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GREEN’S FUNCTION AND ANTI-HOLOMORPHIC DYNAMICS

ON A TORUS

WALTER BERGWEILER AND ALEXANDRE EREMENKO

Abstract. We give a new, simple proof of the fact recently discovered by

C.-S. Lin and C.-L. Wang that the Green function of a torus has either three
or five critical points, depending on the modulus of the torus. The proof uses
anti-holomorphic dynamics. As a byproduct we find a one-parametric family

of anti-holomorphic dynamical systems for which the parameter space consists
only of hyperbolic components and analytic curves separating them.

1. Introduction

Green’s function on a torus T is defined as a solution of the equation

∆G = −δ +
1

|T |
,

normalized so that ∫

T

G = 0.

Here δ is the delta-function, and |T | is the area of T with respect to a flat metric.
We write the torus T as T = C/Λ with a lattice

Λ = {mω1 + nω2 : m,n ∈ Z},

where τ = ω2/ω1 satisfies Im τ > 0. Recently C.-S. Lin and C.-L. Wang [24]
discovered that Green’s function has either three or five critical points, depending
on τ . It is surprising that this simple fact was not known until 2010. In [9, 10] they
study the corresponding partition of the τ -half-plane. Their proofs are long and
indirect, using advanced non-linear PDE theory. Our paper is motivated by the
desire to give a simple proof of their result that Green’s function has either three
or five critical points and to give a criterion for τ distinguishing which case occurs.

We have (see [24])

G(z) = −
1

2π
log |θ1(z)|+

(Im z)2

2 Im τ
+ C(τ),

where θ1 is the first theta-function. Here and in the following we use the notation
of elliptic functions as given in [1, 18]. We note that the notation in [3, 32, 33] is
different, see the remark following the theorem below.

Critical points of G are solutions of the equation

(1) ζ(z) + az + bz = 0,
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where the constants a and b are uniquely defined by the condition that the left
hand side is Λ-periodic. With ζ(z + ωj) = ζ(z) + ηj for j = 1, 2 we thus have

η1 + aω1 + bω1 = 0 and η2 + aω2 + bω2 = 0.

With the Legendre relation η1ω2 − η2ω1 = 2πi we obtain

(2) b = −
π

|ω1|2 Im τ
and a = −

bω1

ω1
−
η1
ω1

=
π

ω2
1 Im τ

−
η1
ω1
.

So the problem is to determine the number of solutions of (1) where a and b are
given by (2).

Theorem. The equation (1) has three solutions in T if ejω
2
1 + η1ω1 = 0 or

(3) Im

(
2πi

ejω2
1 + η1ω1

− τ

)
≥ 0

for some j ∈ {1, 2, 3} and it has five solutions otherwise.

Here, as usual, e1 = ℘(ω1/2), e2 = ℘((ω1 + ω2)/2) and e3 = ℘(ω2/2). An
elementary computation shows that the condition in the theorem is equivalent to

min
1≤j≤3

∣∣∣∣
ejω

2
1 + η1ω1

π
Im τ − 1

∣∣∣∣ ≤ 1

We note that ejω
2
1 and η1ω1 depend only on τ = ω2/ω1. We may restrict to the

case that ω1 = 1 so that τ = ω2. Then (3) simplifies to

Im

(
2πi

ej + η1
− τ

)
≥ 0.

As mentioned, a different notation for elliptic functions is used in [3, 32, 33].
There the periods are denoted by 2ωj and the definition of η1 also differs by a
factor 2. Thus in that terminology (3) takes the form

Im

(
πi

2(ejω2
1 + η1ω1)

− τ

)
≥ 0.

Figure 1 shows (in gray) the regions in the τ -plane where Green’s function has 5
critical points; that is, the set of τ -values where (3) fails for all j. The range shown
is |Re τ | ≤ 1 and 0.15 ≤ Im τ ≤ 2.15.

The standard fundamental domain consisting of those τ which satisfy the in-
equalities Im τ > 0, −1/2 < Re τ ≤ 1/2 and |τ | ≥ 1, with |τ | = 1 only if Re τ ≥ 0,
is in the upper middle of the picture. Its images under the modular group are also
shown.

