
Simultaneous stabilization, avoidance and

Goldberg’s constants

Alex Eremenko∗

August 3, 2012

Dedicated to the memory of A. Goldberg and V. Logvinenko

Abstract

This is an exposition for mathematicians of some unsolved prob-

lems arising in control theory of linear time-independent systems.

The earliest automatic control devices that I know are described in the
book of Hero of Alexandria “Pneumatica”, see Fig. 1. In the modern times
these devices are omnipresent (almost every home appliance contains at least
one, a car has several, an airplane or a guided missile has many; an ingenious
mechanical steering device of a sailboat permits you to sleep and to dine
during your voyage, while it keeps prescribed direction with respect to the
wind; one can add many other examples).

The mathematical theory of these devices begins, as far as I know, with
George Biddell Airy (of the Airy function), Astronomer Royal, who inves-
tigated mathematically stabilization of the clockwork mechanism directing
his equatorial.1 The stability condition that “all poles must be in the left
halfplane” was explicitly stated for the first time by J. C. Maxwell [20]. Par-
allel research was done in Eastern Europe by Aurel Stodola (1894) and Ivan

∗Supported by NSF grant DMS1067886.
1Equatorial is a device that continuously adjusts a telescope direction to compensate for

the diurnal rotation of the Earth. One of the most complicated modern control systems

directs the Hubble telescope. It has to keep the direction of the telescope with high

accuracy and for long time.
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Vyshnegradsky (1877) who pioneered the use of complex function theory,
anticipating the work of Nyquist (1932), see for example, [16].

Most of the XIX century research in the area was related to stabilizing the
system which consists of a steam engine controlled by the governor. Several
photographs of these governors, made by A. Gabrielov in Edison’s workshop
in Greenfield Village, Michigan, are attached at the end of this paper.

These investigations led to the famous criteria in terms of coefficients of a
polynomial for all its roots to belong to the left half-plane, (E. Routh, 1877,
A. Hurwitz, 1895), see [10].

Fig. 1 A XIX century illustration made according to the description in the
book of Hero Pneumatica.

A linear system of the simplest kind is described by 3 real matrices:
(A,B,C) of sizes n × n, n × m and p × n respectively. We have vectors
depending on time: the inner state x(t) with values in Rn, the input u(t)
with values in Rm and the output y(t) with values in Rp. These are related
in the following way:

x′ = Ax+Bu,

y = Cx.
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We will only consider the case m = p = 1 (so called single input – single
output systems).

Taking Laplace transforms, and assuming that x(0) = u(0) = y(0) = 0,
we obtain zX(z) = AX(z) +BU(z), Y (z) = CX(z), so

Y (z) = C(zI − A)−1BU(z) = p(z)U(z). (1)

The rational function p(z) = C(zI − A)−1B is called the transfer function.
It is real and p(∞) = 0. Rational functions satisfying p(∞) = 0 are called
proper. For every proper rational p function there exists a triple (A,B,C) so
that p(z) = C(zI − A)−1B.

The correspondence between triples of matrices and rational functions is
not trivial, not bijective, and there is a large literature on recovery of A,B,C
from the transfer function (realization theory). But all essential properties of
the system are encoded in the transfer function and here we identify a linear
system with its transfer function.

Improper transfer functions are equally important, they arise from more
general systems of differential equations with constant coefficients; I don’t
go into detail, but the primary object in this paper will be an arbitrary real
rational function; we call it a transfer function. It completely describes a
linear system.

A system is called stable if the transfer function has no poles in the open
right half-plane H. The poles of the transfer function are nothing but the
eigenvalues of the matrix A of the system.

For a given (maybe unstable) system, one may wish to stabilize it by
attaching a feedback controller. A controller is a linear system of the same
kind; it is described by another real rational transfer function c(z). Attaching
a controller as in the third diagram in Fig. 2 means that we take the output
of our original system, transform it by the controller, and then add to the
input:

Y = p(U + cY ) = pU + pcY.

We obtain a new system, which is called the closed loop system. By solving
with respect to Y we get the closed loop transfer function:

p

1 − cp
. (2)

Cancellation between poles and zeros of c and p is possible here, but engineers
naturally do not want to rely on such cancellation. So they give the following
definition:
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A controller c internally stabilizes p if 1 − cp has no zeros in the right
half-plane H, the poles of c are disjoint from the zeros of p in H, and the
zeros of c are disjoint from the poles of p in H.

