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Abstract

Drasin’s theorem describing meromorphic functions of finite order
with maximal sum of deficiencies is extended to holomorphic curves
in projective space. A conjecture about holomorphic curves extremal
for Cartan’s defect relation is discussed.

1. Introduction. We study meromorphic functions and their generaliza-
tion, entire holomorphic curves in projective space, which are extremal from
the point of view of value distribution theory.

The prototype of all results considered here is the following simple theo-
rem: let f be an entire function of finite order omitting 0. Then f = expP ,

where P is a polynomial. Thus two assumptions: f is extremal for Picard’s
theorem and satisfies a growth restriction imply very strong conclusions
about behavior of f near infinity: the asymptotic behavior of log |f | is very
regular and the order can assume only a discrete set of values.

Before going further we recall necessary definitions from value distribution
theory [13].

We consider holomorphic curves f : C → Pn where C is the complex
line and Pn is complex projective space of dimension n. Denote by π :
Cn+1\{0} → Pn the standard projection. Let f = (f0 : . . . : fn) be a reduced
homogeneous representation of f . This means that f̃ = (f0, . . . , fn) : C →
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Cn+1\{0} is a holomorphic mapping such that f = π ◦ f̃ . The Nevanlinna–
Cartan characteristic is defined by

T (r) = T (r, f) =
1

2π

∫

2π

0

log ‖f̃(reiθ)‖dθ − log ‖f(0)‖,

where ‖Z‖ =
√

|z0|2 + . . . + |zn|2 is the standard norm in Cn+1. If n =

1 this definition gives the classical Nevanlinna characteristic (in the form
of Ahlfors). Slightly abusing the notation we will identify a meromorphic
function g = f1/f0 with the one-dimensional curve f = (f0 : f1).

In this paper we consider only curves of finite lower order

ρ = lim inf
r→∞

log T (r, f)

log r
< ∞. (1)

A hypersurface a ⊂ Pn is defined by a homogeneous form Pa of some
degree d in n + 1 variables. Then zeros of the entire function

ga = Pa ◦ f̃

are preimages f−1(a). Let

n(r, a) = nf (r, a) = #{z ∈ C : ga(z) = 0, |z| ≤ r}

be the counting function (with multiplicity) of these preimages. Then

N(r, a) =
∫ r

0

(n(t, a) − n(0, a))
dt

t
+ n(0, a) log r (2)

is called the averaged counting function of preimages.
The defect of f at a is defined by

δ(a, f) = lim inf
r→∞

(

1 −
N(r, a)

dT (r, f)

)

,

where d = deg Pa. Defect does not change if we raise Pa to some power.
A system of hypersurfaces is called admissible if the intersection of any

n + 1 hypersurfaces of this system is empty.
In this paper we study the extremal curves for the following defect relation

proved in [9].
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Theorem A Let A be an admissible system of hypersurfaces and f be a

holomorphic curve, f(C) /∈ ∪{a ∈ A}. Then
∑

a∈A

δ(a, f) ≤ 2n. (3)

If n = 1 Theorem A coincides with the defect relation of Nevanlinna:
∑

a∈C̄

δ(a, f) ≤ 2. (4)

(Hypersurfaces in P1 are just points in C̄ and any set of points is admissible).
The case of equality in (4) is described by the following theorem of D.

Drasin.

Theorem B Let f be a meromorphic function of finite lower order ρ satis-

fying
∑

a∈C̄

δ(a, f) = 2. (5)

Then

(i) 2ρ is an integer ≥ 2; if in addition δ(a, f) = 1 for some a ∈ C̄ then ρ is

a positive integer;

(ii) T (r, f) = rρl(r), where l is a slowly varying function1;

(iii) δ(a, f) = p(a)/ρ, where p : C̄ → Z+ is a integer valued function,
∑

a∈C̄ p(a) = 2ρ.

This formulation is taken from [6] (see also [7]). In Drasin’s original paper
[4] a stronger assumption is made, namely that the upper limit in (1) is finite
and the conclusion (ii) is not stated explicitly. Notice that (ii) in Theorem
B is a stronger regularity condition then the existence of limit in (1).

We extend Drasin’s theorem to the case of equality in (3) in arbitrary
dimension.

