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The following question was asked on Math Overflow. Let (λn) be a se-
quence of complex numbers tending to infinity. Exponential functions eλnz

are called R- (linearly) dependent if there are complex numbers an, not all
equal to zero, such that the series

f(z) =
∑

n

ane
λnz (1)

converges to zero uniformly on compact subsets of the real line R.
The question is under what conditions on λn the exponentials are linearly

independent.
Let us recall some known results. Let

D = lim sup
r→∞

#{n : |λn| ≤ r}

r
(2)

be the upper density. If D < ∞ and the series (1) converges uniformly on
compact subsets of the complex plane C then an = 0 for all n, [2, 3, 1].
On the other hand, there are sequences of infinite density, in fact with the
quotient in the RHS of (2) growing arbitrarily slowly, such that some series
(1) with non-zero coefficients converges to zero uniformly on compact subsets
of C, see [2, 3, 1].

With a different notion of linear independence, stated in the beginning,
one can obtain very complete results. If one of the exponentials does not
belong to the closure of the linear span of the rest, then iΛ is a subset of the
zero set of the Fourier transform of a measure with bounded support on the
real line. And conversely, if iΛ is the zero set of such a Fourier transform
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than no exponential of the set belongs to the closure of the linear span of the
rest. These results belong to L. Schwartz [5]. Zeros of Fourier transforms of
measures with bounded support have finite upper density. The requirement
that one of the exponentials is in the closure of the linear span of the others
is of course much weaker than the requirement that the series (1) converges
to zero.

The proof these results of Schwartz is simple, so we include it. Let C be
the space of all continuous functions R → C with topology of uniform con-
vergence on compact subsets. The dual space C ′ consists of Borel measures
with compact support. Suppose that eλ0z 6∈ S, where S is the closure of the
span of {eλnz : n ≥ 1}. Then S 6= C, and thus there exists a measure µ ∈ C ′

such that
∫

g(x)dµ = 0 for all f ∈ S.

Applying this to our exponentials, we obtain

∫

eλnxdµ = 0, n ≥ 1,

that is M(iλn) = 0, where

M(λ) =
∫

e−iλxdµ

is the Fourier transform of µ.
Now consider the function M(iλ1 − iλ0 + λ)M(λ). This is also a Fourier

transform of some measure with compact support, and its zero set contains
all iλn, n ≥ 0.

To prove the converse statement, let Φ be the Fourier transform of some
measure µ with compact support in R. Then Φ is an entire function of
exponential type, bounded on the real line. Let iλj be the zeros of Φ. For
each n, we define the entire function Φn(λ) = Φ(λ)/(λ− iλn). This function
belongs to L2(R) because Φ is bounded on R. So by the Wiener–Paley
theorem, Φn is the Fourier transform of some measure µn ∈ C ′. For this
measure we have

∫

eλkxdµn =

{

0, k 6= n,
Φ′(iλn), k = n.

So eλnx cannot be in the closed span of the rest.

In this note we prove the following.
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Theorem. Let Λ be a sequence of finite density. If the series (1) is absolutely
and uniformly convergent to zero on compact subsets of the real line, then all
an = 0.

It is not clear whether one can relax the condition of absolute convergence
in this theorem. On the other hand, this condition seems natural. Indeed,
linear independence of finitely many vectors is a property of an unordered set
of vectors, so it is natural that an extension of this property to an infinite
set of vectors be a property of the set not a sequence of vectors.

Proof. We begin by partitioning Λ into three subsets

Λ = Λ0 ∪ Λ1 ∪ Λ2,

where
Λ0 = {λ ∈ Λ : |Re λ| ≥ |Im λ|} ∪ {λ ∈ Λ : |λ| ≤ 1},

Λ1 and Λ2 are the rest of Λ in the upper and lower half-planes, respectively.
Now we partition our series correspondingly:

f = f0 + f1 + f2.

Lemma 1. The series f0 converges uniformly on compact subsets of C.

