An extremal problem for a class of entire functions

Alexandre Eremenko* and Peter Yuditskii ${ }^{\dagger}$

May 29, 2008

Abstract

Soi f une fonction entière de type exponentielle donc le diagramme indicatrice est contenu dans l'interval [$-i \sigma, i \sigma], \sigma>0$. Alors la densité superieure de zéros de f ne dépasse pas $c \sigma$ ou $c \approx 1.508879$ est la solution d'équation

$$
\log \left(\sqrt{c^{2}+1}+c\right)=\sqrt{1+c^{-2}} .
$$

Cette borne est exacte.
We consider the class $E_{\sigma}, \sigma>0$ of entire functions of exponential type whose indicator diagram is contained in a segment $[-i \sigma, i \sigma]$, which means that

$$
\begin{equation*}
h(\theta):=\limsup _{r \rightarrow+\infty} \frac{\log \left|f\left(r e^{i \theta}\right)\right|}{r} \leq \sigma|\sin \theta|, \quad|\theta| \leq \pi . \tag{1}
\end{equation*}
$$

An alternative characterization of such functions follows from a theorem of Pólya [6]:

$$
f(z)=\frac{1}{2 \pi} \int_{\gamma} F(\zeta) e^{-i \zeta z} d \zeta
$$

where F is an analytic function in $\overline{\mathbf{C}} \backslash[-\sigma, \sigma], F(\infty)=0$, and γ is a closed contour going once around the segment $[-\sigma, \sigma]$. In other words, the class of

[^0]entire functions satisfying (1) consists of Fourier transforms of hyperfunctions supported by $[-\sigma, \sigma]$, see, for example, [2] and [3].

Let $n(r)$ be the number of zeros of f in the disc $\{z:|z| \leq r\}$, counting multiplicity. We are interested in the upper density

$$
\begin{equation*}
D=\limsup _{r \rightarrow \infty} \frac{n(r)}{r} \tag{2}
\end{equation*}
$$

If f satisfies the additional condition

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{\log ^{+}|f(x)|}{1+x^{2}} d x<\infty \tag{3}
\end{equation*}
$$

then the limit (density) in (2) exists and equals $(2 \pi)^{-1} \int_{-\pi}^{\pi} h(\theta) d \theta$. For example, if $f(z)=\sin \sigma z$, then $f \in E_{\sigma}$ and $D=2 \sigma / \pi \approx 0.6366 \sigma$ The existence of the limit follows from a theorem of Levinson [5, 6]. Much more precise information about $n(r)$ under the condition (3) is contained in the theorem of Beurling and Malliavin [1].

In the general case, the density might not exist as was shown by examples in $[4,10]$. Moreover, it is possible that $D>2 \sigma / \pi$, see [2]. An easy estimate using Jensen's formula gives $D \leq 2 e \sigma / \pi \approx 1.7305 \sigma$. This estimate is exact in the larger class of entire functions satisfying the condition $h(\theta) \leq \sigma$, but it is not exact in E_{σ}.

In this paper we find the best possible upper estimate for the upper density of zeros of functions in E_{σ}.

Theorem. The upper density of zeros of a function $f \in E_{\sigma}$ does not exceed $c \sigma$ where $c \approx 1.508879$ is the unique solution of the equation

$$
\begin{equation*}
\log \left(\sqrt{c^{2}+1}+c\right)=\sqrt{1+c^{-2}}, \quad \text { on } \quad(0,+\infty) \tag{4}
\end{equation*}
$$

For every $\sigma>0$ there exist entire functions $f \in E_{\sigma}$ such that $D=c \sigma$.
Proof. Without loss of generality we assume that $\sigma=1$. Moreover, it is enough to consider only even functions. To make a function f even we replace it by $f(z) f(-z)$, which results in multiplication of both the indicator h and the upper density D by the same factor of 2 .

Let $t_{n} \rightarrow+\infty$ be such sequence that $\lim n\left(t_{n}\right) / t_{n}=D$. Consider the sequence of subharmonic functions $v_{n}(z)=t_{n}^{-1} \log \left|f\left(t_{n} z\right)\right|$. Compactness

Principle for subharmonic functions [3, Theorem 4.1.9] implies that one can choose a subsequence that converges in \mathscr{D}^{\prime} (Schwartz's distributions). The limit function v is subharmonic in the plane, and satisfies

$$
\begin{equation*}
v(z) \leq|\operatorname{Im} z|, \quad z \in \mathbf{C}, \quad \text { and } \quad v(0)=0 \tag{5}
\end{equation*}
$$

