (0, π)−(1 + δ)

4
(P (0, ε1) + P (0,−ε1) + P (0, ε2) + P (0,−ε2)) = −δ,

so δu+(0) + u−(0) = 0.
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