Generalization of a theorem of Clunie and Hayman

Matthew Barrett and Alexandre Eremenko*

December 10, 2010

Abstract

Clunie and Hayman proved that if the spherical derivative $\left\|f^{\prime}\right\|$ of an entire function satisfies $\left\|f^{\prime}\right\|(z)=O\left(|z|^{\sigma}\right)$ then $T(r, f)=O\left(r^{\sigma+1}\right)$. We generalize this to holomorphic curves in projective space of dimension n omitting n hyperplanes in general position.

MSC 32Q99, 30D15.

Introduction

We consider holomorphic curves $f: \mathbf{C} \rightarrow \mathbf{P}^{n}$; for the general background on the subject we refer to [7]. The Fubini-Study derivative $\left\|f^{\prime}\right\|$ measures the length distortion from the Euclidean metric in \mathbf{C} to the Fubini-Study metric in \mathbf{P}^{n}. The explicit expression is

$$
\left\|f^{\prime}\right\|^{2}=\|f\|^{-4} \sum_{i<j}\left|f_{i}^{\prime} f_{j}-f_{i} f_{j}^{\prime}\right|^{2},
$$

where $\left(f_{0}, \ldots, f_{n}\right)$ is a homogeneous representation of f (that is the f_{j} are entire functions which never simultaneously vanish), and

$$
\|f\|^{2}=\sum_{j=0}^{n}\left|f_{j}\right|^{2}
$$

See [3] for a general discussion of the Fubini-Study derivative.

[^0]We recall that the Nevanlinna-Cartan characteristic is defined by

$$
T(r, f)=\int_{0}^{r} \frac{d t}{t}\left(\frac{1}{\pi} \int_{|z| \leq t}\left\|f^{\prime}\right\|^{2}(z) d m(z)\right)
$$

where $d m$ is the area element in \mathbf{C}. So the condition

$$
\begin{equation*}
\limsup _{z \rightarrow \infty}|z|^{-\sigma}\left\|f^{\prime}(z)\right\| \leq K<\infty \tag{1}
\end{equation*}
$$

implies

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{r^{2 \sigma+2}}<\infty \tag{2}
\end{equation*}
$$

Clunie and Hayman [4] found that for curves $\mathbf{C} \rightarrow \mathbf{P}^{1}$ omitting one point in \mathbf{P}^{1}, a stronger conclusion follows from (1), namely

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{r^{\sigma+1}} \leq K C(\sigma) \tag{3}
\end{equation*}
$$

In the most important case $\sigma=0$, a different proof of this fact for $n=1$ is due to Pommerenke [8]. Pommerenke's method gives the exact constant $C(0)$. In this paper we prove that this phenomenon persists in all dimensions.

Theorem. For holomorphic curves $f: \mathbf{C} \rightarrow \mathbf{P}^{n}$ omitting n hyperplanes in general position, condition (1) implies (3) with an explicit constant $C(n, \sigma)$.

In [6], the case $\sigma=0$ was considered. There it was proved that holomorphic curves in \mathbf{P}^{n} with bounded spherical derivative and omitting n hyperplanes in general position must satisfy $T(r, f)=O(r)$. With a stronger assumption that f omits $n+1$ hyperplanes this was earlier established by Berteloot and Duval [2] and by Tsukamoto [9]. The proof in [6] has two drawbacks: it does not extend to arbitrary $\sigma \geq 0$, and it is non-constructive; unlike Clunie-Hayman and Pommerenke's proofs mentioned above, it does not give an explicit constant in (3).

It is shown in [6] that the condition that n hyperplanes are omitted is exact: there are curves in any dimension n satisfying (1), $T(r, f) \sim c r^{2 \sigma+2}$ and omitting $n-1$ hyperplanes.

Preliminaries

Without loss of generality we assume that the omitted hyperplanes are given in the homogeneous coordinates by the equations $\left\{w_{j}=0\right\}, 1 \leq j \leq n$.

