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ON THE CHARACTERIZATION OF A RIEMANN SURFACE 

BY ITS SEMIGROUP OF ENDOMORPHISMS 


A. EREMENKO 

ABSTRACT.Suppose Dl and D2 be Riemann surfaces which have bounded 
nonconstant holomorphic functions. Denote by E ( D i )  , i = 1 , 2 , the semi- 
groups of all holomorphic endomorphisms. If $ :  E ( D 1 )  + E(D2) is an iso- 
morphism of semigroups then there exists a conformal or anticonformal isomor- 
phism r/l: Dl 3 D2 such that $ is the conjugation by r/l . Also the semigroup 
of injective endomorphisms as well as some parabolic surfaces are considered. 

1. INTRODUCTION 

For a Riemann surface D denote by E(D) its semigroup of endomorphisms, 
i.e. the set of all holomorphic maps f :D -+ D with the operation of composi- 
tion o . 

A well-known theorem by L. Bers states that two plane domains are confor- 
mally or anticonformally equivalent iff their rings of holomorphic functions are 
isomorphic [ I ,  31. L. Rube1 raised the question whether the conformal type of 
a Riemann surface D can be recovered from the algebraic structure of E(D) . 
A similar question in topological context (recovering a topological space from 
the algebraic structure of its semigroup of continuous self-maps) has been ex- 
tensively studied (a survey is [6]). 

The following example was pointed out by A. Hinkkanen [4]. Let D = 
C \ E ,  4 5 card E 5 cc and E is in general position, i.e. the only conformal 
automorphism of D is the identity. Then E(D) consists of the identity and 
constants. Indeed, every f E E(D) can be extended to an element of E(C) by 
the Picard theorem. So f is a rational function such that F-I (E)c E . As 
cardE 2 3 one can easily prove that f is a Mobius transformation or constant. 
The only possible Mobius transformation is the identity. It is easy to see that 
all semigroups of that kind are isomorphic. So even two topologically different 
Riemann surfaces can have isomorphic semigroups of endomorphisms. 

On the other hand one may easily characterize the conformal type of C ,  C 
and C* = C\{O) by their semigroups of endomorphisms. The semigroup of 
a torus T determines its topology but not its (anti-)conformal type. Parabolic 
surfaces are treated in $4. 

Received by the editors February 20, 1991 and, in revised form, March 7, 199 1. 
199 1 Mathematics Subject Classification. Primary 30D05, 30F20, 58F23, 20M20, 54H 15. 
Key words and phrases. Holomorphic endomorphism, fixed point, permutable functions, 

semigroup, Riemann surface. 
Supported by NSF grant DMS-910 1798. 

@ 1993 American Mathemat~cal Soc~ety 
0002-9947193 $1 .OO + $.25 per page 



124 A. EREMENKO 

The main result of this note is 

Theorem 1. Let Dl and D2 be Riemann surfaces which admit bounded non- 
constant holomorphic functions. Suppose that q5 : E(D1)-+ E(D2) is an isomor- 
phism of semigroups. Then there exists a conformal or anticonformal isomor- 
phism t+u : Dl + D2 such that 

We also may consider the smaller semigroup Eo(D) of all univalent holo- 
morphic maps D into D . 
Theorem 2. Let Dl and D2 be boundedplane domains. If q5 : Eo(D1) -,Eo(D2) 
is an isomorphism of semigroups then there exists a conformal or anticonformal 
isomorphism y/ : Dl + D2 which satisfies (1).  

We prove Theorems 1 and 2 in §$2 and 3 respectively. Section 4 is devoted 
to some parabolic surfaces. For the convenience of the reader we have collected 
some known facts in appendices. Good references for Appendix 5.2 are the 
classical papers by Fatou [2] and Julia [5]. 

The author thanks C. Eberhardt, M. Heins, M. Lyubich, J. Mack and L. Rube1 
for fruitful discussions and especially A. Hinkkanen, K. D. Magill, Jr., and the 
referee for finding and correcting errors in the original version of the paper. 

We will prove first that 4 maps constants to constants. This will allow us to 
construct a bijection t+u: Dl -+ D2.  Then we will prove that t+u is continuous 
and after that that t+u is (anti-)conformal. 