Theorem 1 Let f be a holomorphic curve in Pn of finite lower order ρ and

A be an admissible system of hypersurfaces. If
∑

a∈A

δ(a, f) = 2n, (6)

1in the sense of Karamata. That is l(cr)/l(r) → 1 as r → ∞, uniformly with respect
to c ∈ [1, 2].

3



then:

(i) 2ρ is an integer ≥ 2; if in addition δ(a, f) = 1 for at least one hypersurface

a then ρ is a positive integer;

(ii) T (r, f) = rρl(r), where l is a slowly varying function;

(iii) δ(a, f) = p(a)/ρ, where p is a function A → Z+ and
∑

a∈A p(a) = 2nρ;

The inequality (3) is best possible: there are admissible systems of hyper-
surfaces of any degree and holomorphic curves for which (6) holds. However
in all such known examples the curve f as well as the configuration of hyper-
surfaces A are highly degenerate; the image f(C) is contained in an algebraic
curve Γ, and hypersurfaces from A are either linear or tangent to Γ at the
intersection points. On the other hand it has never been proved that (6)
implies any kind of degeneracy of f or A, except in the case of linear hy-
persurfaces (hyperplanes) when (6) indeed implies that the image of f is
contained in a complex line [15].

Our proof of Theorem 1 gives the following result about degeneracy.
Recall that hypersurfaces a1, . . . , ak have normal intersection at a point

x ∈ ∩k
i=1ai if all these hypersurfaces are non-singular at x and their normal

vectors at x are linearly independent.

Theorem 2 Assume that homogeneous polynomials defining hypersurfaces of

an admissible system A are irreducible and all have degrees at least 2. If (6)
holds for a holomorphic curve f of finite order then there are 2n hypersurfaces

a1, . . . , a2n ∈ A such that at some point Z0 ∈ ∩n
i=1ai as well as at some point

Z1 ∈ ∩2n
i=n+1ai the intersections are not normal.

This supports the conjecture that for non-singular hypersurfaces with nor-
mal intersections of degree greater than one the defect relation (3) can be
improved.

If the curve f is linearly non-degenerate (that is f(C) is not contained
in any hyperplane), and hypersurfaces in an admissible system A are hyper-
planes, we have a stronger defect relation which is due to H. Cartan [3] (see
also [13]):

∑

a∈A

δ(a, f) ≤ n + 1. (7)

When n = 1 this also coincides with (4). The study of extremal curves
for (7) turns out to be much harder than the study of those extremal for (3).
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If f is a linearly non-degenerate holomorphic curve of finite order and for
some admissible system A of hyperplanes we have

∑

a∈A

δ(a, f) = n + 1, (8)

then the Second Main theorem of H. Cartan [3, 13] implies that the averaged
counting function N1(f) of zeros of the Wronskian determinant W (f0, . . . , fn)
has the property

N1(r, f) = o(T (r, f)). (9)

Thus to make reasonable conjectures about extremal curves one has to
look first at the curves satisfying

N1(r, f) ≡ 0. (10)

V. P. Petrenko [16] showed that linearly non-degenerate holomorphic curves
f = (f0 : . . . : fn) of finite lower order having the property (10) are exactly
those whose components fj can be chosen to form a fundamental system of
solutions of a linear differential equation

wn+1 + cnw
n + . . . + c0w = 0 (11)

with polynomial coefficients cj. (Case n = 1 is due to F. Nevanlinna).
Solutions of such differential equations are known to have very regular

behavior. In particular one can deduce that the lower order of f coincides
with its order, this number is positive and rational, and its denominator
equals to the order of some permutation of a set of n + 1 elements. One can
conjecture that the same property remains true if one replaces (10) by the
weaker condition (9). Such a strong result is known only in dimension 1 (see
[7]):

Theorem C. Let f be a meromorphic function of finite lower order with the

property N1(r, f) = o(T (r, f)). Then all conclusions (i)− (iii) of Theorem B

hold. In particular (9) is equivalent to (4).

In higher dimensions very little is known about extremal curves in Car-
tan’s defect relation. The following theorem was recently proved by N. Toda
[17] who improved pervious results of Noguchi and Mori.
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Theorem D Let f be a linearly non-degenerate holomorphic curve of finite

order ρ in Pn and A = {aj} be an admissible system of hyperplanes. If

δ(aj , f) = 1, 1 ≤ j ≤ n, (12)

and (8) holds then the limit in (1) exists and ρ is a positive integer.