From now on by “stabilization” we mean “internal stabilization”. One
can easily show that internal stabilization is equivalent to the condition that
all four transfer functions

pc/(1 − pc), c/(1 − pc), p/(1 − pc), 1/(1 − pc)

are without poles in H.
All these four transfer functions can be realized by attaching the feedback

in various ways, as shown in Fig. 2 below.

c

c

c

c p

p

p

p

Fig. 2 Configurations corresponding to
pc/(1 − pc), c/(1 − pc), p/(1 − pc), 1/(1 − pc).

4



Here is another elegant way to rewrite the internal stabilization condition:
c internally stabilizes p iff c avoids 1/p in the sense that

c(z) 6= 1/p(z), z ∈ H. (3)

Thus the stabilization problem is: for a given rational function p find a
rational function c so that (3) holds.

We obtain an equivalent problem when the right half-plane H is replaced
by the unit disc D. From the point of view of system theory, the unit
disc setting corresponds to discrete-time systems. Instead of a differential
equation, we have a recurrence relation,

x(n+ 1) = Ax(n) +Bu(n), y(n) = Cx(n),

and in place of the Laplace transform we use the generating function X(z) =
∑

∞

−∞
x(n)zn. Then the transfer function p(z) becomes C(z−1I − A)−1B,

exactly as in the case of continuous time, and the system is stable if p has
no poles in the unit disc, which now is equivalent to saying that A has no
eigenvalues whose absolute value is greater than 1.

Stabilization of one system is always possible if one does not restrict the
degree of c.

Now we consider simultaneous stabilization of several systems by one
controller. The problem has evident practical meaning: the system that we
want to stabilize may work in several different regimes (think of the cool-
ing/heating system in your home, which is usually controlled by a single
devise, or an airplane during take of/landing/horizontal flight), mathemati-
cally this means that we want a single controller to stabilize several systems.

Consider the problem of stabilizing two systems p1 and p2. This is equiv-
alent to stabilization of one system by a stable controller [3].

Stability of the controller is a desirable property by itself: if the system
p suddenly stops working, we don’t want the controller to destroy itself.

A rational function avoiding two different rational functions pi in H al-
ways exists, but it may have complex coefficients, even if pi are real. One
usually needs a controller with real coefficients. There is an obvious topo-
logical obstruction to the existence of real rational function without poles
on R>0 which avoids a given real rational function. In fact, this is the only
obstruction:

For a given real rational function p, there exists a real rational function
c satisfying (3) and without poles in H if and only if p has even number of
poles between every two adjacent zeros on R>0.

5



This neat statement is due to Youla, Bongiorno and Lu [28], and control
theorists are very fond of it [3].

Now we consider simultaneous stabilization of three systems.
Finding a function which avoids three given functions is an interesting

problem which attracted attention of pure mathematicians who were unaware
of its application to control theory. It seems that the problem was stated for
the first time in [25], and a connection with an “interpolation problem” of
the kind stated below in Theorem 1 was established.

In [17] this avoidance problem is considered for meromorphic functions
which avoid given rational functions in an arbitrary given region. The author
credits Volberg and Eremenko who stated the problem and obtained some
partial results. Apparently they were motivated by the “Lambda-lemma”
and holomorphic motions which were discovered about that time [19, 18],
[26], [9]. The lambda-lemma says that if finitely many meromorphic functions
avoid each other in a disc, that is, if their graphs are disjoint, then one can
always find an additional function which avoids all of them.

The main conclusion in [17] is that in any region one can always avoid
two functions, but in general one cannot avoid three. This is easy to explain
for the case of avoidance of three rational functions in C. Take the avoided
functions to be 0, ∞ and z. If a meromorphic function f avoids them, then it
must be rational, by Picard’s Theorem, but a rational function f that avoids
0 and ∞ in C must be constant, so it cannot avoid z.

Similar results were obtained in control theory for the case of the unit
disc or a halfplane.

We will work in the unit disc from now on. First we give a general
reformulation of stabilization of three systems in terms of some unusual in-
terpolation problem. Various special cases of this result are mentioned in the
control literature, but I could not find a general statement.

Theorem 1. Let φ1, φ2 and φ3 be three rational functions without common
poles, and suppose that the set

E = {z ∈ D : φ(z) = φ2(z) = ψ3(z)} (4)

is empty.
There exists a rational function f which avoids φi in U if and only if

there exists a rational function g with the properties:
(i) divisor of zeros of g coincides with the divisor of zeros of φ3 − φ2;
(ii) divisor of poles of g coincides with the divisor of zeros of φ3 − φ1, and
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(iii) divisor of ones of g coincides with the divisor of zeros of φ1 − φ2.