Proof. If Re λn > 0, we have

|an||e
λnz| ≤ |an|e

|λn||z| ≤ |an|e
√

2|Re λn||z| = |aneλn(
√

2|z|+1)||e−λn |.

Then |aneλn(
√

2|z|+1)| → 0 because the series f0 converges on the real line, and
in addition, |e−λn | = O(e−n/K), for some K > 0, because the upper density
is finite. If Re λn < 0, we apply similar argument and obtain

|an||e
λnz| ≤ |aneλn(−

√
2|z|−1)||eλn |.

There are only finitely many terms with Reλn = 0. Thus the series converges
uniformly (and absolutely) on every compact subset of the complex plane.

Lemma 2. The series f1 converges uniformly on compact subsets of the
lower half-plane to an analytic function F1 in the lower half-plane, continuous
in the closed lower half-plane. Similarly, f2 converges in the lower half-plane
to an analytic function F2 continuous in the closed lower half-plane.
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Proof. Fix an arbitrary point x0 ∈ R. First we notice that the series f1

is uniformly convergent in the closed sector

T (x0) = {z : | arg(z − x0) + π/2| ≤ π/8} ∪ {x0}.

Indeed, for z in this sector we have

|aneλnz| ≤ |aneλnx0 |.

This was the only place where the absolute convergence was used. It follows
that f1 converges uniformly on compact subsets in the lower half-plane to
an analytic function F1. This function has angular limits everywhere on the
real line, and these angular limits make a continuous function on the real
line (because f1 is uniformly convergent on compact subsets of the real line).
Then it follows from the Poisson representation that F1 is continuous in the
closed lower half-plane. The proof for f2 and F2 is similar.

Thus we have three functions F0 (which is the limit of the series f0), F1

and F2, where F0 is entire, F1 is analytic in the lower half-plane, continuous
in the closed lower half-plane, and F2 analytic in the upper half-plane and
copntinuous in the closed upper half-plane. Moreover, on the real line, where
all three functions are defined, we have F0 + F1 + F2 = 0. It follows from the
removable singularity theorem for continuous functions that in fact all three
functions are entire, and the relation

F0 + F1 + F2 = 0 (3)

holds in C.
Now we fix some n, and suppose that λn ∈ Λ1. Let Φn be an entire

function of exponential type whose zeros are {λj ∈ Λ : j 6= n} and Φn(λn) =
1. Let K be the conjugate indicator diagram of Φn, and γ a positively
oriented circle which encloses K. It is easy to see that K and γ can be
chosen independently of n, but this is irrelevant for our argument. Let φn

be the Laplace transform of Φn. This is an analytic function in C\K, and
φ(∞) = 0. Then Φn is the Borel transform (see [2, 3, 4]) of φn:

Φn(λ) =
1

2πi

∫

γ
φn(z)eλzdz.

Consider the integral

gn(w) = 2πi
∫

γ
F1(z + w)φn(z)dz. (4)
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Evidently, this is an entire function. Let C1 be a real constant such that
γ + iC1 is in the lower half-plane. Then for Im w < C1, the function F1 in
the integral is the sum of the uniformly convergent series f1. Substituting
this series and integrating term by term, we obtain

gn(w) =
∑

λk∈Λ1

ake
λkwΦn(λk) = aneλnw. (5)

Now let C2 be a real constant such that γ + iC2 is in the upper half-plane.
Then for Im w > C1, the function F1 = −F0−F2 is the sum of uniformly con-
vergent series −f0−f2. Substituting this series for F1 into (4) and integrating
term-by-term, we obtain

gn(w) =
∑

k∈Λ0∪Λ2

ake
λkwΦn(λk) = 0.

Comparing this with (5), we obtain that that an = 0. The same argument
can be applied to λn ∈ Λ2. Thus we obtain that f1 = f2 = 0 (as formal
series), and f = f0. But f0 converges to zero in C and Leontiev’s theorem
implies that f0 is also zero.
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