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Abstract

We construct univalent functions in the unit disc, whose coefficient
sequences (an) have arbitrarily long intervals of zeros, and at the same
time arbitrarily long intervals where |an| > nεn holds, (εn) being an
an arbitrary prescribed sequence of positive numbers tending to zero.
Furthermore we show that the initial interval of coefficients of such
a function can be prescribed to be any interior point of a coefficient
region.

1991 Mathematics Subject Classification: 30C50, 30C70.

We consider the class S of normalized univalent functions

f(z) = z + a2z
2 + . . .

in the unit disc U. It is known [2, p.15] that, when f ∈ S, there always
exists a limit

α(f) := lim
n→∞

|an|/n ∈ [0, 1].

Thus if there is an infinite subsequence of zero coefficients, we have α(f) = 0.
We will show in this paper that the last conclusion is best possible: the
sequence (an) may have infinitely many long gaps and simultaneously long
intervals where |an| > nεn. Here (εn) is any prescribed sequence such that
(εn)→ 0.

For any power series of the form f(z) = z + a2z
2 + . . . we put

σn(f) := (a2, . . . , an) ∈ Cn−1.
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Then the n-th coefficient region Vn ∈ Cn−1 is defined by

Vn := {σn(f) : f ∈ S}.

Theorem 1. Suppose that a ∈ intVN , (εn)→ 0, εn > 0, and let an infinite
set E of disjoint intervals of integers be given. Then there exists f in S,

f(z) = z + a2z
2 + . . .

with the following properties:
(i) σN (f) = a,
(ii) an = 0, n ∈ I for infinitely many intervals I in E, and
(iii) |an| > nεn, n ∈ I for infinitely many intervals I in E.
If a ∈ intVN ∩RN−1 then the function f with the properties (i)-(iii) can be
chosen with real coefficients.

Remark. If the coefficients an are real then (iii) can be strengthened to
an > nεn, n ∈ I. We don’t know whether there is a function f in S with all
non-negative coefficients and properties (ii) and (iii).

The main ingredient of our proof is the following

Proposition 1. Let f in S be a polynomial univalent in some neighborhood
of the closed unit disc U, and N an integer. Then there exists F in S, such
that α(F ) > 0,

F (z) = f(z) +O(zN+1), as z → 0 (1)

and the image F (U) is not dense in C. If f is real1 then F is also real.

Proof. The proofs for the cases of real f and general f are very similar. We
first consider the case of real f and then indicate the changes necessary for
the general case.

It follows from our assumptions that Γ := f(∂U) is an analytic Jordan
curve symmetric with respect to R. Furthermore, Γ ∩R = {f(−1), f(1)}
and f(−1) < 0 < f(1) because f(z) > 0 for 0 < z < 1. It is easy to see
that there is a positive ∆ with the following property: for δ ∈ (0,∆) the
half-strip

Π(δ) := {z : |=z| < δ,<z > 0}
intersects Γ in a single simple arc γδ containing f(1). We write

M := max{|z| : z ∈ Γ}, A := {z : |z| > M + 1, | arg z| < π}
1i. e. has real coefficients
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and
Dδ := f(U) ∪Π(δ) ∪A, for δ ∈ (0,∆). (2)

We also define D0 := f(U). The region Dδ is simply connected. We consider
the conformal homeomorphism fδ : U → Dδ, normalized by fδ(0) = 0 and
f ′δ(0) > 0. Notice that fδ is real because Dδ as well as our normalization are
symmetric. By the Caratheodory Convergence Theorem [1, p.78]

fδ → f as δ → 0+ (3)

uniformly on compact subsets of U.
We put Kδ := f−1

δ (Dδ\D0). Then we have Kδ → {1} as δ → 0+. This
follows for example from [2, Lemma 7.1, p. 198]. Thus we may assume that
our ∆ is so small that

Kδ ⊂ U+ := {z ∈ U : <z > 0} for δ ∈ (0,∆). (4)

Thus fδ maps the left half of the unit circle, {z ∈ ∂U : <z < 0}, into the
analytic curve Γ. Thus fδ has an analytic continuation to a region

Gε := U ∪U−ε, where U−ε := {z − ε : z ∈ U}. (5)

Here 0 < ε < 1/2 and ε depends of f and ∆ but is independent of δ.
As D0 ⊂ Dδ when δ ∈ (0,∆) the function

gδ := f−1
δ ◦ f : U→ U (6)

is well defined, real, univalent and in view of (3) we have

gδ → id as δ → 0 + . (7)

Now we need the following lemma, where we use for convenience a mod-
ified notation: for a power series of the form ψ(z) = a1z + a2z

2 + . . . we
denote by σ∗N (ψ) the vector (a1, . . . , aN ) of the first N coefficients.

