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In $1 of this paper a connection between the order of a meromorphic 
function and its deficiency in the sense of R. Nevanlinna [ I ]  is studied. 
For this purpose a class of meromorphic functions with certain extremal 
property of definciencies is singled out, which permits to obtain as simple 
corollaries generalizations of several known theorems. 

In $2 a connection between critical points of a Riemann surface and 
the order of growth of the associated meromorphic function is studied. 
A generalization of the known theorem of Denjoy-Carleman-Ahlfors is 
obtained. This generalization consists in adding some subclass of indirect 
critical points into consideration, in addition to the direct ones. 

There is no direct connection between critical points and deficient 
values, first because it is well known that a critical point may have defi- 
ciency zero, and second, since there exist examples of deficient values 
to which no critical points correspond [2,3]. Nevertheless there is an 
inner connection between the questions considered in $ 1 and 52. Let us 
explain this with an example. 

A known theorem of Wiman (see, for example [4, p. 3011) states that 
for entire functions of order p < 4 there exists a sequence of circles 

'Russian original: Uchenye Zapiski Lvovskogo Gosudarstvennogo Universiteta, 38, 7, 
1956. 54-74. Translated by A. Eremenko 
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226 A. A. GOL'DBERG 

lzl = r,, n + co, on which the function uniformly tends to co. There 
are several ways to generalize this theorem. First, an entire function 
has at w a deficient (even Picard) value S(co) = 1. By relaxing this 
condition we obtain in $ 1 the following proposition: for a meromorphic 
function f (z) of order p < 4, having 6(a) > 1 - cosnp, there exists 
a sequence of circles lzl = r,,, r,, + co, on which f (z) uniformly 
tends to a. The condition on deficiency cannot be relaxed. On the other 
hand the Riemann surface of an entire function has a direct critical 
point of a special kind over co. By generalizing the Wiman theorem in 
this direction one can introduce a class of critical points - K-points (the 
precise definition is in $2), for which the following statement is still true: 
if the Riemann surface of a meromorphic function of order p < 4 has a 
K-point over a then there exists a sequence of circles Izl = r,, , r,, + w, 
on which f (z) uniformly tends to a. 

So $ 1 and $2 give two different very natural approaches to the same 
problem.' 

The known theorem of Denjoy-Carleman-Ahlfors (see [1, p. 258-2621) 
states: a meromorphic function w = f (z) mapping the plane z # CCI 

onto a Riemann suq5ace F having n direct critical points, has order of 
growth at least n / 2 ,  nonnal type. Here if n = 1 the surface is assumed 
to be decomposable (this as a rule will not be specially mentioned in 
what follows); that is F contains a closed Jordan curve C such that over 
the regions into which it divides the w-plane lie at least two connected 
infinitely-sheeted pieces of F [lo]. In a series of papers [ l  1,12,13,14,15] (I 
am familiar with their contents only by reviews) Y. Tumura and M. Tsuji 
singled out from the class of indirect critical points a subclass for which 
it turns out that the Denjoy-Carleman-Ahlfors theorem is still true, but to 
establish whether a given critical point belongs to this subclass is possible 
on$ by constructing a conformal mapping of the whole Riemann surface 
on the finite z-plane. In this section a class of critical points is introduced 
(K-points) which is wider than the class of direct critical points, and for 
which the Denjoy-Carleman-Ahlfors Theorem remains true. In addition, 

' $ 1  is omitted in this translation. Its contents are widely known to specialists and it 
is contained in [19], [I71 and [IS] with substantial simplifications. 
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MEROMORPHIC FUNCTIONS 227 

to classify a critical point as a K-point one has to consider only a neighbor- 
hood of this point, which often permits to formulate the criterion in pure 
geometric terms. 

Let a critical point U lie over a. Let us map its &-neighborhood (that 
is the connected part of the Riemann surface containing LL and lying 
over Iw - a1 < E (or Iwl > I/& if a = ca) onto some region D bounded 
by Jordan arcs in <-plane with a function w = $(<). Let us denote by 
Go(<, a,) the Green function of the region D with the pole at a, which 
is an a-point of the function $(<). Then using the Maximum Principle 
and Harnack's Theorem it is easy to obtain the following equality 

where he(<) is a non-negative harmonic function, and independently 
from the choice of p(<) we either have he(<) = 0 or h,(<) > 0, < E 

D; limF,t' he(<) = 0, <' being any boundary point of D corresponding 
to an interior point of F. 

