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ALEXANDRE EREMENKO*, JIM LANGLEY t AND JOHN ROSSI ~: 

Abstract.  We study the zero distribution of meromorphic functions of the 
formf(z) = ~--]ff=l at where a t. > 0. Noting thatfts the complex conjugate of 

Z--Z k 
the gradient of a logarithmic potential, our results have application in the study of 
the equilibrium points of such a potential. 

Furthermore, answering a question of Hayman, we also show that the derivative 
of a meromorphic function of order at most one, minimal type has infinitely many 
zeros. 

1. Introduct ion  

Cons ide r  a m e r o m o r p h i c  func t ion  

oo 
~ ak 

- - -  a t  > 0 .  (1.1) f ( z )  = z - zt.' 
k=l  

We suppose  that 

(1.2) ~ ak 
k = l ~  < ( x )  

and  thus that the series in (1.1) converges  abso lu te ly  for all z E C ,  z # zk. The  

f u n c t i o n f  is the complex  con juga te  to the g rad ien t  o f  the logar i thmic  potent ia l  

= , z [ 
(1.3) u(z)  = Z ak log 

k =  1 Z k  

which  is a s u b h a r m o n i c  func t ion  of  order  at mos t  one,  conve rgence  class. This  

fo l lows f rom (1.2). The  zeros o f f  are the e q u i l i b r i u m  or cri t ical  poin ts  o f  u. If  the 
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ak are all positive integers, we may also consider the entire function 

1-!5 
t=l zt / 

In this c a s e f  = F'/F. 
The zeros o f f  were studied in [3] where the following results were obtained: 

T h e o r e m  1.1 I f  all the at are positive integers, then f has infinitely many 
zeros. 

T h e o r e m  1.2 I f  all the aj are positive real numbers and 

2-, aj = o(v/r), r , oe, (1.4) 
{j:lzjl<r} 

then f has an infinite set of  zeros. 

The condition (1.4) means that the function u given by (1.3) has order at most 1/2, 

minimal type. 

The paper [3] also contains results for the case when the ak are real but not 

necessarily positive, as well as some counterexamples. Some earlier results on the 

distribution of  zeros o f f ,  with complex at  are contained in [6, Ch. V]. 

Throughout  this paper we use the standard notation of  value distribution theory 

for meromorphic  and subharmonic functions. The reader is referred to [6], [8], [9] 

and [10]. Our first result extends Theorem 1.1 to allow for non-integer values of  

at .  

T h e o r e m  1.3 I f  f defined by (1.1) has order at most one, minimal type, then 
f has an infinite set of zeros. 

We remark that, in general, there is no relationship between the growth o f f  and 

u. However, if we assume that the at  are bounded away from zero, then T(r, f )  = 
O(N(r, u)) and we obtain the following corollary, whose proof  is immediate from 

(1.3). 

C o r o l l a r y l . 4  Supposethatat >_a >Oin(1.1). Thenf  hasaninf ini tesetof  
zeros. 

Thus Theorem 1,3 is stronger than Theorem 1.1. 

In [3] it was proved that if F is a meromorphic function of  order less than 1/2, 

then F' /F  has infinitely many zeros. Examples were given to show that there 

exist merormorphic functions of  any order greater than or equal to 1/2 whose log 

derivatives have no zeros. This led Hayman to ask whether the derivative of  a 

meromorphic  function of  order less than one has any zeros. Our next theorem 

answers this question affirmatively. 
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T h e o r e m  1.5 Let F be a transcendental meromorphic function of order at 

most one, minimal type; then F' has infinitely many zeros. 

For F of  order at most  one convergence class, it is easily seen that Theorem 1.5 

is equivalent to the following 

T h e o r e m  1.6 If  f is as in (1.1) and the ak are integers, with ak > -1 for 

j > jo, thenf  has infinitely many zeros. 

To establish the equivalence, note that under the conditions of  Theorem 1.6 we have 

f = g'/g, where g is a meromorphic  function with at most  finitely many  multiple 

poles, having order at most  one, convergence class. Applying Theorem 1.5 to 

F = 1/g we conclude t h a t f  = g'/g has infinitely many  zeros. Conversely if F is 

a meromorphic  function of  order at most  one convergence class, then either F has 

infinitely many  multiple zeros, or else we may  apply Theorem 1.6 t o f  = - F ' / F .  