Lemma 1. Given a positive integer N and a positive ε there exists a neigh-
borhood of the origin V in RN and a map ψ : U×V → C with the following
properties:
(i) for every λ in V ψλ := ψ(., λ) : U→ C is univalent, real and satisfies
ψλ(0) = 0 and

U+ ⊂ ψλ(U) ⊂ Gε, (8)

where U+ is defined in (4) and Gε in (5);
(ii) the image of the map b : V → RN defined by b(λ) = σ∗N (ψλ) is a
neighborhood of the point (1, 0, . . . , 0) in RN .
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Proof. We define φ(t) = exp{−(1 − t2)−1} for t ∈ (−1, 1) and φ(t) = 0 for
real t, |t| ≥ 1. Then φ is an infinitely differentiable function. Next we fix N
arbitrary points tn, 2π/3 < t0 < t1 < . . . < tN−1 < π, and define functions
φj(t) := Mφ(M(t − tj)), t ∈ R, where M is a positive parameter to be
specified now. Notice that φj(t) → cδ(t − tj) as M → ∞ in the sense of
distributions, where c =

∫
φ(t)dt is a positive absolute constant. We claim

that M can be chosen in such a way that

JM := det

(∫ π

0
φn(t) cosmtdt

)N−1

m,n=0

6= 0. (9)

To prove our claim we note that

M

∫ π

0
φ(M(t− tj)) cosmtdt→ c cosmtj, as M →∞

for 0 ≤ j ≤ N−1 and for every integer m. It follows that, as M →∞, JM
has the limit

J∞ = cN det (cosmtn)N−1
m,n=0 = c1

∏
n<m

(cos tm − cos tn) 6= 0,

where c1 = cN2N(N−1)/2. In fact cosmtn = Tm(cos tn) where

Tm(z) = 2m−1zm + . . .

is the Tchebychev polynomial of degree m. Thus c−NJ∞ is a polynomial of
degree N(N − 1)/2 in the cos tj . Comparing coefficients of
cos t1 cos2 t2 . . . cosN−1 tN−1 we obtain our result.

This shows that if M is large enough then JM 6= 0, and we fix such a
value of M (M depends on N from the assumptions of Lemma 1, and on
the choice of (tn)). We also assume that M is so large that all the functions
φj are equal to 0 for |t| ≤ 2π/3.

Now for every λ in RN we define

φλ(t) :=
N−1∑
j=0

λj(φj(t) + φj(−t)), (10)

so that φλ is an even smooth function equal to 0 for |t| ≤ 2π/3. Further we
write

ψλ(z) := z exp

∫ π

−π

eit + z

eit − zφ
λ(t) dt. (11)
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This function ψλ is analytic in U. It is real because φλ is even. If we write

ψλ = z exp(uλ + ivλ),

then uλ and vλ are conjugate harmonic functions in U. The function uλ
extends continuously to ∂U and uλ(eit) = 2πφλ(t) is a smooth function of
t. It follows that vλ also extends continuously to ∂U and t 7→ vλ(eit) is also
a smooth function. Both uλ and vλ depend linearly on λ. Thus there exists
a neighborhood V ′ of the origin in RN such that∣∣∣∣ ddtvλ(eit)

∣∣∣∣ < 1, when |t| ≤ π and λ ∈ V ′.

It follows that argψλ(eit) = t+vλ(eit) is strictly monotone, and its increment
as t ∈ [−π, π] is equal to 2π. This implies that ψλ is univalent (and in fact
starlike) for λ ∈ V ′ [1, p.41]

The restriction of φλ to [−2π/3, 2π/3] is zero, so that uλ(eit) = 0 and
thus |ψλ(eit)| = 1 for |t| < 2π/3. In addition, ψλ → id as λ → O, where O
is the origin in RN , uniformly in U. Thus there is a neighborhood V of the
origin such that V ⊂ V ′, and (8) holds for λ ∈ V . This proves statement (i)
of Lemma 1.

To prove statement (ii) we set

∞∑
n=0

cn(λ)zn := log
ψλ(z)

z
= uλ(z) + ivλ(z). (12)

Then (10) and (11) imply the following expressions for the coefficients cn:

c0(λ) = 2
N−1∑
n=0

λn

∫ π

−π
φn(t)dt (13)

and

cm(λ) = 4
N−1∑
n=0

λn

∫ π

−π
φn(t) cosmtdt, 1 ≤ m ≤ N − 1. (14)

Thus the vector c(λ) := (c0(λ), . . . , cN−1(λ)) depends linearly on the vector
λ and the determinant of this linear transformation is a positive multiple of
the determinant JM in (9). Our choice of the parameter M guarantees that
this linear transformation is non-singular. Thus c(V ) contains a neighbor-
hood of the origin in RN .
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To investigate the dependence of the coefficients of ψλ on λ we first notice
that they are polynomials in the λj. This follows from the expression

ψλ(z) = z
(
b0(λ) + b1(λ)z + . . .+ bN−1(λ)zN−1 + . . .