DEFINITION If for every small enough &-neighborhood of the critical 
point LL we have h,(<) > 0 then LL is called a K-point. 

Evidently the membership of LL in the class of K-points is deter- 
mined by the properties of the Riemann surface only in sufficiently small 
neighborhoods of LL. Finding K-points is faciliated by the following two 
theorems. 

THEOREM 4. If an &-neighborhood of Ll contains an d-neighborhood of 
LL and h,~ (<) > 0, then he(<) > 0. 

Proof Without loss pf generality one may assume that a = ca. If 
w = I+?(() maps the &-neighborhood on a region D,, then the same 
function maps the d-neighborhood onto some Dd C D,. Assume that 
he(() m 0, that is 
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228 A. A. GOL'DBERG 

On the part of the boundary of D,, which is inside D, one has 
In 1~ /1 /1 (<)1  = 0 and 

where Gd(<, p,) = 0, if pv $ Dd. On the other hand, 

because on the whole boundary of D,I the left side is = 0 and the right 
side is 5 0 by (I), and in addition the left and right sides have the same 
poles and the same singular parts at these poles. Passing to the limit 
when n -;. ca we obtain 

and comparing with (2)  we obtain 

Consequently h , ~  (t) = 0 which contradicts the assumption. 

THEOREM 5. If for some &-neighborhood lying over Iw - a1 < E we 
have he(<) > 0, then this neighborhood contains at least one K-point 
lying over a. 

Proof Set a = m, In I ~ 1 / 1 ( < ) 1  = C G&, pv> + hE( t>,  hE(<) =- 0. BY 
the extended Maximum Modulus Principle there has to exist a point 
<' on the boundary of D, such that for some sequence Zi, + </, {k E 
DE we have ha(&) -t w. Let to the points from the &-neighborhood 
which lie over Iw - a1 < ~ / 2  correspond an open set DJElz C DE. 
As limFk,F~ Iq(tk)l = oo, there exists a connected component of DIEp 
containing a point Ck such that hn(Ck) > In 2. To this component of Dlsl2 
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MEROMORPHIC FUNCTIONS 229 

corresponds an &/2-neighborhood of the critical point. We have 

But hs/2(<k) > h,(fk)-In 2 > 0 thus > 0. We can apply the same 
argument to the &/2-neighborhood. Thus we obtain a sequence of nested 
~2-"-neighborhoods which defines a critical point LL. As h,z-a(C) > 
0, n = 1,2,  . . ., by Theorem 4 LL is a K-point. 

THEOREM 6. A meromorphicfunction w = f (z) which maps the plane 
z # ca onto the Riemann surface F having n K-points, has the order of 
growth a t  least 1112, normal type. (We assume in the case n = 1 that the 
sutface is decomposable.) 

Proof Choose so smaIl disjoint &,-neighborhoods of K-points U,, v = 
I ,  . . . , n that their preimages A, in z-plane do not contain z = 0 and 
there are curves connecting z = 0 to each region A, without entering the 
the other regions. Let y, be the component of the boundary of A, which 
separates A, from z = 0. It divides z-plane into two unbounded regions, 
the one which contains A, we denote by A,. Fix a point z, E A,. Let O," 
and 6," be the arcs of the circle lzl = r, r > lz,l which separate the part 
of A,, respectively A,, containing z,, from ca, and let O,(r) and 6,(r)  
be the radian measures of these arcs. Denote by D, (6,) the component 
of the intersection of A, (&,) with the disk Izl < r containing z,. Using 
the Maximum Principle we obtain 

where ~ ( z , ,  Op), D,) is the harmonic measure of with respect to 
Dr measured at the point z,; for constructing heV(z); D," = A, and 
+(z) = f (2 )  were taken. Set F,(z) = ( E , / (  f (z) -a,)); since T(r, F,) = 
T(r, f )+0(1), it is enough to estimate T(r, F,). Let us denote M(r, F v )  
= rnax,:,,, J F,(z)J. Then 

Ev 
max h,(z) 5 rnax In I I 5 Int M (r, F,) 
M=r I:l=r.:EAv f (z) - av 
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230 A. A. GOL'DBERG 

and from (3) we obtain 

From this, using the Principle of Region Extension and the inequality 

1 J ' l n C ~ ( t ,  F,)dt c C(k)T(kr, F,) 
r 0 

( 5 )  

