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Abstract

We prove the equivalence of certain uniform hyperbolicity condi-
tions for open simply connected surfaces with non-positively curved
intrinsic metric.

Introduction

We consider open simply connected surfaces (two-dimensional topological
manifolds) equipped with intrinsic metrics. This means that the distance
between two points is equal to the infimum of the lengths of curves connecting
these points. An additional requirement is that our surfaces are “surfaces of
bounded curvature” in the sense of A.D. Aleksandrov [3, 16], which we call
Aleksandrov surfaces. Before stating the formal definition, we mention the
two most important special cases:

A. Surfaces with smooth Riemannian metrics, and

B. Surfaces with polyhedral metrics, which means that every point of such a
surface has a neighborhood isometric to a cone, that is, the unit disc D with
the length element

c|z|α−1|dz|, c > 0, α > 0.

Surfaces as in B arise in the theory of analytic functions as “simply con-
nected Riemann surfaces spread over the plane”. If g is analytic in a disc
D(R) := {z : |z| < R}, R ≤ ∞, the surface Sg , obtained by equipping D(R)
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with the length element |g′(z)||dz| , is a surface with polyhedral metric. In
this case α is always an integer.

Aleksandrov surfaces constitute a natural class of metric spaces which
contains the classes A and B, and is closed with respect to certain limit
processes.

Of the several equivalent definitions of Aleksandrov surfaces we here state
the simplest one; an intrinsic definition will be given in the next section. An
Aleksandrov surface is a topological surface with an intrinsic metric whose
length element can be locally defined by

eu(w)|dw|, (1)

where w is a complex local coordinate and u is a difference of two subhar-
monic functions such that expu is locally integrable on rectifiable curves in
the w -plane. The generalized Laplacian −∆u is a signed Borel measure ω
on the surface, which is called integral curvature. We say that the surface
is non-positively curved if ω ≤ 0, that is, all functions u in (1) are sub-
harmonic. In case A above, this is equivalent to the non-positivity of the
Gaussian curvature. In case B the integral curvature is a discrete measure
with atoms of mass −2π(α − 1), so the surface is non-positively curved if
α ≥ 1 everywhere. In particular, if S = Sg for an analytic function g , then
Sg is non-positively curved and the integral curvature consists of atoms of
mass −2π(degg(p)− 1) located at the critical points p of g . Here degg(p) is
the local degree of g at p.

A local coordinate w , for which (1) holds, is called an isothermal coor-
dinate. Isothermal coordinates define a complex analytic structure on every
Aleksandrov surface [12]. Thus we can speak of holomorphic functions, con-
formal maps, moduli of curve families etc. on an Aleksandrov surface.

By the Uniformization Theorem of Huber [12], every open simply con-
nected Aleksandrov surface is isometric to a disc D(R) := {w : |w| <
R}, R ∈ (0,∞], equipped with a length element (1), where u is a differ-
ence of two subharmonic functions in D(R). If R < ∞, the surface S is
called hyperbolic.

We prove the following result.

Theorem Let S be an open simply connected non-positively curved Alek-
sandrov surface. Then the following conditions are equivalent:

(i) There exist R0 > 0 and ε > 0 such that every relatively compact open
disc B(a,R0) ⊂ S has integral curvature less than −ε.
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(ii) S is hyperbolic in the sense of Gromov, that is, there exists a constant
δ ≥ 0 such that for all points x, y, z, w ∈ S

(x, z)w ≥ min {(x, y)w, (y, z)w} − δ, (2)

where (u, v)w := (1/2){ρ(u, w) + ρ(v, w) − ρ(u, v)}, and ρ stands for the
intrinsic distance.

(iii) A linear isoperimetric inequality holds on S , that is, there exists a con-
stant C1 > 0 such that all Jordan regions Ω ⊂ S satisfy

A(Ω) ≤ C1`(∂Ω),

where A stands for the area and ` for the length.

(iv) S is tight, that is, there exists a constant C2 > 0 such that for all
holomorphic maps f : D → S we have ‖f ′(z)‖ ≤ C2 for z ∈ D. Here
the norm ‖f ′(z)‖ of the derivative is the ratio at z of the pull-back of the
length element on S to the length element of the Poincaré metric of constant
negative curvature −1 on D.