Condition that the φi have no common poles is added only for simplicity of
formulation: the whole situation is invariant with respect to composition with
fractional-linear transformations. Condition that E = ∅ holds for generic φi.

The correspondence between f and g is given by the cross-ratio

g =
(f − φ1)(φ3 − φ2)

(f − φ2)(φ3 − φ1)
.

In the case that there are triple intersections, that is E 6= ∅, one has to add
the condition for each point a ∈ E:

g(z)(φ3(z) − φ1(z))/(φ3(z) − φ2(z)) = 1 +O(zk), z → a, (5)

where k is the order of the zero of φ1 − φ2 at a.
Thus, simultaneous stabilization of three functions (and the problem of

avoidance of three functions) is equivalent to finding a function with pre-
scribed zeros, ones and poles in the unit disc, counting multiplicity, and
prescribed jets at finitely many points.

Interestingly, Nevanlinna [22] proposed a similar problem for meromor-
phic functions in C: to find necessary and sufficient conditions that zeros,
poles and 1-points of a meromorphic functions must satisfy. Some necessary
conditions are known [22, 27], see also [25, 23]. Most of these results are for
meromorphic functions in the plane.

Consider the following examples.

1. (Blondel [3]) For which δ the following three transfer functions in the
unit disc are simultaneously stabilizable:

p1 = z2/(z − δ), p2(z) = z2/(z + δ), p3(z) = 0 ?

The stabilizer c has to be a rational function without poles in the unit disc
avoiding 1/pi, i = 1, 2. This means g(z) = z − c(z)z2 has to satisfy

g(0) = 0, g′(0) = 1, g(z) 6= ±δ, |z| < 1.

According to a result of Bermant [2] this is possible if and only if

δ ≥ δ0 := 8π2/Γ4(1/4),
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and the extremal function is not rational. This inequality gives a necessary
condition of simultaneous stabilizability. Then an easy approximation argu-
ment shows that p1, p2 and p3 are simultaneously stabilizable if and only if
δ < 8π2/Γ4(1/4).

2. (Patel [24]) For which a > 0, the following three transfer functions in
the unit disc are simultaneously stabilizable:

p1(z) = z, p2(z) = z2/(z − a), p3(z) = 0 ?

The stabilizer c has to be a rational function without poles in the unit disc
satisfying

c(z) 6= 1/z, c(z) 6= (z − a)/z2, |z| < 1.

Introducing g = (z − c(z)z2)/a we rewrite this in the equivalent form:

g(z) 6= 1, g(0) = 0 ↔ z = 0, g′(0) = 1/a. (6)

The answer follows from a theorem of Caratheodory [7], [21], [12]

If a holomorphic function g in the unit disc satisfies (6) then

|a| ≥ 1/16.

There is a real holomorphic function for which equality holds. This extremal
function is not rational.

A similar result, but with a smaller constant, was obtained for the first
time by Hurwitz [15].

Now a simple approximation argument shows that the above three sys-
tems are simultaneously stabilizable if and only if a > 1/16. This answers a
question stated in [24].

Suppose that we wish to stabilize three transfer functions, one of which
avoids another. The problem is equivalent to finding a rational function
without zeros and poles in the unit disc, which avoids one rational function
p. Such c is called a bistable controller. I am not aware of any practical
application of this “bistability property” by itself, but the desire to control
three systems with a single controller is reasonable as explained above. The
problem now is to find necessary and sufficient conditions on a rational func-
tion p for the existence of c satisfying (3) and having no zeros and no poles
in D. Blondel [3] calls this “one of the major unsolved problems of control
theory”.
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A special case of Theorem 1 above, previously established by Blondel,
says that the problem in equivalent to:

Finding a rational function w without poles in D, so that 1-points of w
in D and zeros of w in D are prescribed (with multiplicities).

We refer to [4, 5] and the references in [3] for some necessary conditions
that zeros and 1-points must satisfy.

Only one universal restriction (independent of degree) which zeros, poles
and 1-points of a rational function must satisfy is known. It was found by
Goldberg [11] and later independently by Blondel.