(see [61, p. 25) and integrating (4), we obtain that 

Now we estimate from above w(zv, @"), D,) 5 w(z,, 6:), b,). Then 
estimating w(zV, 6:), &) in exactly the same way as in the proof of the 
Denjoy-Carleman-Ahlfors theorem (see [I], sect. 258-26 l), we get 

from which, using the inequality between harmonic and arithmetic means 
we obtain 

n 
In T(r) 2 - In r + const, T(r) >_ const . rnI2 > 0. (8) 2 

In this proof the requirement that for n = 1 the surface should be 
decomposable (for n > 1 this is automatic), was used in an essential 
way when constructing y,. Nevertheless this condition can be relaxed, 
though by doing this one loses the possibility to verify the condition 
directly by inspecting the Riemann surface F. Without loss of generality 
we can assume that the only K-point of F lies over oo. Then if 

m i n I f ( z ) l c M < c o ,  O < r < c o ,  then T(r, f ) >  constf i .  
Iz1=r 

In view of Theorem 6 it is enough to consider the case when F is not 
decomposable. Let A be the preimage in z-plane of an &-neighborhood 
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MEROMORPHIC FUNCTIONS 23 1 

of U, E < M-'. Then every circle lzI = r, ro < r < oo intersects 
the boundary of A. Though in the case of non-decomposable surface 
one cannot construct y dividing the plane into two unbounded regions, 
we still have by the Carleman-Milloux theorem (see [I], sect. 82) that 
w(zl ,  Or, D,) I w(lzIl, Izl = r, K,), where K, is the disk Izl < r from 
which the radius (-r, 0] is removed. The harmonic measure w(lzi I, lzl = 
r, K,) is easy to estimate: w(lzll, 1 . ~ 1  = r, K,) < cr-'I2, where C 
depends only on lzl 1 .  Together with (6)  this proves the sratement. From 
here one deduces the following generalization of Wiman's theorem (see 
the Introduction). 

THEOREM 7. Vthe  Riemann surface, onto which a meromorphic func- 
tion w = f ( z )  of order p < 4 maps the plane z # CQ, has a K-point over 
a then there exists a sequence of circles 1:) = r, + co on which f ( z )  
tends uniformly to a. 

Let us give several theorems which permit to decide whether a given 
critical point is a K-point. 

THEOREM 8. IfU is a direct critical point then it is a K-point. 

Indeed, in this case he(<) = In 

THEOREM 9. Ifan &-neighborhood of U is simply connected then for U 
to be a K-point it is necessary and sufficient that the function q(<) = 
($(<) - a) /&,  where w = $(<) is a conformal map of / < I  < 1 onto the 
&-neighborhood, be not a Blaschke product; that is 

Indeed, for U not to be a K-point it is necessary and sufficient that 

where G(<, a,) is the Green function for the unit disk; that is 

but this is equivalent (see [ I ] ,  sect. 150) to q(<) = B(<). 
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232 A. A. GOL'DBERG 

In typical cases (for example for all entire functions of finite order and 
a # CO) for E small enough, &-neighborhoods of LL are simply connected 
and bounded by a single Jordan arc. Then the question of whether U is 
a K-point is reduced to finding out if q(<) is a Blaschke product with 
zeros tending to a single point. With the additional assumption that all 
zeros of q(<) are real we will give a necessary and sufficient condition 
in geometric terms for given simply connected Riemann surface S over 
the unit disk (one can pass from Iw - a1 < E to Iwl < 1 by a linear 
transformation) that the function w = q(<) mapping this surface onto 

< 1 not be a Blaschke product. 
Let w = q(f) be a function with zeros at a ,  < a2 < . -+ 1 of orders 

m - 1, m2, . . . respectively, which maps I < I  < 1 into Iwl < 1 such that 
lim,, 1 Iq(peie)l = 1, 8 # 0. Then (see [I], sect. 160) 

where 

C m , , ( l  - a,) < m. d > 0. 

