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We consider a surface S homeomorphic to the sphere and equipped

with a Riemannian metric of constant curvature 1 with finitely

many conic singularities with angles α1, . . . , αn.

We measure angles in turns: 1 turn = 2π radians.

The question is: What angles are possible?

Necessary conditions:

n∑

j=1

(αj − 1) + 2 > 0 (Gauss–Bonnet),

d1(Z
n
o , α− 1) ≥ 1 (Closure condition).

Here α = (α1, . . . , αn), Zn
o is the set of integer lattice points with

odd sums of coordinates, and d1 is the ℓ1 distance.



The standard metric (of area 1) on the sphere is

ρ0(z)|dz| =
|dz|√

π(1 + |z|2).

Then our metric ρ(z)|dz| has density exp(v/2) with respect to

ρ0, where

∆ρ0v +2ev − 8π = 4π
n∑

j=1

(αj − 1)δaj .

Our problem is to find out for which αj this equation is solvable,

with some aj.



Necessity of the Closure condition is due to Mondello and Panov

(2016). They also proved that the Gauss–Bonnet and the Clo-

sure condition with strict inequality are sufficient.

Developing map is a multi-valued function

S\{singularities} → C,

where C is the sphere equipped with the standard spherical metric

(of curvature 1), and f is a local isometry away from the singu-

larities. So f is analytic with respect to the conformal structure

on S induced by the metric, and the monodromy group of f

consists of rotations of C.

The metric is recovered from the developing map by the formula

ρ(z)|dz| = 2|f ′|
1+ |f |2|dz|.



The monodromy is called co-axial if it is a subgroup of SO(2).

Mondello and Panov proved that if the Closure condition holds

with equality, then the monodromy must be co-axial.

Thus it remains to obtain a necessary and sufficient condition

on the angles for metrics with co-axial monodromy.

α is called admissible if a co-axial metric with such angles exists.

It does not have to be unique.



Theorem 1. Suppose wlog that α1, . . . αm are not integers, while

αm+1, . . . , αn are integers. For α to be admissible it is necessary

that there exist ǫj ∈ {±1} and integer k′ ≥ 0 such that:

m∑

j=1

ǫjαj = k′, and the number

k′′ :=
n∑

j=m+1

αj − n− k′ +2 is non-negative and even.

If the coordinates of the vector c := (α1, . . . , αm, 1, . . . ,1
︸ ︷︷ ︸

k′+k′′ times

) are

incommensurable then these two conditions are also sufficient.

If the coordinates of the vector c are commensurable, then c = ηb

where coordinates of b are integers whose g.c.d. is 1.



In this case there is an additional necessary condition

2 max
m+1≤j≤n

αj ≤
q
∑

j=1

|bj|, q = m+ k′ + k′′,

and all these three conditions together are sufficient.

Corollary. When n > 2, a coaxial metric must have some integer

angles whose sum is at least n + k′ − 2 nd has the same parity

as n+ k′, where k′ is an alternating sum of non-integer angles.



This theorem generalizes the previous results: for m = 0 (easy

and well-known),

for n = 2 (Troyanov, 1989; in this simple case the necessary and

sufficient condition is α1 = α2),

for n = 3 (Eremenko, 2004),

for m = 2 (Eremenko, Gabrielov, Tarasov, 2014),

and for m = n (S. Dey, 2017),

and completes the description of possible angles.



As the monodromy is co-axial, we have df/f = Rdz, where R is

a rational function. Assuming that ∞ is not singular we obtain

that R(∞) is a zero of order at least 2.

The singularities are finite zeros and poles, whose residues are

not ±1. Poles with residues ±1 are not singularities.

For an admissible set of angles α there can be several metrics

with these angles. It is not difficult to verify that if α is admissible

(so that some metric with these angles exists) then there is also

a metric with these angles and with the additional property that

all singularities with integer angles are finite zeros of R. So that

there are no poles of R with integer residues except ±1.



Thus we can always assume that R is of the form of the form

R(z) =
m∑

j=1

ǫjαj

z − aj
−

k′∑

j=1

1

z − bj
+

k′+k′′
∑

j=k′+1

(−1)j

z − bj
,

the condition that k′′ is even comes from the residue theorem.

This formula implies that all singularities with integer angles are

zeros of R. Notice that we can introduce any number of poles

with residues ±1; they are not singularities of the metric.

Zeros of R are singularities with integer angles: their multiplici-

ties are αj − 1. Since all residues in this formula are determined

by the angles, the question is:

Does there exist such a function R with prescribed residues and

prescribed multiplicities of zeros.