In either case Theorem 1.5 is true. 

We mention that Theorem 1.5 is sharp. Indeed for p > 1, it was shown in [3] 

that there exists an entire function G of  order p such that G'/G has no zeros. Then 

F = 1/G is meromorph ic  of  order p and F '  has no zeros. 

The next two theorems give quantitative information on the distribution of  the 

zeros o f f  in certain cases. 

T h e o r e m  1.7 l f  the function f defined in (1.1) has lower order )~ < 1 and 

(1.5) O < a < a k  <A < c~ 

for some constants a and A, then 6(0,f )  < 1. 

Corollary 1.8 Let F be an entire function of order p < 1. Further suppose 

that the multiplicity of  the zeros o fF  is uniformly bounded. Then 6(O,F'/F) < 1. 

T h e o r e m  1.9 I f f  defined by (1.1) has lower order A < 1/2, then 

6(O,f) < 1 - c o s  7rA. 

Further if )~ = 1/2, then 

6(O,f) < 1. 

Corollary 1.10  For entire functions F of order p < 1/2, we have 

6(O,F'/F) _< 1 - c o s ~ .  

Further if A = 1/2, then 

6(O,F'/F) < 1. 
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We note that the proofs of the corollaries follow immediately from their respective 

theorems. 

R e m a r k  There is a conjecture of  W. H. J. Fuchs which states that for entire 

functions F of  lower order A < 1/2, 6(O,F' /F)  = 0. Our Corollary (1.10) proves 

this if A = 0. 

We propose the following related problem: 

P r o b l e m  Let p < 1/2 be the order o f  the subharmonic function u in (1.3). Can 

one estimate 6(O,f) in terms o f  p? 

We note that if the ak are bounded from below then A(f) < p(u) < 1/2 and 

Theorem 1.9 gives an answer. 

The authors are indebted to Jim Clunie for extremely valuable and poignant 

conversations related to this paper. 

2. P r o o f  o f  T h e o r e m s  1.3 and 1.5 

We need the following 

P r o p o s i t i o n  2.1 Let ~ > 0 and let g be a transcendental meromorphic func- 

tion, o f  order at most one, minimal type, having only finitely many poles. Let F be 

a path such that F(t) --* c~ as t ---, cx~ and 

(2.1) loglg(z)[ ~ as z - - - ~ ,  z E F .  
log Iz[ 

Then there exists a domain S with the following properties: 

a. l f  O(t) = meas{0 E [0, 27r] : te iO E S}, then for  some ro > O, we have 

fro dt q~0(r) := log r - rc tO(t'---') --~ +oo 

a s  r --+ - ~ - ~ .  

b. For some ri > 0 the part  o f f  lying in {z : Iz[ > ri } is contained in S. 

e. For any Zl, z2 E S there exists a path "~ from zi to z2 satisfying 

f lg(z)l-lldzl < e. 

We postpone the proof of  Proposition 2. I to the end of  this section. 
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P r o o f  o f  T h e o r e m  1.3 We now suppose t h a t f  has only finitely many zeros, 

and we set g = 1If. Then by a theorem of  Lewis, Rossi and Weitsman [12], there 

is a path F such that (2. l)  holds, and such that 

(2.2) fr Ig(z)l-~ Idz[ < 

(The result was stated in [121 for entire functions, but the required generalization 

is trivial.) Applying Proposition 2.1 with e = 1, we see from (2.2), b., c. and the 

fact that ]g(z)1-1 --- Igrad u(z)l, that u(z) < C on S, for some positive constant C. 