Let us map 1(1 < 1 onto Diz > 0 with z = (1 +<)/(I  - t) .  Then 

where 
1 +a ,  

W 

rv = - and C Z c m .  
1 -a ,  

v= l 

After continuation of this function across Dtz = 0 we obtain w = @(z)- 
a function meromorphic in the entire finite z-plane. 
Let us show that all algebraic branch points of S lie over the real axis; 
it is enough to show that all zeros of @'(z) in 9tz > 0 are real. Indeed 
if a zero of @'(z) is not a zero of @(z) then it is a zero of @ I / @ .  Now 
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MEROMORPHIC FUNCTIONS 

Let z = x + iy. Then 

but this expression can be zero only if y = 0. 
Now let us show that the arc in S which projects to the real axis and 

which connects in S the two adjacent branch points not lying over zero, 
itself passes over zero. In addition we show that all branch points not 
lying over zero have order one. 

For this it is enough to show that zeros of @'(z) interlace with zeros 
of @(z) and that in the case that zeros of @'(z) do not coincide with 
zeros of @(z) they have multiplicity 1. Indeed, 

d @'(x) 00 

dx @(x)  
4rvrnd < 0 for x > 0. - {-) = - C (.; - x2)2 

v= 1 

Consequently, in each interval (r,, r,+I) the function @'(x)/@(x) decrea- 
ses monotonically changing its sign at the same time, so it has exactly 
one simple zero on this interval. This proves the statement. 

We conclude that the surface S corresponding to the function p(t) has 
the following structure. 

Take the sequence consisting of disks U = {w : Iwl < 1) with cuts 
from - 1 to b: c 0 and from b", > 0 to f l .  Denote the v-th slit disk 
by S,. Let S', be mu-sheeted Riemann surface, which is the image of S, 
under the mapping w H 6 , f l u  where 6, = - 1 if (-l)"l+"'=+ < 
(- l)'"., and 6, = 1 otherwise, v 2 2. Thus St, is the part of the Riemann 
surface of the function w1Imv which lies over U, has a branch point of 
order (mu - 1) over w = 0 and two cuts I ;  and IS (only one cut I, over 
(-l)"'R+ when v = 1). The cuts connect certain points over Su(bi)mv 
and S,(b:')"v each to the closest point on the boundary of S:. We will 
assume that b', and b", are chosen in such a way that the cut I ,  on St2, 
has the same projection as the cut I;-{. Similarly the cut I& has the 
same projection as the cut I~,+,.  Now we paste together S'2, with S12,,-1 
by identifying the opposite edges of the cuts I; and I , - , .  Similarly we 
paste together S'2v and S'2v+l by identifying the opposite edges of Izf, and 

v 3 1. AS the result we obtain the Riemann surface S spread over 
U and having infinitely many branch points of first order over (U\{O))nR 
and possibly some branch points over 0. 0. Teichmiiller [2] proved that 
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234 A. A. GOL'DBERG 

p(() maps lcl < 1 on such a Riemann surface S. In particular, if m, = 1 
for all v then the Riemann surface S has no branch points over 0; we have 
S', = S, for all v, the cuts I ;  and I:  project to (-1, b',] and [b",, 1) 
respectively. In addition we have bt2, = b'2,-1 and bVz, = b"2,+l. 

The shortest asymptotic path on S will be a broken line passing 
through these branch points; it will pass through all branch points over 
0. As this broken line divides S into two symmetric parts, so in turn the 
function (p*(C) which maps < 1 onto S has only real zeros and these 
zeros converge to one point; consequently q*(() belongs to the class of 
functions p(c) we have been considering. 

Enumerate all branch points of S as they occur on sheets of S counting 
the n-fold ones n times. Let their moduli be Ibil. Whether S will be a 
neighborhood of a K-point depends only on position of algebraic branch 
points of the surface S. Let us prove the following theorem. 

THEOREM 10. For S to be a neighborhood of a K-point it is necessary 
and sufficient that 

m 

Proof Set p(r ,  0 )  = inf,?,{ln I (l)/(@(x))l). This function p(r ,  0 )  is 
evidently non-decreasing and 

p(rv, 0) = inf ln- 
2 { 

Sufficiency. Assume that S is not a neighborhood of a K-point. Then 
z))"~. From (5) 

'This will prove that for S to be a Riemann surface of the Blaschke product with 
real zeros converging to one point it is necessary and sufficient that the series (10) is 
divergent - this statement has an independent interest. 
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MEROMORPHIC FUNCTIONS 235 