We fix a homogeneous representation $\left(f_{0}, \ldots, f_{n}\right)$ of our curve, where f_{j} are entire functions, and $f_{n}=1$. Then

$$
\begin{equation*}
u=\log \sqrt{\left|f_{0}\right|^{2}+\ldots+\left|f_{n}\right|^{2}} \tag{4}
\end{equation*}
$$

is a positive subharmonic function, and Jensen's formula gives

$$
T(r, f)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} u\left(r e^{i \theta}\right) d \theta-u(0)=\int_{0}^{r} \frac{n(t)}{t} d t
$$

where $n(t)=\mu(\{z:|z| \leq t\})$, and $\mu=\mu_{u}$ is the Riesz measure of u, that is the measure with the density

$$
\begin{equation*}
\frac{1}{2 \pi} \Delta u=\frac{1}{\pi}\left\|f^{\prime}\right\|^{2} \tag{5}
\end{equation*}
$$

This measure μ is also called Cartan's measure of f. Positivity of u and (2) imply that all f_{j} are of order at most $2 \sigma+2$, normal type. As $f_{j}(z) \neq 0,1 \leq$ $j \leq n$ we conclude that

$$
f_{j}=e^{P_{j}}, \quad 1 \leq j \leq n
$$

where

$$
\begin{equation*}
P_{j} \text { are polynomials of degree at most } 2 \sigma+2 \text {. } \tag{6}
\end{equation*}
$$

We need two lemmas from potential theory.
Lemma 1. [6] Let v be a non-negative harmonic function in the closure of the disc $B(a, R)$, and assume that $v\left(z_{1}\right)=0$ for some point $z_{1} \in \partial B(a, R)$. Then

$$
v(a) \leq 2 R\left|\nabla v\left(z_{1}\right)\right|
$$

We include a proof, suggested by the referee, which is simpler than that given in [6]. Without loss of generality, assume that $a=0, R=1, z_{1}=1$. Then Harnack's inequality gives

$$
\frac{v(0)}{1+r} \leq \frac{v(r)}{1-r}=\frac{v(r)-v(1)}{1-r}
$$

Passing to the limit as $r \rightarrow 1$ we obtain the result.

Lemma 2. Let v be a non-negative superharmonic function in the closure of the disc $B(a, R)$, and suppose that $v\left(z_{1}\right)=0$ for some $z_{1} \in \partial B(a, R)$. Then

$$
\left|\mu_{v}(B(a, R / 2))\right| \leq 3 R\left|\frac{\partial v}{\partial n}\left(z_{1}\right)\right|
$$

By $|\partial v / \partial n|$ we mean here $\lim \inf \left|v\left(r z_{1}\right)\right| /(R(1-r))$ as $r \rightarrow 1-$.
Proof. Function $v(a+R z)$ satisfies the conditions of the lemma with $R=1$. So it is enough to prove the lemma with $a=0$ and $R=1$. Let

$$
w(z)=\int_{|\zeta| \leq 1 / 2} G(z, \zeta) d \mu_{v}(\zeta)
$$

be the Green potential of the restriction of μ_{v} onto the disc $|\zeta| \leq 1 / 2$ that is

$$
G(z, \zeta)=\log \left|\frac{1-\bar{\zeta} z}{z-\zeta}\right|
$$

Then $w \leq v$ and $w\left(z_{1}\right)=v\left(z_{1}\right)=0$ which implies that

$$
\left|\frac{\partial v}{\partial n}\left(z_{1}\right)\right| \geq\left|\frac{\partial w}{\partial|z|}\left(z_{1}\right)\right| .
$$

Minimizing $|\partial G / \partial| z|\mid$ over $| z \mid=1$ and $|\zeta|=1 / 2$ we obtain $1 / 3$ which proves the lemma.

Proof of the theorem

We may assume without loss of generality that f_{0} has infinitely many zeros. Indeed, we can compose f with an automorphism of \mathbf{P}^{n}, for example replace f_{0} by $f_{0}+c f_{1}, c \in \mathbf{C}$ and leave all other f_{j} unchanged. This transformation changes neither the n omitted hyperplanes nor the rate of growth of $T(r, f)$ and multiplies the spherical derivative by a bounded factor.

Put $u_{j}=\log \left|f_{j}\right|$, and

$$
u^{*}=\max _{1 \leq j \leq n} u_{j} .
$$

Here and in what follows max denotes the pointwise maximum of subharmonic functions.

