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Abstract

Clunie and Hayman proved that if the spherical derivative ||f'|| of
an entire function satisfies || f||(z) = O(|z|?) then T'(r, f) = O(r°*1).
We generalize this to holomorphic curves in projective space of dimen-
sion n omitting n hyperplanes in general position.

MSC 32Q99, 30D15.

Introduction

We consider holomorphic curves f : C — P"; for the general background
on the subject we refer to [7]. The Fubini-Study derivative || f’|| measures
the length distortion from the Euclidean metric in C to the Fubini-Study
metric in P". The explicit expression is

LFIZ = A Y21 = ffi

i<j
where (fo,..., fn) is a homogeneous representation of f (that is the f; are
entire functions which never simultaneously vanish), and
n
2 2
LFIP = > 11
=0

See [3] for a general discussion of the Fubini-Study derivative.
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We recall that the Nevanlinna—Cartan characteristic is defined by

16 = [ (2 [P,

where dm is the area element in C. So the condition

lim sup [ ~7[| f/(2) || < K < o0 (1)
implies
. T(r. f)
h{inﬂsogp 2erz < OO (2)

Clunie and Hayman [4] found that for curves C — P! omitting one point
in P!, a stronger conclusion follows from (1), namely

I(r, f)
lim su - < KC(o). 3
r—>oop T’U+1 - ( ) ( )
In the most important case ¢ = 0, a different proof of this fact for n = 1
is due to Pommerenke [8]. Pommerenke’s method gives the exact constant
C'(0). In this paper we prove that this phenomenon persists in all dimensions.

Theorem. For holomorphic curves f : C — P™ omitting n hyperplanes in
general position, condition (1) implies (3) with an explicit constant C(n, o).

In [6], the case 0 = 0 was considered. There it was proved that holo-
morphic curves in P™ with bounded spherical derivative and omitting n hy-
perplanes in general position must satisfy T'(r, f) = O(r). With a stronger
assumption that f omits n + 1 hyperplanes this was earlier established by
Berteloot and Duval [2] and by Tsukamoto [9]. The proof in [6] has two
drawbacks: it does not extend to arbitrary ¢ > 0, and it is non-constructive;
unlike Clunie-Hayman and Pommerenke’s proofs mentioned above, it does
not give an explicit constant in (3).

It is shown in [6] that the condition that n hyperplanes are omitted is
exact: there are curves in any dimension n satisfying (1), T'(r, f) ~ cr?s+2
and omitting n — 1 hyperplanes.

Preliminaries

Without loss of generality we assume that the omitted hyperplanes are
given in the homogeneous coordinates by the equations {w; =0}, 1 < j <n.
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We fix a homogeneous representation (fo, ..., f,) of our curve, where f; are
entire functions, and f, = 1. Then

u:log\/|f0|2—i-...—|—|fn|2 (4)

is a positive subharmonic function, and Jensen’s formula gives

1 = . r n(t)
1= o= [ 2
(r, f) 5 | u(re”)dd — u(0) T dt,
where n(t) = p({z : |z] < t}), and p = pu, is the Riesz measure of u, that is
the measure with the density

Lo L
—Au=—| 7 (5)

This measure p is also called Cartan’s measure of f. Positivity of u and (2)
imply that all f; are of order at most 2042, normal type. As f;(z) #0, 1 <
7 < n we conclude that

fj:€Pj7 1§j§n7

where
P; are polynomials of degree at most 20 + 2. (6)

We need two lemmas from potential theory.

Lemma 1. [6] Let v be a non-negative harmonic function in the closure of
the disc B(a, R), and assume that v(z1) = 0 for some point z; € 0B(a, R).
Then

v(a) < 2R|Vu(z)|.

We include a proof, suggested by the referee, which is simpler than that
given in [6]. Without loss of generality, assume that a = 0,R = 1,2, = 1.
Then Harnack’s inequality gives

v(0) _ vlr) _ o(r) (1)

I+r—1-7r 1—r

Passing to the limit as » — 1 we obtain the result.