2.1. Definition of constants and construction of y/ . The result of this subsec- 
tion is well known to the specialists in semigroup theory (the earliest reference 
is probably [7]) but we include the proof for completeness. 

Denote by C = C(D) the subsemigroup of E(D) which consists of constant 
endomorphisms. Let c, E C be the constant function which maps D to z E 
D . The subset C(D) c E(D) may be characterized using only the semigroup 
structure: 

C E C  iff V ( f € E ( D ) ) ,  c o f = c .  
So 4 induces a bijection of C(D1) onto C(D2).  

3pc 

Define y/ : Dl -+ D2 by 


(2) t+u(z)=w iff ~ c , = c , ;  Z E D ~ , W E D ~ .  

So the relation 

is equivalent to 

'Coiijectured by L. Rubel for bounded plane domains. 
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Applying q5 to both sides of (4) we obtain q5f o q5c, = 4c, . By (2) this is 
equivalent to q5f o c,(,) = c,(,) , or, using (3)  and (4) 

So q5f = I,U o f o I,-', which proves (1). 

2.2. Definition of good elements and continuity of ty . Call an element f E 
E(D) good if some iterate f" of f has relatively compact image in D , f has 
a fixed point in D and f is univalent in a neighborhood of this fixed point. 

Remarks. The existence of a fixed point in D follows from compactness of the 
image. Every element of E(D) other than identity has at most one fixed point 
in D .  If f has a fixed point zo E D then f'(zo) = 3, is defined (does not 
depend on local coordinate) and 121 < 1. The function f is univalent in some 
neighborhood of zo iff 3, # 0 .  For all these facts see Appendix 5.1. As D 
admits bounded nonconstant holomorphic functions, it is easy to see that every 
point z E D is the fixed point of some good f E E(D) . 

Let us show how to say that an element f E E(D) is good using only the 
semigroup structure: 

(i) f has a fixed point c0 E C iff f o c0 = c0 ; 
(ii) some iterate of f has relatively compact image iff 

(5) V(C'E c\{c0))3(n E N)V(cl' E C)  , fn o c" f c'. 

Indeed, (5) means exactly that 

where zo is the fixed point c0 = c,, . If some fn(D) is compact, then we have 
(6) because f strictly decreases the Poincare distance (Appendix 5.1). On the 
other hand if we have (6) then {fn(D))  forms a fundamental set of neighbor- 
hoods of zo . So at least one of the domains Y ( D )  is relatively compact. 

Note that we always have f " + ' ( ~ )  c fn(D) . 
(iii) To say that f is univalent in a neighborhood of zo is the same as 

3(n E N) V(cl E C )  V(cl' E C)  

( f n + l  0 C' = f n + l  0 c") j(fn 0 C' = fn 0 

(This is equivalent to: 3n such that f is injective on fn(D) .) 
Now it is easy to prove that v is continuous. Take zo E Dl and wo = 

v(zo)E D 2 .  Let f E E(D1)  be a good element which fixes zo . Then q5f = g 
is a good element in E(D2) which fixes wo . We also have v(fn (Dl))= gn(02). 
So I,U maps a fundamental set of neighborhoods of zo to a fundamental set 
of neighborhoods of wo . Thus y/ is continuous and we conclude that ly is a 
homeomorphism. 

2.3. Proof that y/ is conformal or anticonformal. Fix an arbitrary point zo E 
Dl  and put wo = v(zo)  E 0 2 .  Take a good element f E E(D1)  which fixes 
zo . Then g = q5f = I,U of o v-' is a good element of E(D2) which fixes UJO.  
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Denote by P( f )  the set of all h E E(Dl )  which are permutable with f ,  
i.e., h o f = f o h . This is a subsemigroup of E(D1) . We use the following 
description of P(f )  (see Appendix 5.2): 

Denote by S the group of all linear self-maps of the field C . (The elements 
of S are z H Az, A E C* . The group S is isomorphic to the multiplicative 
group C* .) There is a neighborhood O1 of zo and a local coordinate F : 
(01 , ZO)+ (C, 0) which conjugates P(f )  to some subsemigroup S1 c S . 
In other words s(h) = F o h o F-I E S if h E P(f)  and h H ~ ( h )  is an 
isomorphism of semigroups P (  f )-+ S1. 

Similarly consider a local coordinate G : ( a ,  wO) + (C, 0) , wo E a c 0 2 ,  
which conjugates P ( g )  to a subsemigroup S2c S. 