Let  
01 (t) = meas{0 E [0, 27r] : u(te i~ > C} 

so that 

(2.3) Oo(t) + Ol(t) ~ 2~ 

where Oo(t) = O(t) is as in a.. 
Using [14, p.116], a .  and the fact that u has at most order one, minimal type, 

we have for some to > 0, and f o r j  = 0, 1 that 

ft0" Oj(r) := log r  - 7r dt/(tOj(t)) ~+c~ 

as r ~ oo. Setting ~(r) = min{~b0(r), ~bl (r)}, we have 

log2(r/to) = ( ft~ d t )  
2 

- t tOj(t) fo - Oj(t)dt 
- -  <_ 7 r - J ( l o g r -  ~(r)) t 

Adding these inequalities f o r j  = 0, 1 and using (2.3), we obtain 

log2(r/to) <_ ( l o g r -  ~b(r)) logr ,  

which is a contradiction since ~b(r) --+ +oo. [] 

P r o o f  o f  T h e o r e m  1.5 Assuming that F '  has only finitely many zeros, we set 

g = 1/F'. Applying the result of  Lewis, Rossi and Weitsman [12] again, we obtain 

a path F such that (2.1) and (2.2) hold. Since g = 1/F', we conclude from (2.2) 

that F tends to a finite value as z ~ oo on F. We may assume that this value is 0. 

But F/F '  also has at most order one, minimal type, and has at most finitely many 

poles. Moreover,  F/F '  must be transcendental by the growth restrictions on F. It 

follows [12] that there exists a path Pl such that 

loglF(z) /F'(z) l / loglz l  ,-t-oo as z E F1----, oo, 
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and 

f r  lF'(z)/F(z)lldzl < +c~. 
I 

We now see that F must tend to a finite, nonzero value, which we may assume to 

be 1, as z ---, or on Fl. Thus g grows transcendentally on F1. 

We now assume without loss of  generality that IF(z)l < 1/4 for all z E F and 

IF(z) - II < 1/4 for all z E F1. Applying Proposition 2.1 again with E = 1/4, we 

obtain r0 > 0 and domains So and Sl with the following properties. F o r j  = 0, 1, 

we have IF(z) - J l  < 1/2 for all z E Sj, and for Oj(t) := meas{0 E [0, 27r] : teiO E Sj}, 
we have 

Oo(t) + Oi (t) < 27r. 

This follows since So and Sl are disjoint. Also f o r j  = 0, 1, 

4~j(r) := log r - 7r dt/(tO)(t)) , + ~ .  

We now obtain a contradiction exactly as in the proof of  Theorem 1.3. 

Before proving Proposition 2.1, we need the following lemma. (Compare with 

[ 15, p.441.) 

[ , e m m a  2.2 There exists a monotone increasing sequence R~ E (22n-2, 2 z~) 

such that f o r  large n the total length o f  the level curves Ig(z)l = R,  in 

: {z :  Izl < 2"} 

is at most  23n/2. 

P r o o f  For R > 0 we have 

n(2 ~, Re i~ g) < N(2 n+2, 1/(g - Rei~ < T(2 n+z, g) + log + R + O( 1 ) 

Thus 

1 f0 2'~ (2.4) Pn (R) := ~ n(2 n, Re i~ g)dO < T(2 n+2, g) + log + R + O(1 ). 

Let In(R) denote the total length of  the level curves Ig(z)i = R in Dn. 
/3n = 2 z~, ~ = 22n-2. By the length - area principle (c. f. [7, p. 18]), we have 

Ltd, < 27r. area(7~n) = I~2(R)dR 2rr 2 �9 22~" 
. R p n ( R ) -  

Put 
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So there exists R.  E (a.,/3n) such that 

1 Rnpn(R.) �9 27r 2 �9 22n. 

From (2.4) and the fact that g has order at most one, minimal type, we have that for 

n large enough p . (R . )  <_ o(2"). This and the obvious fact that the sequence {R.} 

is monotone increasing proves the lemma. [] 

P r o o f  o f  P r o p o s i t i o n  2.1 To prove Proposition 2.1, we take a sequence R.  

as in Lemma 2.2, noting that we are free to choose the R.  so that the level curves 

]g(z)] = Rn have no multiple points, and are never tangent to any of  the circles 

{z: Izl --  2 " } .  

We take P > 0 so that all the poles o f g  lie in {z : Iz I < P}, and for n so large that 

R.  > M(P, g), we set 

(2.5) U . = { z : e < l z l < 2 %  I g ( z ) l > R . }  

We set U = U.~n0 U., where no is so large as to satisfy certain conditions to be 

specified later. Now if m _> no and no is sufficiently large, the part of  F lying in 

{z : 2 m-1 _< Izl < 2 m} is contained in Urn, by (2.1), and we define S to be the 

component  of  U which contains the part of  P lying in {z : Iz[ > 2 ~~ }. Thus b. is 

trivially satisfied. 