Our proof is based on Fatou’s theorem from complex dynamics. Originally Fa-
tou’s theorem was proved to estimate from above the number of attracting cycles of
a rational function. Then it was extended to more general classes of functions. The
most surprising fact is that Fatou’s theorem can be used sometimes to estimate the
number of solutions of equations in settings where dynamics is not present. This
was first noticed in [12]; the contents of this unpublished preprint is reproduced
in [16, 8]. The paper [6] shows that Fatou’s theorem can be used to prove under
some circumstances the existence of critical points of a meromorphic function. In
the papers [22, 20, 21, 19] Fatou’s theorem was used to obtain upper estimates of
the numbers of solutions of equations of the form

z = r(z),
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Figure 1. The regions given by (3) in the τ -plane.

with a meromorphic function r; this permitted to prove a conjecture in astronomy
[20, 21]. In the recent work [23], a topological classification of quadrature domains
is obtained with a method based on Fatou’s theorem.

As mentioned, Fatou [13, §30] stated his result originally only for rational func-
tions. As pointed out for example in [5, Theorem 7], the proof extends to functions
meromorphic in C.

To state the version of Fatou’s theorem that we need, we recall some definitions.
Let S and T be Riemann surfaces and let f : S → T be holomorphic. A point
c ∈ S is called a critical if f ′(c) = 0; this condition does not depend on the local
coordinates.

We say that a curve γ : [0, 1) → S escapes if for every compact subset K in S
there exists t0 ∈ (0, 1) such that γ(t) 6∈ K for t ∈ [t0, 1). A curve γ : [0, 1) → S
is called an asymptotic curve of f if γ escapes and the limit limt→1 f(γ(t)) exists
and is contained in T . This limit is called an asymptotic value of f . The following
result is due to Hurwitz [17].

Hurwitz’s Theorem. If a holomorphic map between two Riemann surfaces has

no critical points and no asymptotic curves, then it is a covering.

This result can be deduced from the fact that covering maps are characterized
by the path-lifting property: for every curve γ : [0, 1] → T and every z0 ∈ f−1(γ(0))
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there exists a unique curve γ∗ : [0, 1] → S such that γ = f ◦ γ∗; see, for example,
[2, Theorem 9.1], where the term “complete covering” is also used. Note also
that critical points and asymptotic curves correspond to singularities of the inverse
function; see [28, §XI.1].

A Riemann surface S is called hyperbolic if its universal covering is the unit
disk [2]. A hyperbolic Riemann surface is equipped with the hyperbolic metric.
We denote by λS(z)|dz| the length element of the hyperbolic metric in S. The
invariant form of the Schwarz lemma (see, for example, [31, Proposition I.2.8 (a)],
[27, Theorem 2.11] or [4, Theorem 10.5]) says that a holomorphic map f : S → T
between hyperbolic Riemann surfaces S and T satisfies λT (f(z))|f

′(z)| ≤ λS(z),
with strict inequality for all z, unless f is a covering, in which case the equality
holds for all z.

For a holomorphic map f : S → S a point z0 ∈ S is called fixed if f(z0) = z0, and
for such a point f ′(z0) is called the multiplier. It is easy to verify that the multiplier
does not depend on the local coordinate. A fixed point is called attracting, neutral
or repelling depending on whether the modulus of its multiplier is less than, equal
to or greater than 1, respectively.

Fatou’s Theorem. Let S be a hyperbolic Riemann surface and let f : S → S be a

holomorphic map with an attracting fixed point z0 ∈ S. Then f has a critical point

or an asymptotic curve in S. Moreover, fn → z0 locally uniformly in S.

Proof. If f has no critical points and no asymptotic curves, then f is a covering.
The Schwarz lemma yields λS(z0) = λS(f(z0))|f

′(z0)| = λS(z0)|f
′(z0)| and thus

|f ′(z0)| = 1, contradicting the assumption that |f ′(z0)| < 1. The second statement
also follows from the Schwarz lemma. �

In applications to holomorphic dynamics, S is the immediate attraction basin of
an attracting fixed point z0; that is, the component of the Fatou set which contains
z0. It then follows that the immediate attracting basin contains a critical point or
an asymptotic curve.