Proposition 1. Suppose that at some point z_{1} we have

$$
u_{m}\left(z_{1}\right)=u_{k}\left(z_{1}\right) \geq u_{j}\left(z_{1}\right)
$$

for some $m \neq k$ and all $j ; m, k, j \in\{0, \ldots, n\}$. Then

$$
\left\|f^{\prime}\left(z_{1}\right)\right\| \geq(n+1)^{-1}\left|\nabla u_{m}\left(z_{1}\right)-\nabla u_{k}\left(z_{1}\right)\right| .
$$

Proof.

$$
\left\|f^{\prime}\left(z_{1}\right)\right\| \geq \frac{\left|f_{m}^{\prime}\left(z_{1}\right) f_{k}\left(z_{1}\right)-f_{m}\left(z_{1}\right) f_{k}^{\prime}\left(z_{1}\right)\right|}{\left|f_{0}\left(z_{1}\right)\right|^{2}+\ldots+\left|f_{n}\left(z_{1}\right)\right|^{2}} \geq(n+1)^{-1}\left|\frac{f_{m}^{\prime}\left(z_{1}\right)}{f_{m}\left(z_{1}\right)}-\frac{f_{k}^{\prime}\left(z_{1}\right)}{f_{k}\left(z_{1}\right)}\right|
$$

and the conclusion of the proposition follows since $|\nabla \log | f\left|\left|=\left|f^{\prime} / f\right|\right.\right.$.
Proposition 2. For every $\epsilon>0$, we have

$$
u(z) \leq u^{*}(z)+K(2+\epsilon)^{\sigma+1}(n+1)|z|^{\sigma+1}
$$

for all $|z|>r_{0}(\epsilon)$.
Proof. If $u_{0}(z) \leq u^{*}(z)$ for all sufficiently large $|z|$, then there is nothing to prove. Suppose that $u_{0}(a)>u^{*}(a)$, and consider the largest disc $B(a, R)$ centered at a where the inequality $u_{0}(z)>u^{*}(z)$ persists. If z_{0} is the zero of the smallest modulus of f_{0} then $R \leq|a|+\left|z_{0}\right|<(1+\epsilon)|a|$ when $|a|$ is large enough.

There is a point $z_{1} \in \partial B(a, R)$ such that $u_{0}\left(z_{1}\right)=u^{*}\left(z_{1}\right)$. This means that there is some $k \in\{1, \ldots, n\}$ such that $u_{0}\left(z_{1}\right)=u_{k}\left(z_{1}\right) \geq u_{m}\left(z_{1}\right)$ for all $m \in\{1, \ldots, n\}$. Applying Proposition 1 we obtain

$$
\left|\nabla u_{k}\left(z_{1}\right)-\nabla u_{0}\left(z_{1}\right)\right| \leq(n+1)\left\|f^{\prime}\left(z_{1}\right)\right\| .
$$

Now $u_{0}(z)>u^{*}(z) \geq u_{k}(z)$ for $z \in B(a, R)$, so we can apply Lemma 1 to $v=u_{0}-u_{k}$ in the disc $B(a, R)$. This gives

$$
u_{0}(a)-u_{k}(a) \leq 2 R\left|\nabla u_{k}\left(z_{1}\right)-\nabla u_{0}\left(z_{1}\right)\right| \leq 2 R(n+1)\left\|f^{\prime}\left(z_{1}\right)\right\| .
$$

Now $R<(1+\epsilon)|a|$ and $\left|z_{1}\right| \leq(2+\epsilon)|a|$, so

$$
u_{0}(a) \leq u^{*}(a)+K(2+\epsilon)^{\sigma+1}(n+1)|a|^{\sigma+1}
$$

and the result follows because $u=\max \left\{u_{0}, u^{*}\right\}+O(1)$.

Next we study the Riesz measure of the subharmonic function

$$
u^{*}=\max \left\{u_{1}, \ldots, u_{n}\right\} .
$$

We begin with maximum of two harmonic functions. Let u_{1} and u_{2} be two harmonic functions in \mathbf{C} of the form $u_{j}=\operatorname{Re} P_{j}$ where $P_{j} \neq 0$ are polynomials. Suppose that $u_{1} \neq u_{2}$. Then the set $E=\left\{z \in \mathbf{C}: u_{1}(z)=\right.$ $\left.u_{2}(z)\right\}$ is a proper real-algebraic subset of $\overline{\mathbf{C}}$ without isolated points. Apart from a finite set of ramification points, E consists of smooth curves. For every smooth point $z \in E$, we denote by $J(z)$ the jump of the normal (to $E)$ derivative of the function $w=\max \left\{u_{1}, u_{2}\right\}$ at the point z. This jump is always positive and the Riesz measure μ_{w} is given by the formula

$$
\begin{equation*}
d \mu_{w}=\frac{J(z)}{2 \pi}|d z|, \tag{7}
\end{equation*}
$$

which means that μ_{w} is supported by E and has a density $J(z) / 2 \pi$ with respect to the length element $|d z|$ on E.