It is important (see Appendix 5.2) that S1 and S 2 ,  when considered as 
subsets of C* contain some punctured neighborhoods of 0 .  

Now form the function Vz, = G o y/ o F-I which maps a neighborhood of 
0 to some neighborhood of 0 and conjugates S1 to S2. We use the following 
elementary lemma which will be proved in Appendix 5.3. 

Lemma 1. Let S1and S2be subsemigroups of the multiplicative group C* both 
containing some punctured neighborhoods of 0 .  If V is a continuous injective 
map in a neighborhood of 0 which conjugates S1 to S2 then 

where ~ E C * ,  A , B E C  and A - B = f l .  

Note that V given by (7) is differentiable (as a function from R2 to R2) and 
nondegenerate in C* . It is differentiable and nondegenerate at 0 iff A + B = 1 . 
In this latter case V is (anti-)conformal because A + B = 1 and A -B = f1 
imply A = 1 or B = 1 . 

We conclude that y/ is differentiable and nondegenerate in Ol \{zo) . It 
follows that for arbitrary zl E Ol \{zo) the function Vz, is differentiable and 
nondegenerate. So Vz, is (anti-)conformal and this implies that y /  is (anti-) 
conformal. 

We only need to construct a bijective map ty: Dl + D2 which satisfies (1). 
The proof that y /  is (anti-)conformal is exactly the same as in Theorem 1. 

Suppose that D c C is a bounded domain and Eo is the semigroup of 
univalent holomorphic self-maps of D . Note first that {f (D)  : f E Eo) is a 
base of topology in D which means that every open set in D is a union of some 
f(D)  . To see this it is sufficient to consider only the affine maps z H a z  + b 
in Eo. 

Define a partial order on Eo by setting f 5 g if f = g o h for some h E Eo . 
Then f 3 g is equivalent to f (D)  c g(D) . For every subset A c Eo denote 

We are going to define a family L of subsets A c Eo which is in bijective 
correspondence with the family T of all nonempty open subsets of D via the 
map A H  a ( A ) .  
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For every f E Eo define H ( f ) = { g :  g  5 f ) .  A set A c H ( f )  is called 
fundamental for f if for every g 3 f there exists h E A such that h 5 g . 
It is easy to see that A is fundamental for f iff { g ( D ) :  g  E A )  is a base of 
topology on f  ( D )  . 

Let B c Eo be an arbitrary subset. Define H ( B )  as the set of all f E Eo 
which have fundamental sets A c U,,, H ( g ). Then we have 

Note that B c H ( B ). 
To prove c in ( 9 )take f E H ( B )  and fix a fundamental set A for f such 

that A c Ug,B  H ( g ) . We have f (Dl = U h E Ah ( D )  SO f (Dl c U g E Bg ( D ) .  
To prove 3 in ( 9 )  let f ( D )  c U,,, g ( D ). Take A, = { h  : h ( D )  c 

f (Dlng(D)>c H ( g ) ,  g  E B . Then A := U,,, A, c U,,, H ( g ) .  Let us 
prove that A is a fundamental set for f .  Take any h 5 f .  Then h ( D ) c 
f  ( D )  c U,,, g ( D )  so there is a gl in B such that h ( D )n gl ( D )  # 0 .  It 
follows that there is an hl E A,, c A such that hl 5 h . This proves (9) .  

As a corollary of ( 9 )we remark that 

Denote L := { H ( B ) :  B  c Eo). Then a defined in ( 8 )gives a bijection between 
L and the family T of all nonempty open subsets of D . To prove this construct 
the inverse for a .  Let 0 c D be an open set. Put B = {f E Eo : f  ( D )  c 0). 
Then B = H ( B ) E L and a ( B )= 0 . So a is surjective. From ( 9 ) it follows 
that a is injective because {f  ( D )  : f E Eo) is a base of topology. 