To state Goldberg’s result, we introduce some notation. Let F0 be the
class of all holomorphic functions f in the rings

ρ(f) < |z| < 1,

with the properties that f(z) 6∈ {0, 1,∞}, and the indices (winding numbers)
of the curve

γ(f) = {f(z) : |z| = (1 + ρ(f))/2} (7)

about 0 and 1 are non-zero and distinct. Let F4, F3, F2, F1 be the subsets
of F0 which consist of polynomials, rational, holomorphic, and meromorphic
functions in D, respectively, having finite pairwise distinct numbers of zeros,
poles and 1-points. We have F4 ⊂ F2 ⊂ F1 ⊂ F0 and F2 ⊂ F3 ⊂ F1 ⊂ F0.
The constants ρ(f) are defined for f ∈ Fj, 1 ≤ j ≤ 4 as

ρ(f) = max{|z| : f(z) ∈ {0, 1,∞}}.
Now we put

Aj = inf{ρ(f) : f ∈ Fj}, 0 ≤ j ≤ 4.

Evidently A0 ≤ A1 ≤ A3 ≤ A4 and A0 ≤ A1 ≤ A2 ≤ A4. Goldberg’s theorem
says that

0 < A0 = A1 = A3 < A2 = A4.

Moreover, extremal functions exist for A0 and A2 but do not exist for A1, A3

and A4.
This result shows that if a holomorphic function in the unit disc has finite,

non-zero, distinct numbers of zeros and 1-points, then these zeros and one
points cannot lie very close together.

So we have two absolute constants 0 < A0 < A2 which are called Gold-
berg’s constants. The exact value of A0 is known:

A0 = exp(−π2/(log(3 + 2
√

2)) ≈ 0.003701599,
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and for A2 there are estimates

0.00587465 < A2 ≤ µ ≈ 0.0252896.

The constant µ and a function which corresponds to it are conjectured to be
extremal for A2; this function h is described in detail in [6], and we will give
a short description below.

If the indices of the curve γ about 0 and 1 are prescribed to be N0, N1, we
obtain constants A0(N0, N1). One can obtain an exact value of A0(N0, N1),
for any given N1 > N0 > 0, see [6].

Being unable to prove that A2 = µ, the authors of [6] showed that µ is
the solution of a restricted extremal problem:

Theorem. A necessary and sufficient condition for the existence of a holo-
morphic function f in the unit disc, having no poles, a single simple zero at
a and a single multiple 1-point at −a is that |a| ≥ µ. If a = µ this function
is unique and transcendental. If |a| > µ there exists a polynomial f with the
stated properties.

Thus in the simplest case of one simple zero, one multiple 1-point and
no poles, we have a necessary and sufficient condition for the existence of a
rational function with prescribed zeros, 1-points and poles in the unit disc.

This can be restated as a necessary and sufficient condition for a stabi-
lization problem as follows:

The transfer function
(z + a)2

z − a

can be stabilized by a bistable controller if and only if |a| > µ.

In more complicated cases, there is no hope for such simple conditions.
For example, Blondel [3] states the following problem2:

For which δ > 0 there exists a rational function which in the unit disc has
no poles, a single simple zero at 0, and exactly two simple 1-points ±iδ?

It is known that there exists δ0 > 0, with the property that such function
exists for δ ≥ δ0 and does not exist for δ < δ0.

2He even offered a prize of 1 kg of fine Belgian chocolate for this problem. Nevertheless

it is still wide open.
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Evidently δ0 ≥ A2 and it is not difficult to show that this inequality is
strict. The current world record [8] for the estimate from above seems to be
δ0 < 0.1148. The best known lower estimate is 0.01450779. It can be obtained
from the estimate in [14] of the minimal length of a closed hyperbolic geodesic
in a twice punctured disc [6].

In conclusion, we sketch the definition of the function which is conjectured
to be extremal for A2. The fundamental group Γ of C\{0, 1} is a free group
generated by simple loops A and B around 0 and 1. Let Γ′ be the subgroup
generated by A and B2. It is also a free group on two generators. Let
g : X → C\{0, 1} be the covering map corresponding to this subgroup Γ′, so
that Γ′ is the fundamental group of X. One can show that X is a Riemann
surface which is conformally equivalent to the twice punctured disc, and
we can identify it with D\{−µ, µ} for some µ ∈ D. Then g becomes a
holomorphic function in D which has one simple zero, say at −µ and one
double 1-point at µ. We conjecture that A2 = µ.One can express our function
g in terms of solutions of a Lamé equation and modular functions.
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