The assumption (12) is certainly too strong. That the situation in higher
dimensions is really more complicated than in dimension 1 shows the follow-
ing example.

Example. There is a holomorphic curve f of order 3/2 in P2 with property

(9) and such that there is no admissible system of hyperplanes satisfying (8).

This example will be constructed in Section 5. Another simple example
shows that when (8) is satisfied the deficiencies can be irrational. Indeed,
take f = (ez : eαz : 1) with 0 < α < 1 and the following admissible system of
hyperplanes (described by coefficients of corresponding linear forms):

a1 = (0, 1, 1), a2 = (1, 1, 0), a3 = (1, 0, 0), a4 = (0, 0, 1).

Then a direct computation shows that δ(a1, f) = α, δ(a2, f) = 1 − α and
δ(a3, f) = δ(a4, f) = 1.

2. Preliminaries

2.1 Choice of a homogeneous representation. Sometimes we have to
consider homogeneous representations f = (f0 : . . . : fn) which are not
reduced, that is fj are allowed to have zeros common to all of them. We
always assume however that f0(0) 6= 0. In the case of arbitrary homogeneous
representation f̃ = (f0, . . . , fn) we have

T (r, f) =
1

2π

∫ 2π

0

log ‖f̃‖(reiθ)dθ − N(r, κ) + O(1), (13)

where N(r, κ) is the averaged counting function of common zeros.
We need a representation whose components have an estimate in terms

of T (r, f). Let us start with a reduced representation f = (F0 : . . . : Fn)
Consider one-dimensional curves (meromorphic functions) Fj/F0, 1 ≤ j ≤ n,
We have

T (r, Fj/F0) ≤
1

2π

∫ 2π

0

(log |F0| ∨ log |Fj|)(re
iθ)dθ + O(1)

6



≤
1

2π

∫ 2π

0

(log |F0| ∨ . . . ∨ log |Fn|)(re
iθ)dθ + O(1) = T (r, f) + O(1).

By a theorem of J. Miles [14] there exists an absolute constant C and entire
functions Gj such that

T (r,GjFj) ≤ CT (Cr, f), T (r,GjF0) ≤ CT (Cr, f), 1 ≤ j ≤ n.

Thus we obtain a new homogeneous representation f̃ = (f0, . . . , fn) where

f0 = F n
0

n
∏

i=1

Gi, fj = F n−1

0 Fj

n
∏

i=1

Gi, 1 ≤ j ≤ n

with the property

T (r, fj) = O(T (Cr, f)), r → ∞, 0 ≤ j ≤ n. (14)

A homogeneous representation with this property will be called good repre-

sentation. A representation which is simultaneously good and reduced may
not exist. From now on we fix some good representation f̃ of our curve f .

Given an admissible system A = {a}, each a being defined by a homoge-
neous polynomial Pa of degree da we define subharmonic functions

w = log ‖f̃‖

and

wa =
1

da

log |Pa ◦ f̃ |, a ∈ A.

For every subset I ⊂ A, |I| = n + 1 the forms {Pa : a ∈ A} have no
common zeros except at the origin (by definition of an admissible system) so
for ‖Z‖ = 1 we have

C1 ≤
∨

a∈I

|Pa(Z)|1/da ≤ C2

with some constants C1 abd C2 depending on I. By homogeneity we conclude
that

∨

a∈I

wa = w + O(1) for every I ⊂ A, |I| = n + 1. (15)

It follows from (14) that w satisfies the inequality

w(z) ≤ C1T (C2r, f), r = |z|, (16)
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with some constants C1 and C2.

2.2 Pólya peaks and limit functions. Standard references for Pólya peaks
are [5] and [2]. Put T (r) = T (r, f) and

λ∗ = sup

{

p : lim sup
t,r→∞

T (rt)

rpT (t)
= ∞

}

; (17)

λ∗ = inf

{

p : lim inf
t,r→∞

T (rt)

rpT (t)
= 0

}

. (18)

Then λ∗ ≤ ρ ≤ λ∗ where ρ is defined in (1). So under the assumptions of
theorems 1 and 2 we have λ∗ < ∞.