Let μ be the Riesz measure of this function. We have to show that

$$
\begin{equation*}
\mu(\{z:|z| \leq 1\}) \leq c \tag{6}
\end{equation*}
$$

First we reduce the problem to the case that the Riesz measure μ is supported by the real line. We have

$$
v(z)=\frac{1}{2} \int \log \left|1-\frac{z^{2}}{\zeta^{2}}\right| d \mu_{\zeta} .
$$

Let us compare this with

$$
v^{*}(z)=\frac{1}{2} \int_{0}^{\infty} \log \left|1-\frac{z^{2}}{t^{2}}\right| d \mu_{t}^{*}
$$

where μ^{*} is the radial projection of the measure μ : it is supported on $[0,+\infty)$ and $\mu^{*}(a, b)=\mu(\{z: a<|z|<b\}), 0 \leq a<b$. It is easy to see that

$$
\begin{equation*}
v^{*}(z) \leq \sigma^{\prime}|\operatorname{Im} z|, \quad z \in \mathbf{C}, \quad \text { and } \quad v^{*}(0)=0 \tag{7}
\end{equation*}
$$

with some $\sigma^{\prime}>0$. We claim that one can choose $\sigma^{\prime} \leq 1$ in (7). Let σ^{\prime} be the smallest number for which (7) holds. Then, by the subharmonic version of the theorem of Levinson mentioned above (see, for example, [9]), the limit

$$
\lim _{r \rightarrow \infty} r^{-1} v^{*}(r z)=\sigma^{\prime}|\operatorname{Im} z|
$$

exists in \mathscr{D}^{\prime} and thus

$$
\lim _{r \rightarrow \infty} \frac{1}{r} \int_{0}^{r} \frac{n_{v^{*}}(t)}{t} d t=\lim _{r \rightarrow \infty} \frac{1}{2 \pi r} \int_{-\pi}^{\pi} v^{*}\left(r e^{i \theta}\right) d \theta=2 \sigma^{\prime} / \pi
$$

where

$$
\begin{equation*}
n_{v^{*}}(r)=\mu^{*}[0, r]=\mu\{z:|z| \leq r\} . \tag{8}
\end{equation*}
$$

Similar limits exist for v, and we have $n_{v}=n_{v^{*}}$, from which we conclude that $\sigma^{\prime} \leq 1$.

From now on we assume that v is harmonic in the upper and lower halfplanes, and that

$$
\begin{equation*}
v(i y) \sim y, \quad y \rightarrow+\infty \tag{9}
\end{equation*}
$$

Let u be the harmonic function in the upper half-plane such that $\phi=$ $u+i v$ is analytic, and $\phi(0)=0$. Then ϕ is a conformal map of the upper half-plane onto some region G of the form

$$
\begin{equation*}
G=\{x+i y: y>g(x)\} \tag{10}
\end{equation*}
$$

where g is an even upper semi-continuous function, $g(0)=0$. Moreover,

$$
\begin{equation*}
\phi(i y) \sim i y, \quad \text { as } \quad y \rightarrow+\infty, \tag{11}
\end{equation*}
$$

which follows from (9), and

$$
\begin{equation*}
\phi(-\bar{z})=-\overline{\phi(z)} \tag{12}
\end{equation*}
$$

because both the region G and the normalization of ϕ are symmetric with respect to the imaginary axis. Finally we have

$$
\begin{equation*}
\mu([0, x])=\frac{2}{\pi} u(x) \tag{13}
\end{equation*}
$$

For all these facts we refer to [7].
Remark. The function $\operatorname{Re} \phi(x)=u(x)$ might be discontinuous for $x \in \mathbf{R}$. We agree to understand $u(x)$ as the limit from the right $u(x+0)$ which always exists since u is increasing.

Inequality (5) implies that $v(x) \leq 0$, thus $g(x) \leq 0$, in other words, G contains the upper half-plane.

Thus we obtain the following extremal problem: Among all univalent analytic functions ϕ satisfying (12) and mapping the upper half-plane onto regions of the form (10) with $g \leq 0, g(0)=0$ and satisfying $\phi(0)=0$ and (11), maximize $\operatorname{Re} \phi(1)$.

We claim that the extremal function g for this problem is

$$
g_{0}(x)= \begin{cases}-\infty, & 0<|x|<\pi c / 2 \\ 0, & \text { otherwise }\end{cases}
$$

where $c>1$ is the solution of equation (4). The corresponding region is shown in Fig. 1. For the extremal function we have $\phi_{0}(1)=\pi c / 2-i \infty$.