Every f E Eo defines a map f :  Eo +Eo , f ( g )= f o g. This map preserves 
the order. Note that f does not map L to L ,  however we define a map 
f* :L + L as follows: 

This definition is unambigous because H ( B 1 )= H(B2) means 

in view of ( 9 ) ,so 

U f g ( D )= U f g (D)  
gEB2 

which implies (again by ( 9 ) )that H ( ~ ( B ~ ) )  For every set A C Eo= ~ ( f ( ~ 2 ) ) .  

we have by (8 ) :  

Applying a to ( 1 1 )  and using ( 1O ) ,  ( 12) we get 
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So if we define F : T -+ T by F ( 0 )= {f ( z )  : z E 0 )  then 

Call an element A E L maximal if for every B E L the inclusion A c B implies 
A = B or B = Eo . The map a preserves the inclusion so to maximal elements 
of L correspond maximal open sets in D . It is easy to see that maximal open 
sets are the sets of the form D\{z) for some point z E D . Denote by M the 
set of maximal elements of L . There is a natural bijection P : M -t D . If 
A E L and B c M then a ( A )  is a neighborhood of the point P ( B )  iff A is not 
a subset of B . Consider now two domains Dl and D2 and an isomorphism 
$ : Eo(D1)+ Eo(D2). We use the notations Li , M i ,  a i ,  P i ,  T i ,  i = 1 , 2 ,  
introduced before. The isomorphism $ preserves the order relation in Eo and 
inclusion relations between subsets. So 

is a bijection. Define also 
~ = a ~ o $ o a , ]  

which is a bijection between T l  and T2 . These maps are consistent: if 0 c Dl 
is a neighborhood of z E Dl then Y ( 0 )c D2 is a neighborhood of ~ ( z )E D 2 .  
So y/ is a homeomorphism and 

Now let f E Eo(D1) .  Applying 4 to f ( g )  = f 0 g we obtain 4(.?(g)) = 

$ f  o 4 g  = $($g)  so 

From the definition ( 1 1 )  and ( 15 )  it follows that 

Finally from ( 13) and ( 16) it follows that 

So for every open set 0 we have Y (f (0))= ($f ) ( Y ( O ) ). In view of (14 )this 
is equivalent to w o f = 4f o t,u . This proves ( 1 )  and Theorem 2 follows. 

Denote DO= C ,  D~ = C ,  D2 = C* = C\{O). 

Theorem 3. Let D be a Riemann surface. If E ( D )  is isomorphic to E ( D k ) ,  0 5 
k 5 2 ,  then D is conformally equivalent to Dk . 
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Proof: Remark that E(Do) is the set of all rational functions, E(D1) is the set 
of all entire functions and E(D2) is the set of all functions holomorphic in C* 
which do not take the value 0 .  

Recall that the notions of constant and the value of an endomorphism at 
a point are expressible in terms of the algebraic structure of E(D) (see $2.1). 
So if E(D) is isomorphic to one of the three semigroups E(Dk) ,0 5 k < 2 ,  
then D is conformally equivalent to one of the three surfaces Dk , 0 5 k 5 2 ,  
because these are the only surfaces which have endomorphisms with more then 
one fixed point. 

Now E(Dk),k = 1 ,  2 ,  contain elements for which some point has an infi-
nite set of preimages (for example z HeZ)and E(Do) does not contain such 
elements. So E(Do) is not isomorphic to E(Dk), k = 1, 2 .  Finally, the differ-
ence between E(D1) and E(D2) is that all f E E(Dz) are surjective (by the 
Picard theorem) while some f E E(D1)  are not (an example is again provided 
by the exponential function). The theorem is proved. 

5.1. The Poincare metric. Let D be a hyperbolic Riemann surface, i.e., the 
universal covering of D is the unit disk U .  Then D = U/T where l7 is 
a discrete group of conformal automorphisms of U .  There is a conformal 
Riemannian metric Idzl/(l - 1zI2) on U which is invariant under all confor-
mal automorphisms. So this metric may be pulled down to D .  We obtain 
a Riemann metric on D which is called the Poincare metric. Denote by p 
the distance in the Poincare metric in D . The invariant form of the Schwarz 
lemma states that p ( f (z ) ,  f (w) )  5 p ( z ,  w)  for every z and w in D and 
f E E(D) . This inequality is strict for every z and w unless f is a covering. 
In this latter case we have equality for all z and w that are close enough to 
each other. 

If f (D)  is relatively compact then f cannot be a covering so f strictly 
decreases the Poincare distance. It follows that the sequence f (D)  3 f 2 ( ~ )3 
.. . has one point of intersection and this point zo is the unique attractive fixed 
point of f in D . (Attractive means I f '  (zo)1 < 1 . The derivative at a fixed 
point does not depend on the choice of local coordinate.) 