For every λ ∈ [λ∗, λ
∗] and every ǫ0 ∈ (0, 1) there exists a sequence rk → ∞

of Pólya peaks of order λ that is

T (rrk) ≤

{

T (rk)r
λ+ǫ0 , ǫ−1

0 ≤ r ≤ ǫ−1

k

T (rk)r
λ−ǫ0 , ǫk ≤ r ≤ ǫ0,

(19)

where ǫk → 0.
Now we form the sequences of subharmonic functions

wk(z) =
1

T (rk)
w(rkz)

and

wa,k(z) =
1

T (rk)
wa(rkz), a ∈ A.

These sequences are uniformly bounded from above on compacta in C in
view of (16) and (19). We have wk(0) → 0 as k → ∞. By the Convergence
Theorem for subharmonic functions (see, for example [11]) we may choose a
subsequence of Pólya peaks such that the sequences (wk), (wa,k) converge in
L1

loc(dxdy) to some subharmonic functions v and va, a ∈ A. Convergence also
holds in L1 with respect to one-dimensional measure on every circle (or any
smooth curve). The corresponding Riesz measures converge in the topology
of C∗

0(C) that is convergence of measures µk → µ means that
∫

φdµk →
∫

φdµ

for every continuous function φ with compact support.

8



The limit subharmonic functions have the following properties:

v(0) = 0, va(0) = 0, for a ∈ A, (20)

v(z) ≤

{

C|z|λ+ǫ0 , |z| ≥ ǫ−1
0 ,

C|z|λ−ǫ0 , |z| ≤ ǫ0

, (21)

which follow from (16) and (19). Furthermore we conclude from (15) that

∨

a∈I

va = v for every I ⊂ A, |I| = n + 1. (22)

2.3 Rescaling of the Riesz measures. For a subharmonic function u we
denote by µ[u] its Riesz measure. For every Borel measure µ in C we use the
notations

n(r, µ) = µ(D(0, r)) and N(r, µ) =
∫ r

0

n(t, µ)
dt

t

if the last integral is convergent.
The Riesz measures of w and wa have a part in common, namely the

measure coming from common zeros of functions in the homogeneous repre-
sentation. More precisely, denote by κ the measure which charges every zero
common to all fj according to its multiplicity. Then we have κ ≤ µ[w] and
κ ≤ µ[wa], a ∈ A. Let κk be defined by

κk(E) =
1

T (rk)
κ(rkE)

for every Borel set E ⊂ C. Then κk ≤ µ[wk] and κk ≤ µ[wa,k], a ∈ A. By
Jensen’s inequality

N(r, κk) ≤
1

2π

∫

2π

0

wk(re
iθ)dθ + o(1), r → ∞.

Thus n(r, κk) ≤ N(er, κk) is bounded for every r > 0 by a constant indepen-
dent on k. Thus we can select a subsequence of Pólya peaks one more time
so that κk → σ, where σ is a Borel measure. We have σ ≤ µ[v] and σ ≤ µ[va]
for a ∈ A. We also have (see, for example, [8]):

N(r, κk) → N(r, σ).
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From (13) we obtain

Φ(r) := lim
k→∞

T (rrk)

T (rk)
=

1

2π

∫ 2π

0

v(reiθ)dθ − N(r, σ), (23)

and finally from the definition of defect and Jensen’s formula

1

2π

∫

2π

0

(v − va)(re
iθ)dθ = δ(a, f)Φ(r). (24)

3. Proof of Theorem 1 Adding the equalities (24) for all a ∈ A and using
(6) we obtain

1

2π

∫

2π

0

∑

a∈A

(v − va)(re
iθ)dθ = 2nΦ(r). (25)

Lemma 1 [9]. Let v1, . . . , vq and v be subharmonic functions in a region

Ω, q ≥ 2n. Assume that

∨

j∈I

vj = v for every I ⊂ {1, . . . , q} with |I| = n + 1. (26)

Then
∧

I:|I|=n

∑

j∈I

vj + nv (27)

is a subharmonic function in Ω.

Our functions va satisfy the condition (26) in view of (22). We apply this
lemma to every finite subset {va : a ∈ J}, J ⊂ A, |J | ≥ 2n, and denote
by hJ the subharmonic function (27). If A is infinite we have a decreasing
sequence of subharmonic functions hJ which tends to a subharmonic function
h. This function is not identically equal to −∞ because h(0) = 0. So

∧

|I|=n

∑

a∈I

va + nv = h. (28)

From this relation follows that

2nσ ≤ µ[h]. (29)
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Using (22) we can rewrite (28) as

∑

a∈A

(v − va) = 2nv − h

We integrate this with respect to θ, then use (25) and (23) to obtain

2nN(r, σ) =
1

2π

∫

2π

0

h(reiθ)dθ.