)
= z exp(c0(λ) + c1(λ)z + . . .+ cN−1(λ)zN−1 + . . .).

(15)

Differentiation gives

∂bm
∂cn

=
∂

∂cn

∣∣∣∣
c=O

(m!)−1 ∂
mψλ

(∂z)m

∣∣∣∣
z=0

= (m!)−1 ∂m

(∂z)m

∣∣∣∣
z=0

∂ψλ
∂cn

∣∣∣∣∣
c=O

= δm,n,

(16)
where δm,m = 1 and δm,n = 0 if m 6= n. Thus the map λ 7→ c(λ) 7→ b(λ)
is analytic and has non-zero Jacobian at the origin and thus by the Inverse
Function Theorem b(V ) contains a neighborhood of the point (1, 0, . . . , 0).
This proves (ii) in Lemma 1.

2

We apply Lemma 1 with N given in Proposition 1 and ε defined in (5)
to obtain a neighborhood V ′ = b(V ) of the point (1, 0, . . . , 0) ∈ RN . Next,
using (7) we choose δ in (0,∆) and so small that σ∗N (gδ) ∈ V ′. This means
that we can choose λ in V such that

b(λ) = σ∗N (ψλ) = σ∗N (gδ), (17)

which is the same as ψλ(z) = gδ(z) +O(zN+1), z → 0.
Now we put

F = fδ ◦ ψλ (18)

and it remains to verify that this F satisfies the requirements of Proposi-
tion 1.

First of all, F is univalent in U because ψλ is univalent in U, satisfies
(8), and fδ is univalent in Gε defined in (5).

Second, the definitions (6) and (18) together with (17) imply

σ∗N (F ) = σ∗N (f)

which is the same as (1).
Finally we have to show that α(F ) > 0. It is easy to see from the explicit

description of the image domain Dδ = fδ(U) in (2) that fδ has a double pole
at the point 1, and is bounded in U outside a neighborhood of the point 1.
Using the standard notation

M(r, h) = max{|h(z)| : |z| ≤ r}
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we conclude that

M(r, fδ) ∼ c(1− r)−2 as r→ 1− (19)

with a positive constant c. Now, in view of (8) ψλ maps an open arc of the
unit circle containing the point 1 into a similar arc. So by the Symmetry
Principle ψλ has an analytic continuation to the point 1. Thus

1− ψλ(z) = ψ′λ(1)(1 − z) +O((1− z)2), as z → 1, and ψ′λ(1) > 0.

Together with (19) and (18) this implies that

M(r, F ) ∼ c1(1− r)−2 as r→ 1− (20)

where c1 > 0. According to [2, Theorem 1.12] this implies that α(F ) > 0.

It remains to consider the case in Proposition 1 when f is not real. The
proof in this case has to be modified in two places.

1. Construction of the region Dδ in the beginning of the proof of Propo-
sition 1. Γ = f(∂U) is a Jordan curve, so the point f(1) in ∂Γ is acces-
sible from the unbounded component of C\Γ. Consider a simple curve γ
which does not intersect Γ and ∂A, except at the endpoints: one endpoint
is f(1) ∈ Γ another is the point M + 1. A δ-neighborhood of this curve γ
will play the role of Π(δ) in (2).

2. We need the following version of Lemma 1.

Lemma 1′.Given a positive integer N and ε > 0, there exists a neighborhood
of the origin V in R2N−1 and a map ψ : U × V → C with the following
properties:
(i) for every λ in V ψλ(., λ) : U→ C is univalent, satisfies (8), ψλ(0) = 0,
and ψ′λ(0) is real.
(ii) the image of the map a : V → R×CN−1, defined by a(λ) = σ∗N (ψλ) is
a neighborhood of the point (1, 0 . . . , 0) in R×CN−1.

Proof. We fix 2N −1 points tj, 2π/3 < t1 < . . . < t2N−1 < π. The following
determinant plays a role similar to that of J∞ in the proof of Lemma 1.∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1
eit1 . . . eit2N−1

e−it1 . . . e−it2N−1

. . . . . . . . .

e(N−1)it1 . . . e(N−1)it2N−1

e−(N−1)it1 . . . e−(N−1)it2N−1

∣∣∣∣∣∣∣∣∣∣∣∣
6= 0. (21)
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We can see this by multiplying the j-th column by e(N−1)itj for
1 ≤ j ≤ 2N − 1, the result being proportional to a Vandermonde determi-
nant.