Now suppose that zo E OS. Then for some n, zo lies on the boundary of  some 

component  of  Un. Therefore,  either Izol < 2" and Ig(zo)[ = R.  or Iz01 = 2 n and 

Ig(z0)l _> R.. In the latter case we must have Ig(z0)l ___ R.+I for otherwise z0 is an 

interior point of  some component  of  U.+I and so is an interior point of  S, since S 

is a component  of  U. Moreover,  if Iz01 < 2 n and Ig(z0)l = Rn with n > no, then we 

must have that Izol > 2 "-1 , for otherwise z0 is in U . - I  and so is an interior point of  

S. Since U. 0 is bounded away from zero, there exists therefore a positive constant 

L so that 

(2.6) Ig(z)I < t lzl  2, z E OS. 

Now consider the function 

w(z) = log Ig(z)l - 2 log Izl - logL 

which is subharmonic in {z : [zl > P}. By (2.1) and (2.6), S contains an unbounded 

component  S' o f  the set {z : w(z) > 0}. Setting 

O'(t) = meas{0 E [0, 2rr] : te iO E St}, 
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we have [14, p. 116] for some positive tl that 

fqr log r - ~r dt/(tO'(t)) ~ +0% 

which proves a.,  since S' c S. 

To prove c., we recall that OS consists of  some arcs o f  the level curves Ig(z)l = R. 
lying in {z : Izl < 2"},  together with some arcs of  the circles {z : Izl = 2"} on each 

of  which R,  _< Ig(z)l _< R.+1. Moreover  OS has no multiple points, and each 

component  o f  OS is a piecewise analytic, simple curve. Now using Lemma 2.2, we 

have 

(2.7) : Ig(z)1-11dzl _< z...,V'R-1, ,(23"/2 + 27r2") < e/2 
J o  S no 

if n0 is chosen large enough. Now given zl and z2 in S, we note that the straight line 

segment from z~ to z2 meets OS finitely often. If wk, wk+t are two such intersection 

points such that the open line segment joining them lies in a component  V of  C \ S, 

then OV must have a bounded subarc w joining wk to wk+ l, and we replace the line 

segment between wk and wk+l by w. This gives a path from zl to Zz through S, 

which we can easily replace by a simple path % Now if T, is the part of  -y which 

lies on the straight line segment between zl and z2 and lies in {z : 2 "-I  <_ Iz} < 2"} 

(or in {z : P < Iz[ < 2" } if n = no), then 

r lg(z)l-lldzl < 2"+I/Rn < 2 3-n 

so that using 2.7, we have e. provided no is chosen large enough. [] 

3. P r o o f  o f  T h e o r e m  1.7 

By a theorem of  M. Keldysh-I .  V. Ostrovski (cf. [6, Ch. V, Theorem 6.1 ] we 

have 

(3.1) m(r , f )  = o( l ) ,  r , cx~, 

and so 

(3.2) T(r , f )  = N ( r , f )  + 0(1) ,  r , c~. 

Choose a sequence rk --* oe o f  strong Pdlya peaks o f  order A for 

(cf. [ 13]). Then 

lf02~ N(r, u):= ~ u(rei~ 

(3.3) N ( r , u ) < ( l + o ( 1 ) )  r N(rk, u), Ak- l rk  <_r<_A:k,  Ak ~ o c ,  
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and 

(3.4) T ( r , u ) < _ C  ~ N(rk,u)  A k - l r k < r < _ A k r k .  

From the condition (1.5), Jensen's formula and (3.2) we conclude that for suffi- 

ciently large r 
a 

(3.5) ~ T ( r , f )  <_ U(r, u) <_ 2aT(r , f ) ,  

s o  (r)' 
(3.6) T ( r , f )  <_ Ci ~ T(rk , f ) ,  Ak- lrk  <_ r < Akrk, Ak --+ oo. 