Combined with (29) and Jensen’s inequality this implies that µ[h] = 2nσ. So
the functions

u = v − h/(2n) and ua = va − h/(2n), a ∈ A

are subharmonic, they satisfy

∨

a∈I

ua = u for every I ⊂ A, |I| = n + 1, (30)

∧

|I|=n

∑

a∈I

ua + nu = 0 (31)

and thus
∑

a∈A

(u − ua) = 2nu. (32)

We also have

Φ(r) =
1

2π

∫ 2π

0

u(reiθ)dθ (33)

and

u(reiθ) ≤

{

Crλ+ǫ0, r ≥ ǫ−1
0

Crλ−ǫ0, r ≤ ǫ0.
(34)

It follows from (33) and (23) that

1

2π

∫

2π

0

u(eiθ)dθ = Φ(1) = 1. (35)

In particular u 6= 0.
Now we derive conclusions from equations (30), (31) and (32).
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1. First notice that each of the two summands in (31) is upper semi-
continuous and their sum is continuous. Thus both summands are contin-
uous. In particular u is continuous. The first term in (32) is lower semi-
continuous (as a limit of increasing sequence of lower semi-continuous func-
tions) and the second term is continuous. It follows that all summands in
the first term are continuous. Thus all ua are continuous.
2. From (32) follows that u ≥ 0, and (35) implies u 6= 0. Let D be a
component of the set {z : u(z) > 0}. As u satisfies (34) the number of such
components is finite (at most 2λ) by the subharmonic version of the Denjoy-
Carleman-Ahlfors Theorem [10]. If u(z0) = 0 then ua(z) = 0 for all a, this
follows from (32). If u(z0) > 0 then ua0

(z0) < 0 for some a0. By continuity
these inequalities persist in a neighborhood V of the point z0. If we define
in this neighborhood a new family of subharmonic functions {ua : a ∈ A′},
where A′ = A\{a0} then this new family will satisfy

∨

a∈I

ua = u for every I ⊂ A′, |I| = n.

Thus Lemma 1 is applicable with n in place of n+1 from which we conclude
that

h′ :=
∧

|I|=n−1, I⊂A′

∑

a∈I

ua + (n − 1)u

is subharmonic. But
ua0

+ h′ + u = 0 in V

by (31), that is sum of three subharmonic functions is zero. So we conclude
that all these three functions are harmonic.

Thus u is harmonic in every component D of the set {z : u(z) > 0}.
By the Maximum Principle for every a ∈ A there is an alternative: either
ua(z) = u(z), z ∈ D or ua(z) < u(z), z ∈ D. In both cases ua is harmonic
in D. It follows that if we denote by I(z) the subset of A on which the
minimum is attained in (31) at a point z, then I(z) is constant in D.

Let {Dj}
q
j=1 be an enumeration of all components of the set where u is

positive. For each j let Ij be the constant value of I(z) in Dj. Define the
functions sj in the following way:

sj(z) =

{

∑

a∈Ij
ua(z) if z ∈ Dj

nu(z) otherwise
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Let us verify that sj are subharmonic in the plane. This needs verification
only on the boundary of Dj. But at every point of this boundary the average
property is satisfied trivially, because u ≥ ua for all a and all functions are
zero on the boundary of Dj.

Now we define

Uj(z) =

{

nu(z), z ∈ Dj

0 otherwise

Then Uj are non-negative subharmonic functions. We have by (31) sj =
∑q

k=1 Uk − 2Uj. Thus 2µ[Uj] ≤
∑q

k=1 µ[Uk] which implies

2
q
∨

j=1

µ[Uj] ≤
q
∑

k=1

µ[Uk]. (36)

Now we are in position to apply the following lemma from [6] (see also [8,
Lemma 1], [7]. By support of a function we mean the set where it is different
from zero.