The proof of the Theorem will show that the implications between these
conditions are quantitative, that is, the parameters in (i)–(iv) only depend
on each other. We emphasize that we do not assume S to be complete. This
will cause some complications in the proof.

Condition (i) is a generalization of the condition of Bloch’s Theorem
[5, 1]. For example, if S is a plane region with Euclidean metric, then (i) is
equivalent to boundedness of the inner radius. Bloch’s Theorem establishes
the implication (i)⇒(iv) for the case S = Sg , where g is a holomorphic
function in the unit disc.

Condition (ii) was introduced in the theory of groups [10]. It defines a
notion of hyperbolicity for arbitrary metric spaces. Our proof of the implica-
tion (ii)⇒(iii) follows [10, pp. 96–97]. Since a non-complete surface S need
not be a geodesic space, some modifications are necessary.

The linear isoperimetric inequality (iii) probably occurred for the first
time is Ahlfors’s “Theorie der Überlagerungsflächen” [2]. The implication
(iii)⇒(iv) for the case S = Sg is close to the results of Dufresnoy [9] and
Hayman [11, Ch. VIII] (Ahlfors, Dufresnoy and Hayman used the spherical
metric).

The tightness condition (iv) in the case S = Sg is related to the uniform
normality conditions in [11]. If Sg is tight, g is usually called a Bloch function
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[14, 15]. The tightness condition was also studied in the theory of hyperbolic
complex spaces in higher dimensions [13]. The implication (iv)⇒(i) in the
case S = Sg is a simple consequence from Schwarz’s Lemma.

Our implication (i)⇒(iv) may be considered as a generalization of the
Ahlfors–Schwarz Lemma. In this lemma a pointwise negative upper bound
for the Gaussian curvature of a conformal metric on the disc implies an upper
bound for the density of the metric in terms of the Poincaré density. Our
Theorem gives such a bound under weaker assumptions on the metric.

The implication (iv)⇒(iii) yields the following inequality: for every log-
arithmically subharmonic function g in D satisfying

g(z) ≤ C3(1− |z|2)−1 for |z| < 1, (3)

we have ∫
|z|≤r

g(z)2 dm(z) ≤ C4

∫
|z|=r

g(z) |dz|,

where dm is the area element, and C4 depends only on C3 .
In particular, this inequality holds for g = |f ′| , where f is a Bloch

function. If h is a univalent function in the unit disc, then g = h′′/h′

satisfies (3) with C3 = 6 [14, 15]. So we obtain the following inequality for
univalent functions∫

|z|≤r

∣∣∣∣h′′(z)h′(z)

∣∣∣∣2 dm(z) ≤ C5

∫
|z|=r

∣∣∣∣h′′(z)h′(z)

∣∣∣∣ |dz|,
where C5 is an absolute constant. After we communicated this inequality
to Kari Astala, he gave a very short proof, based on the L1 estimate of the
non-tangential maximal function.

We ask whether the assumption of non-positive curvature in our Theo-
rem can be replaced by the weaker assumption that the Gaussian curvature
is bounded from above (appropriate modification of the conditions may be
necessary for this). B. Kleiner informed us that he proved the equivalence
of conditions (iii) and (iv) under this weaker assumption. Also, the referee
of this paper noticed that our arguments permit replacing the condition of
non-positive curvature by the slightly weaker condition,

ω+(S) ≤ C < π,

where ω+ is the positive part of the integral curvature.
In the next section we state the necessary facts from Aleksandrov’s theory.

The reader that is interested in surfaces as in case A or B only, may skim
through this section.
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Aleksandrov surfaces

In this section S stands for an open simply connected surface with an intrinsic
metric ρ. The closure of a Jordan region will be called a closed Jordan region.
It is homeomorphic to the closed unit disc. The boundary of a Jordan region
is always oriented so that the region is on the left.