Consider the sequence of  6- subharmonic functions 

wk(z) - log [f(rkz)[ 

Using (3.6) and a theorem of  Anderson and Baernstein [1, Theorem 4 and The- 

orem 5], we conclude that the sequence wk is normal. That is, we may choose a 

subsequence, also denoted wk, such that 

(3.7) wk(z) , w(z), k , ~ .  

Here the convergence in (3.7) holds in L~o,.(dxdy ) and the convergence holds in 

L 1 (dO) for any circle {re i~ : 0 < 0 < 27r}. Furthermore the Riesz mass (generalized 

Laplacian) of  wk converges weakly to that of  w. Finally [2] the convergence holds 

in 1-measure in C,  that is, given c > 0, and K compact,  the set 

{z: Iwk(z) - w(z)l _> 

can be covered by the union of  disks, the sum of  whose radii approaches zero as k 

approaches infinity (see also [5]). 

From (3.1) and the L I convergence on circles, we have that 

(3.8) w(z) <_ O, z E C. 

Suppose that 

This implies that 

(3.9) 

6(O,f) = 1. 

N(r ,  l / f )  = o (T( r , f ) ) ,  r , ~ ,  

so that, for suitably adjusted Ak 

N(r,  l / f )  = o(T(rk , f ) ) ,  r/rk < A~., k , oo. 
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Thus by the weak convergence of  the Riesz mass of  wk to that of  w, we have that 

w has no posit ive mass  and is hence superharmonic.  

By (3.9) m(r,  l / f )  = (1 + o ( 1 ) ) T ( r , f )  as r ---* oo and hence 

In particular 

(3.10) 

lfo2  27r w( e iO)dO = - 1. 

w ~ 0 .  

Consider the subharmonic function u defined in ( 1.3). It follows f rom (3.4) that 

the sequence 
u(rkz) 

vk(z) - N( r t ,  u) 

will again be normal  in the sense of  Anderson and Baernstein and after passing to 

a subsequence we have vk ~ v where v is a subharmonic function having order at 

most  A. Here  the convergence is to be interpreted as in (3.7). Also vk, v r 0 since 

1 ]-2,~ 
Jo v(rei~ = 1. 

Denote by E a component  of  the set {z : w(z) _< - 1 }, which contains a point z 

such that w(z) < - 1 .  (Hayman and Kennedy [91 call such components  "thick".)  

Then E is closed because w is lower semicontinuous.  The min imum principle 

implies that E is unbounded.  As the order of  w is less then one, there is exactly one 

thick componen t  [9]. To complete  the p roof  of  Theorem 1.7 we need the following 

lemma. 

L e m m a  3.1 The func t ion  v(z) is constant  on E. 

Once L e m m a  3.1 is proved, we proceed as follows. Set ul = - w  - 1. Then ul 

is subharmonic and ul < 0 on C \ E. Further v is subharmonic and v(z) = c on E. 

So the function h := (v - c) + + u l*  is subharmonic,  has order A < 1 and the set 

{z : h(z) > 0} has at least two thick components .  This contradicts Theorem 8.9 in 

[10]. 

We conclude the proof  of  Theorem 1.7 by proving L e m m a  3.1. 

P r o o f  o f  L e m m a 3 . 1  Fix a p o i n t z 0  e E a n d ~  > 0. We know t h a t w i s  

superharmonic and w(zo) s - 1 .  By the Wiener criterion [10, Ch. 7.1], there is a 

set X C (0, e) o f  positive linear measure  such that 

1" e X ==~ w(zo + re i~ s - 1 / 2 ,  10[ <_ 7r. 

Since wk converges to w in 1-measure,  we can find a circle C centered at z0 of  

arbitrarily small radius such that 
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i. w(z)  _< - 1/2, for z E C. 

ii. wk ~ w uniformly on C for an appropriate subsequence still denoted wk (see 

[51). 

Now note that 

(3.11) f = grad u. 

Set C~ = {rk( : ( E C} and recall the definition o f w k .  We obtain by (3.11), i. 

and ii. that 

Igrad u(z)l < e x p ( - T ( r k , f ) / 4 )  

for z E Ck and for k _> k0, where k0 depends only on C. This gives immediately 

that for z E Ck and k > k0 

oscillationz~c~ u < rj, d i am(C)exp( - -T( rk , f ) /4 ) .  