Lemma 2 Suppose that non-negative subharmonic functions U1, . . . , Uq have

disjoint supports and their Riesz measures satisfy (36). Assume also that (34)
is satisfied with U :=

∑q
j=1 Uj in place of u with ǫ0 < 1/4. Then λ in (34) is

half integer and

U(reiθ) = crλ| cos λ(θ − θ0)|

for some c > 0 and θ0 ∈ [0, 2π).

Returning to our function u = U/n and taking into account (35) we obtain
from Lemma 2

u(reiθ) = (π/2)rλ| cos λ(θ − θ0)|. (37)

One conclusion is that the set of possible orders λ of Pólya peaks is discrete.
This implies that λ∗ = λ∗ = ρ in (17) and (18). This means that for every
ǫ > 0

rρ−ǫT (t) ≤ T (rt) ≤ rρ+ǫT (t),

as r and t tend to ∞ thus every sequence rk → ∞ can be used as a sequence
of Pólya peaks (compare [7]). Thus the above argument is applicable to
every sequence, and we conclude that from every sequence one can extract a
subsequence such that

lim
k→∞

T (rrk)

T (rk)
=

π

2
rρ,
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where c may depend on the sequence. Thus the limit

lim
k→∞

T (rrk)

rρT (rk)

exists uniformly with respect to r ∈ [1/2, 2] and the statement (ii) in Theorem
1 follows with ρ = λ.

Now it follows from (37) that Dj are angular sectors and for each j the
functions ua are separated into two classes: n of them are equal to −u in
Dj and the rest are equal to u in Dj. If we take into account the expression
for deficiencies (24) and (23), this proves statement (iii). Finally if one of
deficiencies is equal to 1, the corresponding ua is harmonic, so λ has to be
an integer because ua(0) = 0 and ua(z) ≤ u(z) ≤ |z|ρ, z ∈ C and ua 6= 0.

4. Proof of Theorem 2. Let us describe the geometric interpretation
of functions wa defined in subsection 2.1. We will do this only in the
case when our hypersurfaces are non-singular. In this case we can choose
the polynomials Pa defining our hypersurfaces to be irreducible, and at ev-
ery point Z ∈ Cn+1 such that Pa(Z) = 0, we have DP (Z) 6= 0, where
D = (∂/∂z0, . . . , ∂/∂zn). It follows that for every such Z there exists a
neighborhood V and a positive constant C with the property

C−1 <
dist(W, ã)

|Pa(W )|
< C, W ∈ V,

where ã = π−1(a) is the zero set of Pa and dist means the standard distance
in Cn+1. It follows that for any distance on Pn, equivalent to the standard
one, we have

C−1 < dist(π(Z), a) :
|Pa(Z)|

‖Z‖d
< C, Z ∈ Cn+1, (38)

where da = degPa and the constant C depends only of the chosen distance.
Thus the geometric interpretation of the subharmonic functions wa and w
introduced in subsection 2.1 is the following:

da(wa(z) − w(z)) = log dist(f(z), a) + O(1),

where the bound for O(1) depends only of the chosen distance in Pn.
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Now we use the notations of the proof of Theorem 1. Fix a sequence of
Pólya peaks such that wk → v and wa,k → va such that the corresponding
functions u and ua satisfy the conclusions made about them in section 3, in
particular, equation (37). Assume for simplicity that θ0 = 0 in (37) (this
always can be achieved by performing a rotation in the plane of independent
variable). Put

D = {z : | arg z| < π/(2λ)}.

Let a1, . . . , an ∈ A be those hypersurfaces for which we have ua(z) = −u(z), z ∈
D. This means that for our sequence of Pólya peaks rk we have

dist(f(rkt), aj) ≤ exp{(−πdaj
+ o(1))(rkt)

λ}, k → ∞, 1 ≤ j ≤ n (39)

uniformly with respect to t ∈ [β, β−1] for every 0 < β < 1. In particular,
dist(f(rkt), aj) → 0 for 1 ≤ j ≤ n, so after choosing a subsequence of
Pólya peaks we can assume that f(rkt) → Z0 ∈ ∩n

j=1a. Here we used the
assumption that our system A is admissible, so the intersection ∩n

j=1aj is a
finite set.