Now let $E_{i, j}=\left\{z: u_{i}(z)=u_{j}(z) \geq u_{k}(z), 1 \leq k \leq n\right\}$, and $E=\cup E_{i, j}$ where the union is taken over all pairs $1 \leq i, j \leq n$ for which $u_{i} \neq u_{j}$. Then E is a proper real semi-algebraic subset of $\overline{\mathbf{C}}$, and ∞ is not an isolated point of E. For the elementary properties of semi-algebraic sets that we use here see, for example, $[1,5]$. There exists $r_{0}>0$ such that $\Gamma=E \cap\left\{r_{0}<|z|<\infty\right\}$ is a union of finitely many disjoint smooth simple curves,

$$
\Gamma=\cup_{k=1}^{m} \Gamma_{k} .
$$

This union coincides with the support of $\mu_{u^{*}}$ in $\left\{z: r_{0}<|z|<\infty\right\}$.
Consider a point $z_{0} \in \Gamma$. Then $z_{0} \in \Gamma_{k}$ for some k. As Γ_{k} is a smooth curve, there is a neighborhood D of z_{0} which does not contain other curves $\Gamma_{j}, j \neq k$ and which is divided by Γ_{k} into two parts, D_{1} and D_{2}. Then there exist i and j such that $u^{*}(z)=u_{i}(z), z \in D_{1}$ and $u^{*}(z)=u_{j}(z), z \in D_{2}$, and $u^{*}(z)=\max \left\{u_{i}(z), u_{j}(z)\right\}, z \in D$. So the restriction of the Riesz measure $\mu_{u^{*}}$ on D is supported by $\Gamma_{k} \cap D$ and has density $J(z) /(2 \pi)$ where

$$
|J(z)|=\left|\partial u_{i} / \partial n-\partial u_{j} / \partial n\right|(z)=\left|\nabla\left(u_{i}-u_{j}\right)\right|(z),
$$

and $\partial / \partial n$ is the derivation in the direction of a normal to Γ_{k}. Taking into account that $u_{j}=\operatorname{Re} P_{j}$ where P_{j} are polynomials, we conclude that there exist positive numbers c_{k} and b_{k} such that

$$
\begin{equation*}
J(z) /(2 \pi)=\left(c_{k}+o(1)\right)|z|^{b_{k}}, \quad z \rightarrow \infty, \quad z \in \Gamma_{k} . \tag{8}
\end{equation*}
$$

Let $b=\max _{k} b_{k}$, and among those curves Γ_{k} for which $b_{k}=b$ choose one with maximal c_{k} (which we denote by c_{0}). We denote this chosen curve by Γ_{0} and fix it for the rest of the proof.

Proposition 3. We have

$$
b \leq \sigma \quad \text { and } \quad c_{0} \leq 3 \cdot 4^{\sigma} K(n+1)
$$

Proof. We consider two cases.
Case 1. There is a sequence $z_{n} \rightarrow \infty, z_{n} \in \Gamma_{0}$ such that $u_{0}\left(z_{n}\right) \leq u^{*}\left(z_{n}\right)$. Then (1) and Proposition 1 imply that

$$
J\left(z_{n}\right) \leq(n+1) K\left|z_{n}\right|^{\sigma}
$$

and comparison with (8) shows that $b \leq \sigma$ and $c_{0} \leq K(n+1) /(2 \pi)$.
Case 2. $u_{0}(z)>u^{*}(z)$ for all sufficiently large $z \in \Gamma_{0}$. Let a be a point on $\Gamma_{0},|a|>3 r_{0}$, and $u_{0}(a)>u^{*}(a)$. Let $B(a, R)$ be the largest open disc centered at a in which the inequality $u_{0}(z)>u^{*}(z)$ holds. Then