Curves will always be oriented. A curve is called a shortest curve if its
length is equal to the distance between its endpoints. If x and y are two
points in S , then by [x, y] we denote a shortest curve from x to y , if it
exists. This notation is ambiguous, because we do not require uniqueness of
[x, y]. Evidently all shortest curves are simple arcs. A subarc of a shortest
curve is also a shortest curve. If x and y are two points on a simple arc L,
then we denote by L[x, y] the subarc of L from x to y .

A broken line is a curve L that can be decomposed into a sequence of
shortest curves, that is, there are points x0, . . . , xn ∈ L such that L =
[x0, x1] ∪ . . . ∪ [xn−1, xn].

Suppose L and M are simple curves with a common endpoint O . Let
x ∈ L, y ∈ M , x, y 6= O , and consider a Euclidean triangle with sides of
lengths ρ(x,O), ρ(y,O), ρ(x, y). Let γ(x, y) ∈ [0, π] be the angle opposite
the side whose length is ρ(x, y). The upper angle between L and M is
defined as

∠(L,M) = lim sup
x,y→O

γ(x, y) ∈ [0, π].

Here the points x ∈ L and y ∈ M tend to O in the sense of the parame-
terizations of the curves L and M . If the limit exists it is called the angle
between L and M and denoted by ∠(L,M). We warn the reader that con-
formal maps, as defined in the Introduction, may not preserve angles at some
points. If L ∪M is a shortest curve containing O as an interior point, then
∠(L,M) = π .

A geodesic triangle is a closed curve of the form [x1, x2]∪ [x2, x3]∪ [x3, x1].
A simple triangle ∆ is a closed Jordan region whose oriented boundary ∂∆
consists of three shortest curves L1 = [x1, x2], L2 = [x2, x3], L3 = [x3, x1],
and has the additional property that for any two points x, y ∈ ∂∆ there
exists a shortest curve [x, y] ⊂ ∆. The upper excess δ̄(∆) of the simple
triangle ∆ is defined as

δ(∆) = ∠(L1, L2) + ∠(L2, L3) + ∠(L3, L1)− π.

Two sets are said to be non-overlapping if they have disjoint interior.
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A surface S with intrinsic metric is called an Aleksandrov surface if for
every point in S there exists a neighborhood U , homeomorphic to the open
unit disc D, and a constant C(U) <∞ such that for any system T1, . . . , Tn
of non-overlapping simple triangles contained in U we have the inequality

n∑
i=1

δ̄(Ti) ≤ C(U).

According to Reshetnyak [16] and Huber [12], this geometric definition is
equivalent to the analytic definition stated in the Introduction.

In the following we assume that S is an open simply connected Aleksan-
drov surface. Every point in an Aleksandrov surface has arbitrarily small
convex neighborhoods U . This means that every two points in U can be
connected by a shortest curve, which belongs to U .

A fundamental result of Aleksandrov and Zalgaller says that for every
shortest curves L and M with a common endpoint O the angle ∠(L,M)
exists (see [3, p. 116] or [16, Theorem 8.2.3]). If L and M have only the
point O in common, then every small neighborhood of O is divided by L∪M
into two components. The closures F and F ′ of these components are called
sectors with vertex O determined by L and M . We say that F and F ′

are complementary at O . We suppose that L is oriented towards O and M
from O . Then one of the two complementary sectors, say F is on the left of
the oriented curve L ∪M , and the other F ′ is on the right.

The sectorial angle ∠sF ∈ [0,∞) of a sector F is defined as the least
upper bound of all sums

n∑
k=1

∠(Lk,Mk),

where Lk and Mk are shortest curves with endpoint O forming non-overlap-
ping sectors Fk ⊂ F . Two sectors determined by the same curves L and M

and lying on the same side of L∪M have the same sectorial angle. If F and
F ′ are complementary sectors at O , then the sum ∠sF +∠sF ′ only depends
on O and is called the total angle θ(O) at O . We have θ(O) = 2π−ω({O}),
where ω is the integral curvature.

Using this terminology, a version of the Gauss–Bonnet Theorem can be
stated as follows.