5.2. The structure of the semigroup P(f) for good f E E(D) . Let f be an 
element of E(D) for some hyperbolic Riemann surface D .  Suppose f is 
good (the definition is in 2.2). Then f has a fixed point, f ( zo)  = zo and 
0 < lf'(zo)l < 1 

(a) If f o g = g o f then g fixes z o .  Indeed, f o g(zo) = g o f (zo)  = 
g(zo). So f fixes g(zo). But the fixed point of f is unique. So g(zo)= zo . 
Furthermore, it is easy to see by substituting formal power series to the equation 
f o g = g o  f that g f (zo)# O .  

(b) Let f'(zo) = A, 0 < 1A1 < 1 . Then the Schroder functional equation 

has a unique normalized solution F which is holomorphic in a neighborhood 
of zo . (There is a unique formal series F ( z )  = ( z  - zo)+ a2(z- + . . . 
which satisfies (17); the convergence is proved by the majorant method.) 
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The solution F of Schroder equation may be continued analytically to the 
whole domain D . To prove this suppose that F is originally defined in the 
neighborhood 0 of zo . There is a natural number n such that f n ( D )  c 0 
(Here we use that f is good so f k ( ~ )is relatively compact for some k .) Then 
define F = APnF o fn in D . In view of ( 1 7) we get the analytic continuation 
of F .  

Remark 1 .  If f is good then the Schroder function F is bounded in D 

Remark 2. If f is univalent in D then F is univalent too. This follows from 
the procedure of continuation of F if we take into account that F is univalent 
in 0 .  

(c) If g is permutable with f as above then g has the same Schroder 
function F [5]. To prove this denote by G the Schroder function of g . It 
satisfies 

where p = g f ( z o ). Set H = A-'G o f .  Then H ( z o )= 0 ,  H1(zo)= 1 , and 

in view of f o g = g o  f  and (18).  So H o g = pH and H is a normalized 
solution of the Schroder equation ( 18) .  But such a solution is unique, so H = G 
which means by the definition of H that G o f = AG . So G is a normalized 
solution of (17) and it follows from the uniqueness of such a solution that 
G = F .  

(d) We have proved that all h E E ( D )  which are permutable with f satisfy 
F o h = s ( h )o F where s ( h )  is the linear map s ( h ) :  z  H h f ( z O ) z. SO F con-
jugates the semigroup P( f )  with some subsemigroup SI  of the multiplicative 
group C* . 

(e) Let us prove that S1  contains all elements of C* which are close enough 
to zero. In view of Remark 1 above F is bounded in D . So if p E C* and lpj 
is sufficiently small then g, := F-' o ( p F )  is a well-defined element of E ( D ) . 
It is evident that g, E P ( f ). Our final remark is that if f E Eo(D) then F is 
univalent by Remark 2 above and g, E Eo(D). 

5.3.  Proof of Lemma 1. Consider S1 and S2 as subsets of C* . Denote by 
Q ( a )E S2 the element conjugate to a E S1, i.e., Q ( a )= V - I  o a o V . Then Q 
is a homeomorphism S1 -+ S2 with the property 

Extend Q to C* . If a E C* take a b E SI  such that ab E S1. This is possible 
because S l  contains an annulus 0 < jzj < ro . Then set Q ( a ) := Q ( a b ) / Q ( b ). 
It is easy to see that this definition is unambigous, i.e., Q ( a ) does not depend on 
the choice of b . It follows that Q :  C* -+ C* is a continuous homomorphism 
of multiplicative groups, and Q is injective in 0 < jzl < ro . Consider the 
universal covering exp: C -t C* and denote by Q* : C -t C the lifting of Q . 
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Then Q* is continuous and satisfies 

and 
Q * ( z + 2 z i ) = Q * ( z ) & 2 n i ,  Z E C .  

It easily follows that Q * ( z )= Az  + BZ , where A - B = & 1 . So 

Now we have 
V o SL 0 V-' = ~ Q ( L ) ,  

where sn E S ,  sL : z ++ Az . So V ( A z )= AAIB V ( z )  for all small z and A ,  
which implies V ( z )= a z A z B  for some a E C* . 
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