2. Proof of the Theorem

To prove the theorem we rewrite (1) as a fixed point equation

(4) z = −
1

b

(
ζ(z) + az

)
=: g(z),

so g is an anti-meromorphic function in the plane. As the left hand side of (1) is
Λ-periodic, we conclude from (4) that

(5) g(z + ω) = g(z) + ω, ω ∈ Λ.

The function g does not map the plane into itself because it has poles, so the
equation (5) does not permit to define a map of the torus T into itself. To remedy
this, we consider the set P0 of poles of g. For n ≥ 1 we define inductively Pn =
g−1(Pn−1). Then all iterates of g are defined on the set C\P∞, where P∞ =⋃∞

n=0 Pn. Let J be the closure of P∞. Then the iterates of g form a normal family
in C\J , and this set is completely invariant under g. Thus – with an obvious
extension of these concepts from holomorphic functions to anti-holomorphic ones –
we call J the Julia set and its complement F = C\J the Fatou set of g. The Fatou
set is thus the maximal open subset of the plane such that g(F ) ⊂ F . Evidently,
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F is Λ-invariant, so the map g : F → F descends to a map which is defined on an
open subset of the torus T and maps this open subset to itself.

Let π : C → C/Λ = T be the projection map, F̃ = π(F ), and g̃ : F̃ → F̃ the

induced map which satisfies g̃ ◦π = π ◦ g. The Riemann surface F̃ is a subset of the
torus, and it is hyperbolic because its complement is infinite.

We apply the terminology attracting, neutral and repelling also to fixed points
z0 of anti-holomorphic maps f , considering ∂f(z0) as the multiplier. Notice that

(6) ∂g(z) = −
1

b
(ζ ′(z) + a) =

1

b
(℘(z)− a).

To obtain holomorphic dynamics instead of the anti-holomorphic one, we consider

the second iterates h = g2 and h̃ = g̃2. Then we have

(7) h̃ ◦ π = π ◦ h.

Images of fixed points of g and h in F under π are fixed points of g̃ and h̃, respec-
tively. By the chain rule, we have

(8) h′ = ((∂g) ◦ g) · ∂g = ((∂g) ◦ g) · ∂g.

For a fixed point z0 of g we thus obtain h′(z0) = |∂g(z0)|
2. Even though we will

not need this fact, we observe that the multiplier of h at a fixed point of g is always
a non-negative real number.

In order to apply Fatou’s theorem to h̃ : F̃ → F̃ , we have to consider the critical

points and asymptotic curves of h̃.

Lemma 1. The map h̃ : F̃ → F̃ has no asymptotic curves.

Proof. We prove this by contradiction. Let γ̃ be an asymptotic curve of h̃ in F̃ .

Let γ be some lifting of γ̃ in F ; that is π ◦ γ = γ̃. As γ̃ escapes from F̃ , the curve

γ escapes from F . By assumption, we have h̃(γ̃(t)) → p̃ as t → 1, for some p̃ ∈ F̃ ,

so h̃(π(γ(t))) → p̃ as t → 1. In view of (7) this yields π(h(γ(t))) → p̃ as t → 1.
Because π is a covering we conclude that

(9) h(γ(t)) → p for some p ∈ F,

with π(p) = p̃. Thus γ is an asymptotic curve of h in F .
Suppose that γ has a limit point q ∈ C as t→ 1; that is, there exists a sequence

(tj) tending to 1 such that γ(tj) → q. Then q ∈ ∂F ⊂ J . If q is neither a
pole of g nor a preimage of such a pole under g, then h is holomorphic at q, with
h(q) ∈ J by the complete invariance of the Julia set. On the other hand, we have
h(q) = limj→∞ h(γ(tj)) = p ∈ F , which is a contradiction. If q is the preimage of
a pole of g, then q is a pole of h. Thus h(q) = ∞, contradicting again h(q) = p.