Proposition 1 Let Ω ⊂ S be a Jordan region bounded by a Jordan broken
line ∂Ω = L0 ∪ . . . ∪ Ln−1 , where Lj are shortest curves, labeled by residues
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modulo n, in the natural cyclic order on ∂Ω. Denote by αk the sectorial
angle of the sector defined by Lk−1 and Lk , which is contained in Ω. Then

ω(Ω) +
n∑
k=1

τ(Lk) +
n∑
k=1

(π − αk) = 2π,

where τ(Lk) ≤ 0.

In this proposition τ(Lk) is the so-called left turn of the shortest curve
Lk , [3, cf. pp. 199, 214, 215]; we only need the fact that τ(L) ≤ 0 for every
shortest curve L.

Proposition 2 If F is a sector formed by shortest curves L and M meeting
at O , and ∠sF < π , then there is a shortest curve Γ in F , connecting a
point x ∈ L to a point y ∈M such that

`(Γ) < `(L[x,O]) + `(M [O, y]).

Outline of proof. We will apply this proposition only to non-positively
curved Aleksandrov surfaces, so we discuss the proof only for this case.

Let F ′ be the sector complementary to F . Since S is non-positively
curved, we have

∠sF + ∠sF ′ = θ(O) = 2π − ω({O}) ≥ 2π.

Hence ∠sF ′ > π .
Since ∠(L,M) ≤ ∠sF < π by the definition of sectorial angle and our

assumption, the definition of angle shows that

ρ(x, y) < ρ(x,O) + ρ(O, x), (4)

if x ∈ L and y ∈M , x, y 6= O , are sufficiently close to O .
Moreover, for these points x and y , we may assume that there exists a

geodesic K = [x, y]. Let x′ be the last point of K on L and y′ the first
point of K on M . Then K[x′, y′] is completely contained in F or in F ′ .
Hence L[x, x′] ∪ K[x′, y′] ∪M [y′, y] is a shortest curve connecting x and y
which is contained in F or in F ′ . In other words, if x ∈ L and y ∈ M ,
x, y 6= O , are sufficiently close to O , then there exists a shortest curve with
[x, y] ⊂ F or [x, y] ⊂ F ′ .
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We claim that [x, y] ⊂ F ′ is impossible if x and y are sufficiently close
to O . For otherwise, there exists a sequence (xn) of points on L different
from O with xn → O , a sequence (yn) of points on M different from O with
yn → O and a sequence of shortest curves [xn, yn] ⊂ F ′ . This implies (cf. [3,
Thm. 3, p. 22]) that ∠sF ′ = ∠(L,M) ≤ π . But this contradicts ∠sF ′ > π .

Hence, if x ∈ L and y ∈ M , x, y 6= O , are sufficiently close to O , then
there exists a shortest curve with [x, y] ⊂ F . Now the claim follows from
(4). 2

We also use a general isoperimetric inequality due to Aleksandrov, which
we state only for the case of non-positively curved surfaces.

Proposition 3 Let S be a non-positively curved simply connected Aleksan-
drov surface. If Ω ⊂ S is a Jordan region, then

4πA(Ω) ≤ `2(∂Ω). (5)

If Γ ⊂ S is a closed curve, then

4πA({a ∈ S\Γ : indaΓ 6= 0}) ≤ `2(Γ), (6)

where indaΓ denotes the index of Γ with respect to a.

Proof. For the proof of the first statement, see for example [7, p. 11]. The
second statement follows from the first. 2

A metric space is called geodesic if every two points can be connected by
a shortest curve. A non-complete Aleksandrov surface need not be a geodesic
space, so we will need an approximation by geodesic spaces.

Let Ω ⊂ S be a closed Jordan region bounded by a Jordan broken line.
Then Ω is a metric space with the distance

ρΩ(x, y) = inf{`(γ) : γ ⊂ Ω, γ is a curve connecting x and y}.

