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Abstract

For real power series whose non-zero coefficients satisfy |am|1/m → 1,
we prove a stronger version of Fabry’s theorem relating the frequency
of sign changes in the coefficients and analytic continuation of the sum
of the power series. AMS Subj. Class.: 30B10, 30B40.

For a set Λ of non-negative integers, we consider the counting function

n(x,Λ) = #Λ ∩ [0, x].

We say that Λ is measurable if the limit

lim
x→+∞

n(x,Λ)/x

exists, and call this limit the density of Λ.
Let S = {am} be a sequence of real numbers. We say that a sign change

occurs at the place m if there exists k < m such that amak < 0 while aj = 0
for k < j < m.

Theorem A. Let ∆ be a number in [0, 1]. The following two properties of a
set Λ of positive integers are equivalent:

(i) Every power series

f(z) =

∞∑
m=0

amz
m (1)
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of radius of convergence 1, with real coefficients and such that the changes of
sign of {am} occur only for m ∈ Λ, has a singularity on the arc

I∆ = {eiθ : |θ| ≤ π∆},

and

(ii) For every ∆′ > ∆ there exists a measurable set Λ′ ⊂ N of density ∆′

such that Λ ⊂ Λ′.

Implication (ii)−→ (i) is a consequence of Fabry’s General Theorem [6, 3],
as restated by Pólya. For the implication (i) −→ (ii) see [9]. Fabry’s General
theorem takes into account not only the sign changes of coefficients but also
the absolute values of coefficients. It has a rather complicated statement
and the sufficient condition of the existence of a singularity given by this
theorem is not the best possible. The best possible condition in Fabry’s
General theorem is unknown, see, for example the discussion in [4].

Alan Sokal (private communication) asked what happens if we assume
that the power series (1) satisfies the additional regularity condition:

lim
m∈P,m→∞

|am|1/m = 1, (2)

where P = {m : am 6= 0}. This condition holds for most interesting generat-
ing functions. The answer is somewhat surprising:

Theorem 1. Let ∆ be a number in [0, 1]. The following two properties of a
set Λ of positive integers are equivalent:

a) Every power series (1) satisfying (2), with real coefficients and such that
the changes of sign of the coefficients am occur only for m ∈ Λ, has a singu-
larity on the arc I∆, and

b) All measurable subsets Λ′ ⊂ Λ have densities at most ∆.

We recall that the minimum density

D2(Λ) = lim
r→0+

lim inf
x→+∞

n((r + 1)x,Λ)− n(x,Λ)

rx

can be alternatively defined as the sup of the limits

lim
x→∞

n(x,Λ′)/x (3)
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over all measurable sets Λ′ ⊂ Λ.
Similarly the maximum density of Λ is

D2(Λ) = lim
r→0+

lim sup
x→∞

n((r + 1)x,Λ)− n(x,Λ)

rx
,

and it equals to the inf of the limits (3) over all measurable sequences of
non-negative integers Λ′ containing Λ.

For all these properties of minimum and maximum densities see [12].
Thus condition (ii) is equivalent to D2(Λ) ≤ ∆ while condition b) is

equivalent to D2(Λ) ≤ ∆.

Corollary 1. The following two properties of a set Λ of positive integers are
equivalent:

A. Every power series ∑
m∈Λ

amz
m (4)

satisfying (2) has a singularity on I∆,

A′. Every power series (4) satisfying (2) has a singularity on every closed
arc of length 2π∆ of the unit circle, and

B. D2(Λ) ≤ ∆.

Indeed, all assumptions of A are invariant with respect to the change of
the variable z 7→ λz, |λ| = 1, thus A is equivalent to the formally stronger
statement A′.

Now, the number of sign changes of any sequence does not exceed the
number of its non-zero terms, thus B implies A by Theorem 1. The remaining
implication A −→ B will be proved in the end of the proof of Theorem 1.

Proof of Theorem 1. b) −→ a). Proving this by contradiction, we assume
that D2(Λ) ≤ ∆, and there exists a function f of the form (1) with the
property (2) which has an analytic continuation to I∆, and such that the
sign changes occur only for m ∈ Λ.

Without loss of generality we assume that a0 = 1, and ∆ < 1.

Lemma 1. For a function f as in (1) to have an immediate analytic con-
tinuation from the unit disc to the arc I∆ it is necessary and sufficient that
there exists an entire function F of exponential type with the properties

am = (−1)mF (m), for all m ≥ 0, (5)
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and

lim sup
t→∞

log |F (teiθ)|
t

≤ πb| sin θ|, |θ| < α, (6)

with some b < 1−∆ and some α ∈ (0, π).

This result can be found in [1], see also [2, 4].
Consider the sequence of subharmonic functions

um(z) =
1

m
log |F (mz)|, m = 1, 2, 3, . . . .

This sequence is uniformly bounded from above on every compact subset of
the plane, because F is of exponential type. Moreover, um(0) = 0 because
of our assumption that a0 = F (0) = 1. Compactness Principle [8, Th. 4.1.9]
implies that from every sequence of integers m one can choose a subsequence
such that the limit u = lim um exists. This limit is a subharmonic function
in the plane that satisfies in view of (6)

u(reiθ) ≤ πbr| sin θ|, |θ| < α, (7)

with some b satisfying
0 < b < 1−∆.