For every λ in R2N−1 we put

φλ(t) :=
2N−1∑
j=1

λjφj(t),

where the φj are defined exactly as in the proof of Lemma 1. The proof of
the statement (i) is the same as the proof of (i) in Lemma 1 (The fact that
ψ′λ(0) is real is evident from the explicit expression (11).

To prove (ii) we define coefficients cj(λ) by (12). The expressions (13)
and (14) have now to be replaced by

c0(λ) =
2N−1∑
n=1

λn

∫ π

−π
φn(t)dt (22)

and

cm(λ) = 2
2N−1∑
n=1

λn

∫ π

−π
φn(t)eimtdt, 1 ≤ m ≤ N − 1. (23)

If λ is real this is equivalent to

cm(λ) = 2
2N−1∑
n=1

λn

∫ π

−π
φn(t)e−imtdt, 1 ≤ m ≤ N − 1. (24)

Now we consider (22), (23) and (24) as a system of linear equations with
respect to λ. For every given vector (c0, . . . , cN−1) in R×Cn−1 this system
has a unique solution (if M in the definition of φj is large enough: see the
beginning of the proof of Lemma 1) because the determinant (21) is different
from zero. But this unique solution is in fact real, because the system is
symmetric under complex conjugation.

Thus the real linear map R2N−1 → R × CN−1, λ 7→ c(λ) is non-
degenerate. The rest of the proof repeats literally the concluding argument
in the proof of Lemma 1. This proves Lemma 1′. 2

The rest of the proof of Proposition 1 remains unchanged. 2

To prove Theorem 1 we need two more lemmas

Lemma 2.[3, p.9] The following statements are equivalent:
(i) a ∈ intVN ,
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(ii) there exists f univalent in D(R) := {z : |z| < R} where R > 1, and
σN (f) = a,
(iii) there exists f in S whose image f(U) is not dense in C and σN (f) = a.

Lemma 3. If a ∈ intVN then there exists a polynomial p univalent in a
neighborhood of U with σN (p) = a. If a ∈ intVN ∩ RN−1 then p can be
chosen real.

Proof. According to Lemma 2 (ii) there exists f in S univalent in a disc
D(R) := {z : |z| < R} where R > 1 and σN (f) = a. The proof of this
fact given in [3, p.9] actually shows that if a is real than f can be chosen
real. Put R′ = (1 + R)/2 and consider the Jordan regions D := f(U) and
D′ = f(D(R′)). We have D ⊂ D′. Let pn be the n-th partial sum of the
Taylor series of f , where n > N and n is chosen large enough to satisfy the
following two conditions. Firstly, pn(U) ⊂ D′. Such an n exists because
pn → f uniformly in U. Secondly, |f(z) − pn(z)| < dist(∂D′, pn(U)) for
z ∈ U. When n satisfies these two conditions, the Argument Principle
implies that pn is univalent in U. We take p = pn. 2

Proof of Theorem 1. We construct inductively a sequence of polynomials
(fn), fn ∈ S with deg fn = dn such that σdn(fn) = σdn(fn+1), n ∈ N.

Let f1 be the polynomial p constructed in Lemma 3 using the vector
a, prescribed in Theorem 1. Assume that fm has been already constructed
where m ≥ 1, dm = deg fm, and let us construct fm+1.

Let d′m be the smallest integer with the property that d′m > dm and the
interval (dm, d

′
m) contains an interval I from the set E. We apply Proposi-

tion 1 to fm with N = d′m and obtain a function gm := F with α(gm) > 0,
initial interval of coefficients matching the whole sequence of coefficients of
the polynomial fm and a gap occurring on the interval I in (dm, d

′
m). Let

(an) be the sequence of coefficients of gm. Let km be an integer with the
properties km > d′m and |an| > nεn for n > km. Let d′′m be the smallest
integer with the properties d′′m > km and the interval (km, d

′′
m) contains an

interval from the set E. The image of gm is not dense, so by Lemma 2
(iii) any initial interval of coefficients of gm is an interior point of the corre-
sponding coefficient region. Using Lemma 3 we can find a polynomial fm+1

univalent in U, which has the same initial interval of length d′′m of the Taylor
series as fm.

The sequence (fm) is convergent uniformly on compact subsets of U
because S is complete. The limit is the function f in S which has all the
required properties in view of construction of its sequence of coefficients.
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