A curve in Ω connecting two points x, y ∈ Ω whose length is equal to ρΩ(x, y)
is a shortest curve with respect to the metric ρΩ and is denoted by [x, y]Ω .
It easily follows from the Arzelá–Ascoli Theorem that for every two points
x, y ∈ Ω a shortest curve [x, y]Ω ⊂ Ω exists. In other words, (Ω, ρΩ) is a
geodesic metric space.
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There exists an increasing sequence of closed Jordan regions (Ωk), boun-
ded by broken lines, that exhaust our surface S . We have

ρ(x, y) = lim
k→∞

ρΩk(x, y) for x, y ∈ S. (7)

Using the uniqueness of shortest curves in a non-positively curved Alek-
sandrov space, it is easy to see that [x, y]Ω is a broken line (with respect to
the original metric ρ), but we could not find an appropriate reference for this
uniqueness statement. So we choose to use the following lemma instead.

Lemma 1 Let Ω ⊂ S be a closed Jordan region bounded by a Jordan broken
line. Then for every ε > 0, all points x, y ∈ Ω, and every shortest curve
L1 = [x, y]Ω there exists a shortest curve L2 = [x, y]Ω such that L2 is a
broken line with respect to the original metric and the Hausdorff distance
with respect to the metric ρΩ between L1 and L2 is less than ε.

Proof. As we stated above in this section, every point a in an Aleksandrov
surface has arbitrarily small convex neighborhoods U . If a ∈ Ω and U is a
sufficiently small convex neighborhood of a, then U is starlike with respect
to a. By this we mean that for every point x ∈ U ∩Ω there exists a shortest
curve [a, x] ⊂ Ω.

This statement is clear for interior points of Ω. If a ∈ ∂Ω, then there
are two shortest curves L,M ⊂ ∂Ω with L∩M = {a} such that a is in the
interior of L ∪M . We may assume that the convex neighborhood U of a
does not meet ∂Ω\(L ∪M). Let K = [x, a] ⊂ U be a shortest curve with
endpoints x and a. Since it meets the boundary ∂Ω, the first point y on
K which belongs to ∂Ω has to lie on L ∪M . We may assume y ∈ L. Then
K[x, y]∪L[y, a] is a shortest curve (in the original metric) connecting x and
a that lies in Ω.

Using these convex neighborhoods for points on L1 and a standard cov-
ering argument, we see that there are points a1 = x, a2, . . . , an = y on L1 ,
enumerated in the order of increasing parameter, and neighborhoods Uk of
ak that are starlike with respect to ak , whose ρ-diameter is less than ε/2,
and such that L1[ak, ak+1] ⊂ Uk for k ∈ {0, . . . , n− 1}.

Using the starlikeness of the sets Uk we can find shortest curves [ak, ak+1] ⊂
Ω. Let L2 = [a0, a1]∪ . . .∪ [an−1, an] ⊂ Ω. This is a curve connecting x and
y in Ω. Moreover, `(L2) ≤ `(L1). Therefore, ρΩ(x, y) = `(L2) and L2 is
a shortest curve in the metric ρΩ , that is, L2 = [x, y]Ω . Finally, it is clear
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that the Hausdorff distance between L1 and L2 is less than ε, since for every
point a ∈ L1 we can find a point b ∈ L2 with ρΩ(a, b) < ε and vice versa. 2

The curvature condition (i) implies Gromov

hyperbolicity

In this section, S is an open simply connected non-positively curved Alek-
sandrov surface which satisfies the condition (i) of our Theorem. Let Ω be
a Jordan region in S bounded by a broken line. In view of (7) it is enough
to prove (ii) for the metric space (Ω, ρΩ) with δ independent of Ω.

Instead of proving the inequality (2) in (ii) for the metric ρΩ and for
points x, y, z, w ∈ Ω directly, we verify the following property, which for
geodesic metric spaces is quantitatively equivalent to (ii) ([8], Proposition
3.4 on p. 10).

Proposition 4 Suppose that Ω ⊂ S is a closed Jordan region bounded by a
Jordan broken line, and x1, x2, x3 are three points in Ω. Let [xi, xj]Ω be any
three shortest curves with respect to the metric ρΩ connecting these points.
Then there exist points y1 ∈ [x2, x3]Ω , y2 ∈ [x1, x3]Ω , and y3 ∈ [x1, x2]Ω such
that

max {ρΩ(yi, yj) : i, j ∈ {1, 2, 3}} ≤ C(ε, R0), (8)

where ε and R0 are the constants in (i).