But lirn,,, T(r, @)/r = 0 (see [l], sect. 190); thus 

Now we apply the Carlernan formula (see [16], ch IV, $14) to the func- 
tion @(z) regular in .%z > 0: 

But /@(it)/ =]a(- i t ) l  = 1 and 

Hence 

Let us denote by DR the intersection of the regions {O < arg z < x/2)  and 
(lzl > R). For x > R we have In I@(x)l 5 -p(R, O), and everywhere 
in DR we have In l@(z)l 5 0. So by the Two Constants Theorem (see 
[I], sect. 36) for z E DR we have In l@(z)l < -w(z;x > R; D R M R ,  a). 
Let 1 = minw(z;x> R;DR) wi thzon  thearc Iz1 = 2R, 0 I argz I 
5r/4. Evidently 1 > 0 does not depend on R. Then on the arc IzI = 
2R, -r/4 < arg z < n/4  we have 

From (12) and (13) follows that 
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236 A. A. GOL'DBERG 

From this using simple transformations which do not decrease the left 
hand side of the inequality we obtain 

In view of ( I  1 )  there exists such a sequence Ri + oo that (p(Ri) ) / (Ri )  > 
( P ( R ) ) / ( R )  for all R  > Ri and thus ( ~ ( R i ) ) / ( ~ ( r u ) >  > (Ri)l(ru)r rv > 
Ri. From (14) follows that 

The condition (10) implies that Cz, (m , ) / (p ( r , ) )  < oo and limidm 
Crv ,R i (mv) l (p ( ry ) )  = 0  since C r v > R i ( m u ) / ( ~ ( r u ) )  is the tail of a con- 
vergent series. On the other hand because l / p ( r , )  is monotone decreas- 
ing and the series is convergent it follows that v / p ( r , )  + 0,  that is 

since p(Ri)  2 p(rui )  and n(Ri, 0 ,  @) = n  (r,,, 0 ,  0 )  where rui is the 
maximal value of r, 5 Ri. The left side of (15) tends to 0  as i -t oo 
which contradicts (15). Our assumption was incorrect. 

Necessity. Let S be a neighborhood of a K-point. Then w  = 0 ( z )  = 
e-" LEI ( ( r ,  - z ) l ( ru  + z))"'~, where 6 > 0  and C z l  (m,) l ( r , )  < oo. 
But p(r ,  @) > 8r and CEO,, ( l ) / ( p ( r , ,  0 ) )  < oo which is equivalent 
to (10). 

Theorem 10 is proved completely. 
The meromorphic function w  = 0(i)  which we used as an auxiliary 

one nicely illustrates what was proved above. After symmetric conti- 
nuation of the Riemann surface S across Iwl = 1 we obtain a complete 
surface 3. The function w  = 0 ( z )  mapping lzI < oo onto this surface, 
as follows from what has been said above, has at most order one, mean 
type. A study of the class of the surfaces 3 was made by 0. Teichmiiller 
[2] who raised the problem of giving a geometric characterization of 
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surfaces corresponding to the extremal case when w = @(z) has order 
one, mean type. The following theorem, which is a simple corollary 
of Theorems 9 and 10, gives an exhaustive answer to Teichmiiller's 
question. 

THEOREM 1 1. A meromolphicfunction mapping the finite z-plane onto 
3 will have order one, mean type, if and only if both critical points of 5 
over 0 and over oo are K-points. I f  they are not K-points then the order 
of the function may range from zero order to order one, minimal type, 
inclusively. An increase of the order of growth to order one, mean type, 
is caused by fast and uniform rapprochement of algebraic branch points, 
of which the exact measure is given by: 

Thus for certain classes of Riemann surfaces, for the mapping func- 
tions to be of order p = n/2, mean type, the condition of presence of n 
K-points is not only sufficient but also necessary. 

If an &-neighborhood of the point U is not simply connected then its 
mapping onto a region D, is often hard to perform, so the following suffi- 
cient condition is useful. By adding to the &-neighborhood any adjacent 
connected finitely-sheeted pieces of the Riemann surface F, which is the 
image of z # oo under a meromorphic function w = f (z), we obtain 
a simply connected I-neighborhood LL; its preimage & in the z-plane is 
obtained if to the region A we will add all its holes. Let us map the 
disk I</ < 1 onto the I-neighborhood of U with the help of the function 
w = $(<I. put +(<I = (G(<) - a)/&. 