Lemma 2. Let v be a non-negative superharmonic function in the closure of
the disc B(a, R), and suppose that v(z1) = 0 for some z; € 0B(a, R). Then

(%
n

o (Bla /2] < 3R 1 )

By |0v/0n| we mean here liminf |v(rz)|/(R(1 — 7)) as r — 1—.

Proof. Function v(a + Rz) satisfies the conditions of the lemma with
R =1. So it is enough to prove the lemma with a =0 and R = 1. Let

wE)= [ G Qdu(Q)

be the Green potential of the restriction of u, onto the disc |¢| < 1/2 that is

1—C(z
z=¢

Then w < v and w(z1) = v(z1) = 0 which implies that

G(z,¢) = log

ov ow
- > |2 '
8n<z1> - ‘8|z|(zl)

Minimizing [0G/0|z|| over |z| = 1 and |¢| = 1/2 we obtain 1/3 which proves
the lemma.

Proof of the theorem

We may assume without loss of generality that fp has infinitely many
zeros. Indeed, we can compose f with an automorphism of P”, for example
replace fy by fo + cfi, ¢ € C and leave all other f; unchanged. This trans-
formation changes neither the n omitted hyperplanes nor the rate of growth
of T'(r, f) and multiplies the spherical derivative by a bounded factor.

Put u; = log|f;|, and

o=
Here and in what follows max denotes the pointwise maximum of subhar-
monic functions.



Proposition 1. Suppose that at some point z; we have
um(21) = uk(21) > u;(z1)
for some m # k and all j; m,k,j € {0,...,n}. Then
1/l = (n+ D)7 V(1) = Vug(21)].

Proof.

S (Z) fe(21) = fon(21) fi(21)] Lo [ fw(z1)  fi(z)
O e A A e R e &

and the conclusion of the proposition follows since |V log |f|| = |f'/f]-

1" (z0)ll =

Proposition 2. For every e > 0, we have
u(z) <u(z) + K2+ )7 (n+1)]z7H

for all |z| > ro(e€).

Proof. If ug(z) < u*(z) for all sufficiently large |z|, then there is nothing
to prove. Suppose that ug(a) > u*(a), and consider the largest disc B(a, R)
centered at a where the inequality ug(z) > u*(z) persists. If 2y is the zero of
the smallest modulus of fy then R < |a| + |20] < (1 + €)|a|] when |a| is large
enough.

There is a point z; € dB(a, R) such that uy(z1) = u*(z;). This means
that there is some k € {1,...,n} such that ug(z1) = ur(z1) > um(21) for all
m € {1,...,n}. Applying Proposition 1 we obtain

[Vur(z1) = Vuo(z1)| < (n+ D[ f'(z0)]]

Now wug(z) > u*(z) > ux(z) for z € B(a, R), so we can apply Lemma 1 to
v = up — ug in the disc B(a, R). This gives

uo(a) — ug(a) < 2R[Vu(z1) — Vue(21)| < 2R(n + 1) f(z1)]-
Now R < (14 ¢€)|a|] and |z1| < (2 + €)|al, so
up(a) < u*(a) + K(2+ €)' (n+1)|a]”",

and the result follows because u = max{ug, u*} + O(1).
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Next we study the Riesz measure of the subharmonic function
u* = max{uy, ..., Uy}

We begin with maximum of two harmonic functions. Let u; and wuy be
two harmonic functions in C of the form u; = Re P; where P; # 0 are
polynomials. Suppose that u; # uy. Then the set £ = {z € C : uy(2) =
uy(2)} is a proper real-algebraic subset of C without isolated points. Apart
from a finite set of ramification points, E consists of smooth curves. For
every smooth point z € F, we denote by J(z) the jump of the normal (to
E) derivative of the function w = max{uy,us} at the point z. This jump is
always positive and the Riesz measure p,, is given by the formula

J(2)
2

which means that g, is supported by E and has a density J(z)/27 with
respect to the length element |dz| on E.