This shows that the finite limit points of γ are poles of g. As the poles form
a discrete subset of C we actually see that if γ has a finite limit point q, then
γ(t) → q as t → 1 and thus σ(t) := g(γ(t)) → ∞ as t → 1. On the other hand,
g(σ(t)) = h(γ(t)) → p as t → 1. Let E be a Λ-invariant set consisting of disjoint
disks around the poles of g. It follows from (5) that

g(z) → ∞ as z → ∞, z ∈ C\E.

This is a contradiction to σ(t) → ∞ and g(σ(t)) → p as t→ 1. We have thus shown
that γ has no finite limit points, meaning that γ(t) → ∞ as t→ 1.
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In order to show that this is impossible we note again that the singularities of h
are the poles of g and their preimages under g. Since these preimages accumulate
only at the poles of g (and at ∞) there exists a Λ-invariant set E′ ⊂ C consisting
of disjoint disks which contains all singularities of h. Since h satisfies

h(z + ω) = h(z) + ω, ω ∈ Λ,

by (5), it follows that

h(z) → ∞ as z → ∞, z ∈ C\E′.

As before this is incompatible with γ(t) → ∞ and h(γ(t)) → p as t → 1. This
completes the proof of the lemma. �

We consider the equivalence relation on F̃ defined by z ∼ z′ if h̃n(z) = h̃m(z′)
for some non-negative integers m and n. The equivalence classes are called the

grand orbits. We note that if the sequence (h̃n(z)) converges for some z ∈ F̃ , then

for all z′ in the grand orbit of z the sequence (h̃n(z′)) converges to the same limit.
We call this the limit of the grand orbit.

Lemma 2. The set of critical points of h̃ belongs to at most 4 grand orbits under h̃.

Proof. By (6), the equation ∂g(z) = 0 is equivalent to ℘(z) = a, and has two
solutions modulo Λ which define points c and −c on T . Here and in other similar
places we denote by −c the point which corresponds to c by the conformal involution

of the torus. If any of the points c and −c is in F̃ , then it is a zero of h̃′. By (8) the

other zeros of h̃′ are g̃−1(±c) = ±g̃−1(c). Even though this is an infinite set on T ,

the critical points of h̃′ are thus contained in at most 4 grand orbits represented by
c, −c, g̃(c) and −g̃(c). �

Lemma 3. Let z0 be a fixed point of g̃. If h̃n(z) → z0 as n→ ∞ for some z, then

h̃n(g̃(z)) → z0.

Proof. We have h̃n ◦ g̃ = g̃ ◦ h̃n for all n ∈ N. Since h̃n(z) → z0 this yields

h̃n(g̃(z0)) = g̃(h̃n(z)) → g̃(z0) = z0. �

Applying Fatou’s theorem to the map h̃ : F̃ → F̃ , we deduce that h̃ and thus

g̃ has at most two attracting fixed points. If F̃ is disconnected, we apply Fatou’s
theorem separately to each component that contains an attracting fixed point. As
the π-image of an attracting fixed point of g is an attracting fixed point of g̃ we
obtain

Lemma 4. The function g has at most two attracting fixed points, modulo Λ.

The map φ : T → C, z 7→ z − g(z), is well defined by (5). Let Jφ = 1− |∂g|2 be
the Jacobian determinant of φ. Then D+ = {z ∈ T : Jφ(z) > 0} is the set where φ
preserves the orientation and D− = {z ∈ T : Jφ(z) < 0} is the set where φ reverses
the orientation. As φ has one pole, a point w of large modulus has one preimage
on T and the map is reversing orientation at this preimage. We conclude that the
degree of φ equals −1; see [26, §5] for the definition of the degree.

Suppose first that all zeros of φ are in D+ ∪D−. Equivalently, g has no neutral
fixed points. Denote by N+ and N− the numbers of zeros of φ in D+ and D−
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respectively. Then N+ − N− equals the degree of φ so that N+ − N− = −1 and
thus

(10) N− = N+ + 1.

For the number N = N+ +N− of fixed points of g in T we thus find that

(11) N = 2N+ + 1.

Since Jφ = 1− |∂g|2, the zeros of φ in D+ are attracting fixed points of g while
the zeros of φ in D− are repelling fixed points of g. Thus Lemma 4 yields that

(12) N+ ≤ 2.