Since the right hand side of  the above inequality approaches zero as k approaches 

infinity, we obtain 

oscillation:ecvk , O, k , oo. 

and conclude that v is constant on C. 

Thus every point z0 E E may be surrounded by arbitrarily small circles on 

which v is constant. Since E is closed and connected,  we may cover E by open 

disks {Dk}~l  such that v is constant on ODk for each k, each compact  subset of  

E intersects only a finite number  of  disks, and Y -- U~_l ODk is a connected set. 

Thus v(z) - c on Y for some constant c. By the maximum principle, v(z) - c on 

U~=l Dk 3 E. The proof  of  Lemma 3.1 and hence of  Theorem 1.7 is complete.  

4. P r o o f  o f  T h e o r e m  1.9;  A < 1/2 

Suppose that A < 1/2 and that 

(4.1) 6(0 , f )  -- 1 - c ,  c < coszrA. 

Then by a theorem of  Goldberg [6, Ch. 5, Theorem 3.2], 

l imin f  l o g M ( r , f )  < O, 
r - - - , o o  T ( r , f )  

where M ( r , f )  -- maxl:,=,.{lf(z)[ } In particular 

(4.2) M ( r k , f )  << r [  2 

for some sequence rk ~ ~ .  

We need the following lemma. 
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L e m m a 4 . 1  Let f be as in ( l.1). Then 

max{If(z)[} > c/r  -I  
!zi=r 

where r > 0 and c is a positive constant. 

Note that once we prove Lemma 4.1, it and (4.2) lead to a contradiction. Hence 

(4.1) must be false and Theorem 1.9 must be true. 

P r o o f  o f  L e m m a  4.1 Let u be as in (1.3) and denote B(r) = max.=l=r{U(Z)}. 

Fix r0 > 0 and let z0 = ro el~ be a point such that u(z) = B(r0). Then if r < r0, we 

have 
u(ro eiO) - u(re iO) >_ B(ro) - B(r),  

and hence 

Thus 

Ou dB ro ) 
Or( O) > -dr ( - .  

dR 
Igrad u(z0)[ >_ ~-r ( r0- ) .  

The lemma follows from this, (3.11) and the fact that the maximum of  a subhar- 

monic function is a convex increasing.function of  log r [9, p. 66]. [] 

5. P r o o f  o f  T h e o r e m  1.9; A = 1/2 

For the sake of  exposition we assume throughout that A = 1/2 is the order of  

f .  The main tools used here are theorems in [4] and [11] both of which have 

explicitly stated lower order analogues (in sections 9 and V respectively). We 

leave the details to the interested reader. 

We may write 

(5.1) f = f l / f2 ,  

where f i  and f2 are entire functions with no common zeros, both having orders no 

greater than 1/2. By (3.1) and (5.1) we obtain 

T ( r , f )  = N(r,  l /f2) + o(1) 

and 

So if we assume that 

then 

(5.2) 

N(r ,  I / f )  = N(r,  l i f t ) .  

= 1,  

N(r,  1/]'1) = o(N(r,  l /f2)),  r .---+ o o .  
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Rotate the zeros off1 and f2 to the negative axis and form the respective canonical 
products F1 and F2. For g entire, define 

mo(r, g) = min Ig(z) l. 
Iz) =, 

Classically [10, w for i = 1,2, 

(5.3) logmo(r, Fi) <_ logmo(r,fi) < logM(r,fi) < logM(r, Fi), 

(5.4) logmo(r, Fi) + logM(r, Fi) < logm0(r,3~) + logM(r,f.) 

and 
fo ~ N__((t'_l /fi) dt (5.5) logM(r, Fi) = r (r + t) 2 " 

We obtain from (5.2), (5.3), and (5.5) that 

(5.6) log M(r,f] ) < o(log M(r, F2)), 

From Lemma 4.1 and (5.1) it follows that 

r ---+ (x). 

(5.7) M(r,fl)/mo(r,f2) ~M(r , f )  > cr -1 

Now (5.7), (5.6) and (5.3) imply that 

(5.8) logm0(r,f2) _< o(logM(r, F2)), r--* oo, 

(5.9) .  logmo(r, F2) < o(logM(r, F2)), r--+ oo. 