Now restate the problem: For a given a vector (c1, . . . , cq) with
∑

j cj = 0 and a given partition of q − 2 =
∑s

j=1 ℓj, does there

exist a function

R(z) =
q
∑

j=1

cj

z − zj

with zeros of multiplicities ℓj ?

Theorem 2. If the cj are incommensurable, such a function R

exists.

If cj = ηjbj with mutually prime integers bj, then the necessary

and sufficient condition for existence of R is

2

(

1+ max
1≤j≤s

ℓj

)

≤
q
∑

j=1

|bj|.

We have to consider the commensurable case first.



Commensurable case. Hurwitz problem. R = ηg,

g(z) =
q
∑

j=1

bk
z − ak

, bj are mutually prime integers.

Then g = h′/h, h is rational, and we are looking for a rational

function with prescribed multiplicities of zeros, poles and critical

points other than zeros and poles. We have degh = (1/2)
∑

j |bj|
and the necessary condition ℓj + 1 ≤ degh is evident. Song and

Yu (2016) proved that this is also sufficient.

This is a special case of the Hurwitz problem: when there ex-

ist a rational function with given number of critical values and

prescribed multiplicities of their preimages. There is no simple

general criterion, but the special case that we need is known.



General case. Consider the real projective space RP
q−2 con-

sisting of q-tuples c = (c1, . . . , cq) with zero sum, modulo pro-

portionality. Let Z be the union of the coordinate hyperplanes

cj = 0. Let P be a partition of q − 2. We say that a point

c ∈ RP
q−2 is P -admissible if there exists g(z) with residues c and

multiplicities of zeros P . Otherwise c is P -exceptional. A point

c is called rational if its coordinates are commensurable.

Proposition. For every q and P , the set of rational P -exceptional

points in RP
q−2 is finite.

Indeed, they satisfy
∑q

j=1 |bj| ≤ 2(max ℓj+1), and bj are integers.



Now we try to construct a rational function R = f ′/f with pre-

scribed residues and multiplicities of zeros. Suppose that such a

function exists. Consider a flat metric ρ on S∗ = S\{singularities}
with developing map log f . The metric space (S∗, ρ) breaks into

flat cylinders by the critical level lines of u = log |f |. Semi-infinite

cylinders are neighborhoods of the punctures, and the cylinder

surrounding a puncture zj has “waist” 2πcj. There are also cylin-

ders of finite length, and all cylinders are pasted together along

their boundary arcs.

Conversely, if we have such a flat surface, homeomorphic to a

punctured sphere, its developing map will be of the form log f ,

where f is a rational function. The pull-back of the spherical

metric under this f will define the metric with conic singularities

which we are trying to construct.



To construct such a flat surface, one chooses a scheme of the

boundary identifications of cylinders, and prescribes waists to

all cylinders, and the lengths of the boundary arcs which are

to be identified. The cylinders are pasted together respecting

the length on these boundary arcs. Once such a flat surface is

constructed, f is recovered by the uniformization theorem.



Example. q = 4. The residues are a, b,−c,−d and we want a

single critical point of multiplicity 3. The pattern in the figure

consists of 4 infinite cylinders whose waists are known. One only

need to determine the length of x. We have to find a positive

solution to

a = x+ d, c = x+ b.

Such an x exists iff a− c+ b−d = 0 and x > 0 if a > d and c > b.



This means that there exists a function

R(z) =
a

z − z1
+

b

z − z2
− c

z − z3
− d

z − z4

having a single double zero in the plane, and corresponding to

the picture above, if and only if a+ b− c− d = 0 and a > d, c > b.

“Corresponding to the picture above” means that R is the con-

jugate gradient of a potential u whose level lines have topology

shown in the picture. The picture in the case is actually unique

up to exchange of letters a ↔ b and/or c ↔ d.



The possibility of the construction that we outlined depends on

the ability to choose the waists of all cylinders and the lengths of

the arcs to be pasted together. The waists of the semi-infinite

cylinders are prescribed (they are the prescribed residues c.

This leads to a set of equations and inequalities describing the

P -exceptional vectors c.

These equations and inequalities are of the form

Aj(c1, . . . , cq) = 0, Bj(c1, . . . , cq) > 0

with some linear functions Aj, Bj with integer coefficients. We

conclude that the set of P -exceptional points c is a rational

polyhedron in RP
q−2. But we know from the consideration of



the commensurable case that this rational polyhedron contains

only finitely many rational points.

A rational polyhedron containing finitely many rational points

must be finite and must consist of only rational points!

This completes the proof in the general case.
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