It follows from (11) and (12) that N ≤ 5.
On the other hand, since φ is odd and Λ-periodic it easily follows that that the

half-periods ω1/2, ω2/2 and ω3/2 = (ω1 + ω2)/2 are zeros of φ. Equivalently, they
are fixed points of g. Thus we have N ≥ 3. Altogether, since N is odd by (11), it
follows that N = 3 or N = 5.

It remains to determine the criterion distinguishing the cases. Suppose first that
all three half-periods are in D−; that is, they are repelling fixed points of g. Then
N− ≥ 3. This yields that N− = 3 and N+ = 2 so that N = 5 by (10) and (12).
Suppose now that one half-period, say ωj/2, is not in D− and thus in D+. Thus
ωj/2 is an attracting fixed point of g and hence attracts a critical orbit by Fatou’s
theorem. However, since g is odd we see that ωj/2 in fact attracts both critical
orbits. Thus, by Fatou’s theorem, there are no other attracting fixed points. Thus
N+ = 1 and hence N = 3 in this case.

We see that N = 3 if and only if there exists j ∈ {1, 2, 3} such that ωj/2 is an

attracting fixed point of g; that is, |∂g(ωj/2)| < 1. Using (6) this takes the form

(13) min
1≤j≤3

∣∣∣
ej
b
−
a

b

∣∣∣ < 1.

Now (2) yields

a

b
= −

ω1

ω1
−

η1
bω1

= −
ω1

ω1
+
η1|ω1|

2 Im τ

ω1π
=
ω1

ω1

(
−1 +

η1ω1 Im τ

π

)

and
ej
b

= −
ej |ω1|

2 Im τ

π
= −

ω1

ω1

ejω
2
1 Im τ

π
.

Substituting the last two equations in (13) yields
∣∣∣∣
ejω

2
1 + η1ω1

π
Im τ − 1

∣∣∣∣ < 1.

This is equivalent to strict inequality in (3). This completes the proof of the theorem
in the case that all zeros of φ are in D+ ∪D−.

To deal with the case where this condition is not satisfied, we note that in the
above arguments we may replace φ(z) by ψ(z) = φ(z) − w for any w ∈ C. Noting
that φ and ψ have the same Jacobian determinant we conclude that whenever all w-
points of φ are in D+∪D−, then φ has either three or five w-points in T . Moreover,
there are three w-points if and only if one them is in D+.

We will use the following result [7, Proposition 3].
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Lemma 5. Let D ⊂ C be a domain and let f : D → C be a harmonic map. Suppose

that there exists m ∈ N such that every w ∈ C has at most m preimages. Then the

set of points which have m preimages is open.

Suppose now that φ has a zero in T\(D+ ∪ D−). Then there are arbitrarily
small w such that φ has a w-point in D+. Since for such w the function φ has three
w-points, it follows from Lemma 5 that φ has three zeros in T . These zeros are the
half-periods and we see that we have equality in (3). This completes the proof of
the theorem.

Remark 1. The quantities ejω
2
1 + η1ω1 occurring in (3) have the following repre-

sentations via theta functions, see [32, p. 44]:

e1ω
2
1 + η1ω1 = −

ϑ′′2(0)

ϑ2(0)
, e2ω

2
1 + η1ω1 = −

ϑ′′0(0)

ϑ0(0)
, e3ω

2
1 + η1ω1 = −

ϑ′′3(0)

ϑ3(0)
.

The series for theta functions converge fast and provide a convenient way to com-
pute Figure 1.

Let

Fj(τ) =
2πi

ejω2
1 + η1ω1

− τ

so that (3) takes the form ImFj(τ) ≥ 0. It seems that Fj maps the components
of the set of all τ in the upper half-plane where ImFj(τ) > 0 univalently onto the
upper half-plane, but we have not been able to prove this.

Remark 2. Lin and Wang [24, Theorems 1.6 and 1.7] pay special attention to the
case that τ = 1/2+ ib, in which case Green’s function has five critical points if and
only if b is outside a certain interval [b0, b1] where b0 ≈ 0.35 and b1 ≈ 0.71.