Fig. 1. Extremal region.
To prove the claim, we fist notice that for a given G the mapping function is uniquely defined. Let $a=\phi(1)$, and $b=\operatorname{Re} a$. Next we show that making g smaller on the interval $(0, b)$ results in increasing $\operatorname{Re} \phi(1)$ and making g larger on the interval $(b,+\infty)$ also results in increasing $\operatorname{Re} \phi(1)$. The proofs of both statements are similar. Suppose that $g_{1} \leq g, g_{1} \neq g$, and $g_{1}(x)=g(x)$ outside of the two intervals $p<|x|<q$, where $0<p<q<b$. Let G_{1} be the region above the graph of g_{1}, and ϕ_{1} the corresponding mapping function normalized in the same way as g. Then $G \subset G_{1}$, and the conformal map $\phi_{1}^{-1} \circ \phi$ is defined in the upper half-plane and maps it into itself. We have

$$
\phi_{1}^{-1} \circ \phi(x)=x+2 x \int_{0}^{\infty} \frac{w(t)}{t^{2}-x^{2}} d t
$$

where $w \neq 0$ is a non-negative function supported on some interval inside $(0,1)$. Putting $x=1$ we obtain

$$
\phi_{1}^{-1}(a)=1+2 \int_{0}^{\infty} \frac{w(t)}{t^{2}-1} d t
$$

so $\phi_{1}^{-1}(a)<1$, that is $\operatorname{Re} \phi_{1}(1)>b$. This proves our claim.
It remains to compute the constant b in the extremal domain. We recall that $\phi_{0}(1)=b-i \infty$ and assume that $b=\phi_{0}(k)$ for some $k>1$. Here ϕ_{0} is the extremal mapping function. Then by the Schwarz-Christoffel formula we have

$$
\begin{equation*}
\phi_{0}(z)=\frac{1}{2} \int_{0}^{z^{2}} \frac{\sqrt{\zeta-k^{2}}}{\zeta-1} d \zeta \tag{14}
\end{equation*}
$$

To find k, we use the condition that

$$
\operatorname{Im} p . v . \int_{0}^{k^{2}} \frac{\sqrt{\zeta-k^{2}}}{\zeta-1} d \zeta=0
$$

Denoting $c=\sqrt{k^{2}-1}$ and evaluating the integral, we obtain

$$
\log \left(\sqrt{c^{2}+1}+c\right)=\sqrt{1+c^{-2}}
$$

Finally the jump of the real part of the integral in (14) occurs at the point 1 and has magnitude $\pi \sqrt{k^{2}-1}=\pi c$. This completes the proof of the upper estimate in Theorem 1.

To construct an example showing that this estimate can be attained, we follow the construction in [2, Sect.9-10]. The role of the subharmonic function u_{1} there is played now by our extremal function $v_{0}=\operatorname{Im} \phi_{0}$.

References

[1] A. Beurling and P. Malliavin, On Fourier transforms of measures with compact support, Acta math., 118 (1967) 291-309.
[2] A. Eremenko and D. Novikov, oscillation of Fourier integrals with a spectral gap, J. Math. pures appl., 83 (2004) 3, 313-365.
[3] L. Hörmander, Analysis of linear partial differential operators, vol. I, II, Springer, Berlin 1983.
[4] P. Kahane and L. Rubel, On Weierstrass products of zero type on the real axis, Illinois Math. J., 4 (1960) 584-592.
[5] P. Koosis, Leçons sur le theorémè de Beurling et Malliavin, Publ. CRM, Montréal, 1996.
[6] B. Levin, Distribution of zeros of entire functions, AMS, Providence, RI, 1980.
[7] B. Levin, Subharmonic majorants and some applications, in the book: Complex analysis, Birkhauser, Basel, 1988. P. 181-190.
[8] B. Levin, The connection of a majorant with a conformal mapping. II (Russian) teor. Funktsii Funk. Anal. i Prilozhen. 52 (1989), 3-21. English translation in: J. Soviet Math., 52 (1990), no 5, 3351-3364.
[9] V. Matsaev and M. Sodin, Distribution of Hilbert transforms of measures, Geom and Funct. Anal., 10 (2000) 1, 160-184.
[10] C. Roumieu, Sur quelques extensions de la notion de distribution, Ann. Sci. Ecole Norm. Super., 77 (1960) 41-121.

Purdue University
West Lafayette IN 47907 USA
J. Kepler University

Linz A 4040 Austria

[^0]: *Supported by NSF grant DMS-0555279.
 ${ }^{\dagger}$ Supported by Austrian Fund FWF P20413-N18.