Now let E;; = {z : ui(2) = uj(2) > wp(2),1 < k < n}, and £ = UE;;
where the union is taken over all pairs 1 < ¢, 7 < n for which u; # u;. Then
E is a proper real semi-algebraic subset of C, and oo is not an isolated point
of E. For the elementary properties of semi-algebraic sets that we use here
see, for example, [1, 5]. There exists ry > 0 such that I' = EN{ry < |z| < oo}
is a union of finitely many disjoint smooth simple curves,

djty = |dz], (7)

This union coincides with the support of pi,« in {z: ry < |z| < co}.

Consider a point zy € I'. Then zy € I'y, for some k. As I'y is a smooth
curve, there is a neighborhood D of z; which does not contain other curves
I';, j # k and which is divided by I';, into two parts, Dy and Dy. Then there
exist ¢ and j such that v*(z) = w;(2), z € Dy and u*(z) = u;j(z), z € Ds, and
u*(z) = max{w;(z),u;(2)}, 2 € D. So the restriction of the Riesz measure
ty+ on D is supported by I'y N D and has density J(z)/(27) where

|/ (2)| = [0ui/On — Du;/On|(2) = |V (ui — u;)|(2),

and 0/0n is the derivation in the direction of a normal to I'y. Taking into
account that u; = Re P; where P; are polynomials, we conclude that there
exist positive numbers ¢, and by such that

J(2)/(27) = (ci + o(1))|2]%*, 2z — 00, z€Ty. (8)
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Let b = maxy bg, and among those curves I'y for which b = b choose one
with maximal ¢; (which we denote by ¢p). We denote this chosen curve by
[y and fix it for the rest of the proof.

Proposition 3. We have

b<o and ¢t <3-4°K(n+1).

Proof. We consider two cases.
Case 1. There is a sequence z, — 00, z, € I'g such that ug(z,) < u*(z,).
Then (1) and Proposition 1 imply that

J(zn) < (n+ 1)K|z,|%,

and comparison with (8) shows that b < o and ¢y < K(n+1)/(27).

Case 2. ug(z) > u*(z) for all sufficiently large z € I'y. Let a be a point
on Iy, |a| > 3rg, and wug(a) > u*(a). Let B(a, R) be the largest open disc
centered at a in which the inequality u(z) > u*(z) holds. Then

R<|al+0(), a— o 9)

because we assume that fy has zeros, so uy(zy) = —oo for some z.

In B(a, R) we consider the positive superharmonic function v = ug — u*.
Let us check that it satisfies the conditions of Lemma 2. The existence of a
point z; € 0B(a, R) with v(z;) = 0 follows from the definition of B(a, R).
The Riesz measure of pu, is estimated using (7), (8):

|o(B(a, R/2))| = |pu(To N Ba, R/2))| = coR(|al — R/2)"
Now Lemma 2 applied to v in B(a, R) implies that
V()| = (co/3)(|lal = R/2)". (10)
On the other hand (1) and Proposition 1 imply that
|Vu(z1)|] < K(n+1)(|la| + R)°

Combining these two inequalities and taking (9) into account, we obtain
b<oandc <3-4°K(n+ 1), as required.



We denote -
* o * 16 % .
T (r) = gy /%u (re”)df — u*(0);

This is the characteristic of the “reduced curve” (fi,..., fn)-

Proposition 4.
1 2
() < 647k D o
o+1
Proof. By Jensen’s formula,

() = [ vin)®

0 t
where v(t) = pu({z : |z| < t}). The number of curves I'y supporting the
Riesz measure of u* is easily seen to be at most 2n(n — 1)(o + 1). The
density of the Riesz measure p,~ on each curve 'y is given by (8), where
cr < ¢p and b, < b, and the parameters ¢y and b are estimated in Proposition
3. Combining all these data we obtain the result.

It remains to combine Propositions 2 and 4 to obtain the final result.
The authors thank the referee for many valuable remarks and suggestions.
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