Here we note that the constants b0 and b1 are related to the so-called one-
ninth constant Λ occurring in approximation theory; see [14, Section 4.5] for the
definition and properties of this constant. As noted there, this constant was already
computed by Halphen [15, p. 287] to six digits. It turns out that Λ = e−2πb0 =
e−π/(2b1). The numerical values are Λ = 0.10765391 . . . , b0 = 0.35472989 . . . and
b1 = 0.70476158 . . . .

To prove the above relation between these constants we note first that e1ω
2
1 +

η1ω1 = 0 if and only if ϑ′′2(0) = 0 and thus if
∞∑

k=0

(2k + 1)2hk(k+1) = 0 where h = eiπτ .

For τ = 1/2 + ib with b ∈ R we have h = eiπ/2−πb and hence

hk(k+1) = exp

(
(iπ − 2πb)

k(k + 1)

2

)
= (−x)k(k+1)/2 with x = e−2πb.

For τ = 1/2 + ib the condition that e1ω
2
1 + η1ω1 = 0 is thus equivalent to

∞∑

k=0

(2k + 1)2(−x)k(k+1)/2 = 0.

The smallest positive solution of the last equation is the one-ninth constant Λ;
see [14, Section 4.5]. Since x = e−2πb we deduce that Λ = e−2πb0 .

The modular group leaves the sets where Green’s function has five or three
critical points invariant. The transformation T (z) = (z − 1)/(2z − 1) satisfies
T (1/2 + ib) = 1/2 + i/(4b). This implies that b1 = 1/(4b0) and Λ = e−π/(2b1).
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Remark 3. Figure 2 shows the Julia sets of the functions g corresponding to the
square and the hexagonal lattice. The standard fundamental domains are marked

ω2

2
ω1+ω2

2

ω1

2

ω2

2

ω1+ω2

2

ω1

2

Figure 2. Julia sets corresponding to τ = i and τ = eiπ/3.

by thick lines and the half-periods are marked by circles. For the square lattice,
the half-periods are the only fixed points of g, with (ω1 + ω2)/2 attracting and the
two other ones repelling. For the hexagonal lattice, all half-periods are repelling
and there are the attracting fixed points (ω1 + ω2)/3 and 2(ω1 + ω2)/3 marked by
crosses.

Figure 3 shows the Julia set of the function corresponding to τ = 1/2 + ib1.
The half-period ω1/2 is a parabolic fixed point with two petals. The two other
half-periods are repelling fixed points.

Comment. Besides the application in [22, 20, 21, 19], anti-holomorphic dynamics
were studied for its own sake in [11, 30, 29] and elsewhere. In these papers, the
iteration of the anti-holomorphic map z2 + c was investigated. The bifurcation
diagram in the c-plane for this map is called the Mandelbar set or Tricorn. It
was noticed that the neutral cycle appears on a whole arc of the boundary of the
hyperbolic component.

In the case we considered, a striking new phenomenon occurs: the neutral cycle
occurs everywhere on the boundary of the hyperbolic component.

To be more precise, let H be the upper half-plane, so τ ∈ H. Let X be the
maximal open set of τ where G has three critical points, and Y = H\X. For τ
in X, the critical orbits of g = gτ tend to an attracting fixed point, while for τ ∈ Y
they tend to two attracting fixed points. The open sets X and Y and their common
boundary which is a piecewise analytic curve exhaust the whole parameter space!
So a generic gτ in our family has hyperbolic dynamics in a trivial way.

Such a situation occurs in holomorphic dynamics only in trivial cases [25, The-
orem 2.2], and was not encountered so far in anti-holomorphic dynamics.

The point in a hyperbolic component at which the multiplier is zero is called the
center of this hyperbolic component. Computation shows that the centers of X and
Y in the standard fundamental domain are τ = i and τ = e2πi/3, corresponding to
the square and hexagonal lattices respectively.
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ω2

2

ω1+ω2

2

ω1

2

Figure 3. Julia set corresponding to τ = 1/2 + ib1.

We thank C.-S. Lin for his useful comments on this paper.
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