THEOREM 12. For U to be a K-point each of the following conditions 
is suficient: 

a) lim sup,, , m(r, I/(+)) > 0, if +(<) is a function of bounded char- 
acteristic; 

b) lim,, 1 N(r, 0, +) < oo, if +(<) is a function of unbounded charac- 
teristic. 

Proof In both cases lim,, N (r ,  0, +) = N (1,0, +) < oo. It follows that 
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where G(t,  a,) is the Green function for Jtl < 1 having pole at zeros 
a, of the function +((). Indeed, C C(0, a,) = N(l ,  0, +) < 00,~ and 
from Harnack's theorem follows convergence in (16) in l(1 < 1. Let us 
denote by D, the preimage of an &-neighborhood of U in < 1 and by 
G(( ,  a,) the Green function of D, with the pole at the zero a, of $(() 
if a, E D,, and G({, a,) = 0 if a, $ D,. Assume that h,(() = 0. Then 

At preimages of Iw - a1 < 6 which contain a, E D, we always have 
h(() = 0. Thus 

as r + 1 (see [I], sect. 165), where B(() is a Blaschke product taken over 
the zeros of $({14. But this contradicts the assumption of the theorem (in 
case b)) because then +(() would be a function of bounded characteristic. 
Consequently he(<) > 0 and LL is a K-point. 

If for some Z-neighborhood of LL the function +(() has unbounded 
characteristic and lim,,, N(r, 0, +) = co (let us call it a K'-point in 
this case), though one cannot conclude that tl is a K-point; one can still 
improve the estimate of the order of f (2). 

THEOREM 13. A meromorphic frrnction w = f (z) mapping the plane 
z # co onto the Riemann sur jke  F having n >_ 0 K-points and a t  least 
one Kt-point, has order of growth at least (n + 1)/2. 

Proof (Notations as above). Consider an I-neighborhood of a Kt-point. 
By definition lim,,l N(r, 0, +) = co. Then (compare the proof of 
Theorem 12) C c (< ,  a,) = oo. So C ei (z, a,) = co, where c& is the 

' Without loss of generality we may assume that < = 0 is not a zero of &<). 
It CM be constructed because N ( I . 0 ,  +) c ca which is equivalent to x(l - lavl)  < co. 
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Green function of A. Then all the more CE, Gi(z, a,) = oo. Let us 
map conformally the region bounded by one Jordan curve y onto the 
halfplane 317 > 0, 7 = pei', q(oo) = oo. Then Ern,, G(q(z), a,) = oo, 
where a, = ?(a,). But G(7, a,) = ln](q - &)/(q - av)l. Thus 

from which ([I], sect. 176, 190) follows that 

lim sup lnn,(p, oo) 2 1, 
P-+- In P 

where n,(p, m) is the number of poles of Green functions in the half- 
disk 377 > 0, (771 5 p. By the Ahlfors Distortion Theorem ([I], sect. 78, 
79). 

and so 

In view of (17) for some sequence ri + co we have 

lnn, ( K ~ ~ ~  (n[ --%) rO(r) .m) 2 (1 - E ~ ) ~ J ~ ~ ~  rG(r) '  Ei + 0, 

Combined with (7) this gives 

In T(r) n + I 
~ ' ~ 4 0 ,  limsup-2-. 

r+OO l n r  2 

So if for some &neighborhood the function +(c) has unbounded 
characteristic, the estimate for the order of w = f (z) can be improved 
by 112 in any case, independently of whether N(1.0, @) < oo or 
N(1, 0, +) = oo; in the case when there are several such neighborhoods 
the first case permits to obtain a more precise estimate. 
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Remark I. Theorem 6 says that liminfr,,r-n/2~(r, f )  > 0 while in 
Theorem 13 only lim sup,,, In T(r, f )/ In r is estimated. 

Remark 2. By Theorem 5 in every &-neighborhood where he(<) > 0 
there exists at least one K-point. On the other hand, if for some Z- 
neighborhood the function G(<) has unbounded characteristic then, as 
can be easily shown by an example, in this neighborhood there may 
be no critical points at all. Nevertheless the entire proof of Theorem 13 
is still applicable, so in its formulation a K'-point may be replaced by 
K'-neighborhood. 

In conclusion I express my gratitude to Prof. L. I. Volkovyskii for his 
scientific supervision. 
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Added by the translator 
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