We use the following result of Pólya [11, footnote 18, p. 703]:

Lemma 2. Let f be a power series (1) of radius of convergence 1. Let {amk}
be a subsequence of coefficients with the property

lim
k→∞
|amk |1/mk = 1,

and assume that for some r > 0 the number of non-zero coefficients aj on the
interval mk ≤ j ≤ (1 + r)mk is o(mkr) as k → ∞. Then f has no analytic
continuation to any point of the unit circle.

Lemma 2 also follows from the results of [1] or [4].
Now we show that (2) implies the following:

Lemma 3. Every limit function has the property u(x) = 0 for x ≥ 0.

Proof of Lemma 3. Let U = {x : x ≥ 0, u(x) < 0}. This set is open
because u is upper semi-continuous. Take any closed interval J = [c, d] ⊂ U .
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Then u(x) ≤ −ε, x ∈ J, with some ε > 0. Let {mk} be the sequence of
integers such that umk → u. Then from the definition of um we see that

log |F (mkx)| ≤ −mkε/2 for x ∈ J

and for all large k. Together with (5) and (2) this implies that aj = 0 for
all j ∈ mkJ . Let am′k be the last non-zero coefficient before cmk. Applying
Lemma 2 to the sequence {m′k} we conclude that f has no analytic continu-
ation from the unit disc. This is a contradiction which proves Lemma 3. 2

Now we use the following general fact:

Grishin’s Lemma. Let u ≤ v be two subharmonic functions, and µ and ν
their respective Riesz measures. Let E be a Borel set such that u(z) = v(z) >
−∞ for z ∈ E. Then the restrictions of the Riesz measures on E satisfy

µ|E ≤ ν|E.

The references are [13, 7, 5].
In view of Lemma 2, we can apply Grishin’s Lemma to u and v(z) =

πb|Im z| and E = [0,∞) ⊂ R. We obtain that the Riesz measure dµ of any
limit function u of the sequence {uk} satisfies

dµ|[0,∞) ≤ b dx. (8)

Now we go back to our coefficients and function F . By our assumption, the
sign changes occur on a sequence Λ whose minimum density is at most ∆.
Choose a number a such that b < a < 1 −∆. By the first definition of the
minimum density, there exist r > 0 and a sequence xk →∞ such that

n((1 + r)xk,Λ)− n(xk,Λ) ≤ (1− a)rxk.

Lemma 4. Let (a0, a1, . . . , aN) be a sequence of real numbers, and f a real
analytic function on the closed interval [0, N ], such that f(n) = (−1)nan.
Then the number of zeros of f on [0, N ], counting multiplicities, is at least
N minus the number of sign changes of the sequence {an}.

Proof. Consider first an interval (k, n) such that akan 6= 0 but aj = 0 for
k < j < n. We claim that f has at least

n− k −#(sign changes in the pair (ak, an))
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zeros on the open interval (k, n). Indeed, the number of zeros of f on this
interval is at least n− k − 1 in any case. This proves the claim if there is a
sign change in the pair (ak, an). If there is no sign change, that is anak > 0,
then f(n)f(k) = (−1)n−k. So the number of zeros of f on the interval (n, k)
is of the same parity as n − k. But f has at least n − k − 1 zeros on this
interval, thus the total number of zeros is at least n − k. This proves our
claim.

Now let ak be the first and an the last non-zero term of our sequence.
As the interval (k, n) is a disjoint union of the intervals to which the above
claim applies, we conclude that the number of zeros of f on (k, n) is at least
(n−k) minus the number of sign changes of our sequence. On the rest of the
interval [0, N ] our function has at least N −n+ k zeros, so the total number
of zeros is at least N minus the number of sign changes. 2

Let u be a limit function of the subsequence {umk} with mk = [xk].
By Lemma 4, the function F has at least arxk − 2 zeros on each interval
[xk, (1 + r)xk], which implies that the Riesz measure µ of u satisfies

µ([1, 1 + r]) ≥ ar.

This contradicts (8) and thus proves the implication b) −→ a).

a)−→ b). Suppose that a set Λ of positive integers does not satisfy b). We
will construct power series f of the form (4) which has an immediate analytic
continuation from the unit disc to the arc I∆. This will simultaneously prove
the implications a) −→ b) of Theorem 1 and A −→ B of Corollary 1.

Let Λ′ ⊂ Λ be a measurable set of density ∆′ > ∆. Let S be the comple-
ment of Λ′ in the set of positive integers. Then S is also measurable and has
density 1−∆′.

Consider the infinite product

F (z) =
∏
t∈S

(
1− z2

t2

)
.

This is an entire function of exponential type with indicator π(1−∆′)| sin θ|,
and furthermore,

log |F (z)| ≥ π(1−∆′)|Im z| + o(|z|), (9)

as z → ∞ outside the set {z : dist(z, S) ≤ 1/4}. (See [10, Ch. II, Thm.
5] for this result.) Now we use the sufficiency part of Lemma 1, and define
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the coefficients of our power series by am = (−1)mF (m). Then we have all
needed properties, in particular (2) follows from (9).

The author thanks Alan Sokal for many illuminating conversations about
Fabry’s theorem, and the referee for his valuable remarks.
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[8] L. Hörmander, The analysis of linear partial differential operators, vol.
I, Springer, Berlin, 1983.

[9] P. Koosis, The Logarithmic Integral, vol. II Cambridge Univ. Press,
Cambridge, 1992.

[10] B. Ya. Levin, Distribution of zeros of entire functions, AMS Providence,
RI, 1980.

7
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