Now if we assume normal intersection of a1, . . . , an at Z0 then

dist(W,a1) ∨ dist(W,a2) ∨ . . . ∨ dist(W,an)

is equivalent to dist(W,Z0) in some neighborhood of Z0. So we can conclude
from (39) and our assumption that da ≥ 2 that

dist(f(rkt), Z0) ≤ exp{(−2π + o(1))(rkt)
λ}, k → ∞. (40)

To obtain a contradiction consider any hyperplane H containing the point Z0

but not containing the whole curve f(C). Let this hyperplane be described
by the linear form PH . Then for the function wH = log |PH ◦ f̃ | we consider
the limit function uH as it was described in subsections 2.2 and 2.3. We will
have uH(0) = 0 and uH ≤ u similarly to the properties of ua, and u is given
by (37), but on the other hand (40) implies uH(t) ≤ −πtλ. This contradicts
the Phragmén–Lindelöf theorem (see, for example [12]). So the intersection
of a1, . . . , an at Z0 cannot be normal.

To find another group of hypersurfaces with non-normal intersection we
consider adjacent sector

D′ = {z : | arg z − π/λ| < π/(2λ)}.
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Let an+1, . . . , a2n be those hypersurfaces in A for which ua are negative in
D′. We can repeat the above argument for an+1, . . . a2n to conclude that
their intersection at some point Z1 is not normal. It remains to notice that
{a1 . . . , an}∩{an+1, . . . , a2n} = ∅ because the subharmonic functions ua can-
not be negative in both adjacent sectors.

5. Construction of the Example. Recall that an entire function y is said
to have completely regular growth (with respect to order λ) if the limit in
L1

loc exists
lim
r→∞

r−λ log |y(rteiθ)| = tλh(θ).

The function h is called indicator of y (see, for example [12]).
Consider the differential equation

y′′′ − zy′ − y = 0. (41)

It is equivalent to the family of non-homogeneous Airy equations

y′′ − zy = c, c ∈ C. (42)

When c = 0 there are three solutions, of (42), called Airy functions [1, sect
10.4] y0, y1 and y2, with the property y0+y1+y2 = 0 and such that any two of
them are linearly independent. From the well-known asymptotic expansions
of Airy functions (see, for example equation (10.4.59) in [1]) one can find the
indicators2 of all solutions of (41), using the method of variation of constants.
Possible indicators of solutions of (41) are the following.

First of all we have a two-dimensional space of solutions of (42) with
c = 0. Their indicators are

H0(θ) = − cos
(

3

2
θ
)

, |θ| ≤ π; and Hj(θ) = H0(θ ± π/3), j = 1, 2.

(43)
The rest of solutions of (41) which correspond to non-zero values of c in (42)
may have indicators from the following list:

G0(θ) =
(

− cos
(

3

2
θ
))+

, |θ| ≤ π; and Gj(θ) = G0(θ±π/3), j = 1, 2.

(44)

2All solutions of differential equations (11) with polynomial coefficients are entire func-
tions of completely regular growth [16]. For the equation (41) this can be seen directly
from the asymptotic expansions of Airy functions.
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Notice that for every θ ∈ [−π, π] the set of solutions whose indicator is
strictly negative at θ is at most one-dimensional, and the set of solutions
whose indicator is non-positive at θ is at most two-dimensional.

Now let f be the holomorphic curve whose homogeneous coordinates are
any three linearly independent solutions of (41). If A = {a1, . . . , aq} is an
admissible system of hyperplanes, and Pj are the corresponding linear forms
then gj = Pj ◦ f̃ , 1 ≤ j ≤ q is a system of solutions of (41) having the
property that every three of these solutions are linearly independent. Let hj

be the indicators of these solutions gj . and h be their pointwise maximum,

h(θ) = |cos ((3/2)θ)| , |θ| ≤ π.

Then we have
∫ π

−π
h = 3

∫ π/3

−π/3

cos
(

3

2
θ
)

dθ = 4.

We claim that

q
∑

j=1

∫ π

−π
(h − hj) ≤ 8

∫ π/3

−π/3

cos
(

3

2
θ
)

dθ =
32

3
.

This follows from the fact that in each of the three components of the set
{θ : h(θ) > 0} at most one indicator can be negative and at most two can be
non-positive, but in addition we cannot have negative indicators in all three
components because solutions y0, y1 and y2 with indicators (43) are linearly
dependent.

So we have
q
∑

j=1

∫ π

−π
(h − hj) ≤

8

3

∫ π

−π
h,

which implies that
q
∑

j=1

δ(aj , f) ≤
8

3
.
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