$$
\begin{equation*}
R \leq|a|+O(1), \quad a \rightarrow \infty \tag{9}
\end{equation*}
$$

because we assume that f_{0} has zeros, so $u_{0}\left(z_{0}\right)=-\infty$ for some z_{0}.
In $B(a, R)$ we consider the positive superharmonic function $v=u_{0}-u^{*}$. Let us check that it satisfies the conditions of Lemma 2. The existence of a point $z_{1} \in \partial B(a, R)$ with $v\left(z_{1}\right)=0$ follows from the definition of $B(a, R)$. The Riesz measure of μ_{v} is estimated using (7), (8):

$$
\left|\mu_{v}(B(a, R / 2))\right| \geq\left|\mu_{v}\left(\Gamma_{0} \cap B(a, R / 2)\right)\right| \geq c_{0} R(|a|-R / 2)^{b}
$$

Now Lemma 2 applied to v in $B(a, R)$ implies that

$$
\begin{equation*}
\left|\nabla v\left(z_{1}\right)\right| \geq\left(c_{0} / 3\right)(|a|-R / 2)^{b} . \tag{10}
\end{equation*}
$$

On the other hand (1) and Proposition 1 imply that

$$
\left|\nabla v\left(z_{1}\right)\right| \leq K(n+1)(|a|+R)^{\sigma}
$$

Combining these two inequalities and taking (9) into account, we obtain $b \leq \sigma$ and $c_{0} \leq 3 \cdot 4^{\sigma} K(n+1)$, as required.

We denote

$$
T^{*}(r)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} u^{*}\left(r e^{i \theta}\right) d \theta-u^{*}(0)
$$

This is the characteristic of the "reduced curve" $\left(f_{1}, \ldots, f_{n}\right)$.

Proposition 4.

$$
T^{*}(r) \leq 6 \cdot 4^{\sigma} K \frac{n(n+1)^{2}}{\sigma+1} r^{\sigma+1}
$$

Proof. By Jensen's formula,

$$
T^{*}(r)=\int_{0}^{r} \nu(t) \frac{d t}{t}
$$

where $\nu(t)=\mu_{u^{*}}(\{z:|z| \leq t\})$. The number of curves Γ_{k} supporting the Riesz measure of u^{*} is easily seen to be at most $2 n(n-1)(\sigma+1)$. The density of the Riesz measure $\mu_{u^{*}}$ on each curve Γ_{k} is given by (8), where $c_{k} \leq c_{0}$ and $b_{k} \leq b$, and the parameters c_{0} and b are estimated in Proposition 3. Combining all these data we obtain the result.

It remains to combine Propositions 2 and 4 to obtain the final result.
The authors thank the referee for many valuable remarks and suggestions.

References

[1] R. Benedetti and J. Risler, Real algebraic and semi-algebraic sets, Hermann, Paris, 1990.
[2] F. Berteloot et J. Duval, Sur l'hyperbolicité de certains complémentaires, Enseign. Math. (2) 47 (2001), no. 3-4, 253-267.
[3] W. Cherry and A. Eremenko, Landau's theorem for holomorphic curves in projective space and the Kobayashi metric on hyperplane complement, to appear in: Pure and Appl. Math. Quarterly, 2010.
[4] J. Clunie and W. Hayman, The spherical derivative of integral and meromorphic functions, Comment. math. helv., 40 (1966) 373-381.
[5] M. Coste, An introduction to semialgebraic geometry, Inst. editoriali e poligrafici internazionali, Pisa, 2000.
[6] A. Eremenko, Brody curves omitting hyperplanes, Ann. Acad. Sci. Fenn., 35 (2010) 565-570.
[7] S. Lang, Introduction to complex hyperbolic spaces, Springer-Verlag, New York, 1987.
[8] Ch. Pommerenke, Estimates for normal meromorphic functions, Ann. Acad. Sci. Fenn., Ser AI, 476 (1970).
[9] M. Tsukamoto, On holomorphic curves in algebraic torus. J. Math. Kyoto Univ. 47 (2007), no. 4, 881-892.

Purdue University, West Lafayette IN 47907 USA

[^0]: *Supported by NSF grant DMS-055279 and by the Humboldt Foundation.