We use the following result of  Drasin and Shea [4] which concerns the case of  

equality in the cos rrA-theorem: 
If  an entire function F2 of  order 1/2 satisfies (5.9) then there exists a set E c 

[0, oo] of  logarithmic density 1 such that for r e E, r ~ eo 

(5.10) logM(r, F2) =rl/2L(r), 

where L is a slowly varying function in the sense of  Karamata on E (cf. [4, p. 

233]), 

(5.11) 

and 
(5.12) 

N(r, F2) = ( 2 + o ( 1 ) )  logM(r, F2) 

[log too(r, F2)[ -- o(logM(r, F2)). 
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(Recall that the logarithmic density of a set E is defined by 

lim fEN[1,r] dt/ t  
r ---*cx~ log r 

If the limit does not exist we may define upper and lower logarithmic density in 
the obvious way.) 

Now it follows from (5.10), (5.3), (5.4), (5.12) and (5.8) that 

( 5 . 1 3 )  logM(r,f2) = (1 +o(1) ) logM(r ,  F2) 

= (1 +o(1))rl/2L(r),  r �9 E, r--+ oo. 

As N(r,f2) --- N(r, F2), (5.11) implies that 

(5.14) N(r, fz)  = ( 2 + o ( 1 ) )  rl/2L(r). 

Then (5.13), (5.14) and [4, Lemma 8.1] imply that for every 6 > 0 there exist 

e > 0, a set E1 C E of logarithmic density one and subsets K(r) C [0, 27r] with 
meas(K(r)) < 6 such that 

(5.15) log [f2(rei~ >_ elogM(r,f2) ,  

Now from (5.6) and (5.13) it follows that 

(5.16) 

0 E [0,27r]\K(r), r E El. 

logM(r,f l )  --- o(logM(r,f2)),  r E E, r--* c~ 

and (5.15), (5.16) and (5.1) imply 

f o  r[f(rei~ --* O, 
,27r]\K(r) 

To get a contradiction we apply the following 

r E E l , r  --~ oo. 

when r ~ c~ on Eo. 

1 rio r~(rei~ ~ cx~, 
27r ,27r]\K(r) 

L e m m a  5.1 Let f be as in (1.1). Then there exists a ~ > 0 and a set Eo o f  
positive lower logarithmic density such that if  K(r) is any set of  angular measure 
no greater than 6 then 
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6. Proof  of  L e m m a  5.1 

When f is the logarithmic derivative of an entire function F of finite order, 
Lemma 5.1 is contained, but not explicitly stated in [ 11 ]. We follow their arguments 

extremely closely. 
Let u be the subharrnonic function given by (1.3). Define 

1 [21r 
T(r) := ~ J0 u+(rei~ A(r) . -  dT(r) and n(r) := ~ ak. 

dlog r (k:[zkl<_r} 

Differentiation under the integral gives 

1 f(  Re(reiOf(reiO))dO ' 
A(r) = ~ O:u(rei~ 

while by the Residue Theorem we have 

lfoZ'~ n(r) = ~ Re(reWf(rei~ 

So 

1 f0 2~r (6.1) max{A(r),n(r)} <_ ~ Re+(rei~176 

Suppose that the lemma is false. Then, for any set E0 of positive lower logarith- 

mic density, there are subsets J(r) c [0, 2x] such that meas(J(r)) -~ 0 and 

(6.2) fo  r[f (rei~ = 0(1), 
,2w]\J(r) 

where r -~ oo, r E Eo. 
We find in exactly the same way as in [11, (4.17), (4.19)-(4.21)], that 

{ Re+(rei~176 < n(r) - n(r/e) + o(A(r) + n(r)) (6.3) 
Jj  (r) 

< (r I + o(1))n(r) + o(A(r)), 

as r ~ c~, on a set of positive lower logarithmic density, where rl E (0, 1). To 
derive (6.3) we use Lemmas 2, 3 and 5 from [11] which are just growth lemmas 
for increasing functions and the differentiated Poisson-Jensen formula for u [11, 

(3.1)]. 
Then (6.3) and (6.2) contradict (6.1), and the lemma is proved. [] 
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