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Let F0 be the class of all holomorphic functions f defined in the rings

A(f) = {z : ρ(f) < |z| < 1}, (1)

omitting 0 and 1, and such that the curve γ(f) = f({z : |z| = (1+ ρ(f))/2})
has non-zero distinct indices with respect to 0 and 1.

Let F1, F2, F3, F4 be subclasses of F0 consisting of meromorphic, holomor-
phic, rational and polynomial functions in the unit disc U . We define

Aj = inf{ρ(f) : f ∈ Fj}, 0 ≤ j ≤ 4.

Goldberg proved that

0 < A0 = A1 = A3 < A2 = A4 < 0.0319,

and extremal functions for A0 and A2 exist, but extremal functions for A1, A3

and A4 they do not exist. This is a simple normal families argument; it
also shows that extremal functions for A0 have the boundary of the ring
{z : A0 < |z| < 1} as the natural boundary, and extremal functions for A2

have the unit circle as the natural boundary.
The problem is to find the constants A0 and A2 and extremal functions.

Theorem 1.

A0 = J := exp

(

− π2

log(3 + 2
√

2)

)

≈ 0.003701599.
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Proof. The assumption of the theorem implies that γ(f) is a non-periphe-
ral curve in D = C\{0, 1}. Consider the uniformization D = H/Γ(2). Here
Γ(2) is the principal congruence subgroup of level 2 of the modular group,

Γ(2) = SL2(Z)/{±I}.

Matrices act on the upper half-plane H as fractional-linear transformations.
Choosing a point z0 ∈ D, we consider the fundamental group π(z0, D). To
every element of this group corresponds a fractional-linear transformation
φ ∈ Γ(2). This φ is parabolic iff γ is peripheral, and the trace of the matrix of
φ equals ±2 in this and only this case. Conditions of the theorem imply that
γ(f) is not peripheral, so the corresponding element φ ∈ Γ(2) is hyperbolic.
Let A′ = H/〈φ〉. Then the map f lifts to a map f̃ : A(f) → A′ and we
conclude from the Schwarz lemma that

mod A ≥ mod A′.

If M is a matrix of φ, we must have |tr M | ≥ 6 because the traces of the
elements of Γ(2) have residue 2(mod 4), and φ is hyperbolic. Using the well
known formula relating the modulus of a ring and the trace,

|tr φ| = 2 cosh
π2

mod A ,

we obtain the inequality A0 ≥ J .
Now take any element φ0 ∈ Γ(2) with trace ±6, define the ring A′ =

H/〈φ〉 and map it conformally onto the ring of the form (1). The inverse
of this conformal map composed with the universal covering Λ : H → D =
H/Γ(2) gives a function f for which equality holds in Theorem 1.

If the indices of γ(f) about 0 and 1 are prescribed, we can improve the
lower estimate for ρ(f). The free homotopy class of γ(f) can be encoded by
a cyclic word

Am1Bn1 . . . , AmkBnk , where mj 6= 0, nj 6= 0 for 1 ≤ j ≤ k. (2)

where A and B are the free generators of the fundamental group π(z0, D)
represented by simple counterclockwise loops around 0 and 1. Let A0(m,n)
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be the inf of ρ(f) over all functions f ∈ F0 such that γ(f) has representation
(2) with

k
∑

j=1

|mj| = m, and
k
∑

j=1

|nj | = n.

Theorem 2.

A0(m,n) ≥ exp

(

− π2

log(N +
√

N2 − 1

)

,

where N = m + n when m + n is odd, and N = 2(m + n)− 3 when m + n is

even. The estimate is best possible for every N ≥ 3.

Evidently m ≥ ind0γ(f) and n ≥ ind1γ(f).
The proof of Theorem 2 consists in estimating from below the absolute

value of the trace of matrices of the form (2) in terms of m and n. This is
done by induction in the length of the word.

Now we discuss A2.
If f ∈ F2 one can improve previous estimates by extending the ring A(f).

For example, we can consider a continuum K of minimal Green capacity1

which contains f−1({0, 1}). This gives Theorem 3 below. Let F2(m,n) ⊂ F2

be the subclass of holomorphic functions with m zeros and n 1-points in the
unit disc.

Theorem 3. For f ∈ F2(m,n), let q be the cardinality of f−1({0, 1}). Then

ρ(f) ≥
(

1 +
√

16A0(m,n)2q

)2/q

A0(m,n),

in particular,

A2 ≥
(

1 +
√

1 − 16A6
0

)2/3

≈ 0.00587.

The proof uses Dubinin’s inequality for capacity.
Theorem 3 is far from being best possible. One can improve it further,

by considering the length ℓ(f) of the shortest geodesic in the free homotopy

1Same as the capacity of the condenser (∂U, K).
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class of {z : |z| = (ρ(f) + 1)/2} with respect to the hyperbolic metric on
U\f−1({0, 1}). The Schwarz lemma implies that

ℓ(f) ≥ ℓ′(f), (3)

where the right hand side is the length of the shortest geodesic with respect
to the hyperbolic metric in C\{0, 1} in the free homotopy class of the curve
γ(f).

The quantity ℓ(f) is hard to estimate from above in terms of ρ(f).
Equality holds in (3) if and only if the map

f : U\f−1({0, 1}) → C\{0, 1} (4)

is a covering. Such functions in F2 are called locally extremal. This obser-
vation permits us to solve the problem of minimizing ρ(f) in a subclass of
F2.

Let F5(m,n) ⊂ F2(m,n) be the subclass consisting of functions having
only one zero and one 1-point in U , of multiplicities m and n, and F5 =
∪F5(m,n) over all m,n such that 0 < min{m,n} < max{m,n} < ∞. We
define A5(m,n) and A5 as the infima of ρ(f) over the corresponding classes.

Proposition. Every function f ∈ F5(m,n) is subordinate to a locally ex-

tremal function g ∈ F5(m,n). In particular, we have ρ(f) ≥ ρ(g) with

equality iff f itself is locally extremal.

Theorem 4. A5 = ρ(h) where h is the unique locally extremal function in

F5(2, 1) which has a zero of multiplicity 2 at −µ and a simple 1-point at

µ > 0, and for which the subgroup

Γ(f) = h∗(π(z0, U\h−1({0, 1}))) ⊂ Γ(2)

is conjugate to the subgroup generated by A2 and B.

Here µ ≈ 0.0252896 is an absolute constant. The extremal function
h comes from conformal maps of some circular quadrilaterals and can be
expressed in terms of solutions of a Lamé equation.

To prove Theorem 4, we first reduce it to the case of a locally extremal
function using the Proposition above. The crucial fact is that under the
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assumptions of this proposition the map f∗ between the fundamental groups
is injective.

Then we have to compare all locally extremal functions in F5. This is
achieved with the help of Theorem 3 which permits to single out just one
conjugacy class of subgroups of π(z0,C\{0, 1}).

The simplest case to which Theorem 4 does not apply is a function f
with one simple zero and two simple 1-points. Such a function does not have
to be subordinate to any locally extremal function, because the map f∗ does
not have to be injective. Nevertheless we conjecture that ρ(f) ≥ µ, where µ
is the number defined in Theorem 4, but we don’t know how to prove this.

This is a special case of the more general conjecture that A2 = µ.
Suppose that f has a simple zero at 0 and two simple 1-points at ±a,

and no other zeros or 1-points. Then inequality (3) with precise numerical
computation of both sides gives |a| ≥ 0.0145 which must be much worse than
the best possible estimate. The best upper estimate known for the minimal
possible |a| is 0.1428, which is consistent with our conjecture that |a| ≥ µ.

5