We emphasize that C(ε, R) does not depend on the choice of Ω.

Proof. By Lemma 1 we may assume that the curves [xi, xj ]Ω are broken
lines. We will further reduce the proof to the case when their union is a
Jordan curve.

Lemma 2 Either all three curves [xi, xj]Ω have a common point, or they
have subarcs [x̃i, x̃j]Ω ⊂ [xi, xj]Ω , which form a Jordan curve if traversed in
appropriate order.

Proof. For (i, j) ∈ {(1, 2), (2, 3), (3, 1)} consider the oriented arcs Li,j =
[xi, xj ]Ω . Let x′1 be the last point on L1,2 which belongs to the intersection
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L1,2 ∩ L3,1 . If x′1 coincides with x2 or x3 then x′1 is a common point of
all three arcs [xi, xj ]Ω . Suppose that this is not the case. Then the new
triangle formed by L′1,2 := L1,2[x′1, x2], L′2,3 := L2,3 and L′3,1 := L3,1[x3, x

′
1],

has the property that its sides L′1,2 and L′3,1 intersect only at x′1 . Now repeat
this construction, starting from x2 . Namely let x′2 be the last point on L′2,3
which belongs to L′1,2 . If x′2 coincides with x′1 or x3 , then again x2 is a
common point of all three sides [xi, xj]. Otherwise the triangle formed by
L′′1,2 := L′1,2[x′1, x

′
2], L′′2,3 := L′2,3[x′2, x3] and L′′3,1 := L′3,1 has the property that

L′′1,2 intersects the other sides at one point each. If this last triangle is still
not Jordan, we have to repeat the above construction once more, starting at
x3 . 2

We continue our proof of Proposition 4, assuming that the union of the
arcs [xi, xj]Ω is a Jordan broken line. We denote by Ω∗ its interior region, and
by L0, . . . , Ln−1 (labeled by residues modulo n, in the cyclic order induced
by the orientation of ∂Ω∗ ) a decomposition of ∂Ω∗ into shortest segments.
We assume that the points x1 , x2 and x3 are among the vertices where
successive arcs Lk and Lk+1 abut. Let Fk be the sector formed by Lk and
Lk+1 , which is contained in Ω∗ , and let αk = ∠sFk . Proposition 2 implies
that if the vertex of Fk is different from x1 , x2 and x3 , then αk is at least
π , for otherwise our shortest lines can be shortened inside Ω∗ ⊂ Ω. Thus
the Gauss–Bonnet Theorem (Proposition 1), applied to Ω∗ yields

ω(Ω∗) ≥ 2π − 3π + β1 + β2 + β3 ≥ −π,

where βi ≥ 0 is the sectorial angle of the sector whose vertex is xi . Thus
the integral curvature of Ω∗ is at least −π .

So if the condition (i) is satisfied, Ω∗ cannot contain open ρ-discs of
radius greater than R1 := 2R0π/ε + 1. Indeed, suppose that such a disc B

is contained in Ω∗ . Then B is relatively compact in S , and contains at least
π/ε disjoint relatively compact open ρ-discs of radius R0 in S . Thus the
integral curvature of B is less than −π , which contradicts the fact that the
integral curvature of Ω∗ is at least −π .

If an open ρΩ -disc is contained in the interior of Ω, then it coincides with
the open ρ-disc with the same center and radius. From this we conclude that
Ω∗ cannot contain any open disc of radius R1 with respect to the metric ρΩ .

Thus we established the following: every point x in Ω∗ has ρΩ -distance
less than R1 from one of the three sides of Ω∗ . According to a result of
Sperner (cf. [4, p. 378]), if a closed 2-simplex is covered by three open sets,
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each containing one side, then these three sets have non-empty intersection.
Thus we conclude that there is a point x0 ∈ Ω∗ which is within ρΩ -distance
R1 from each of the three sides. Our assertion (8) follows with C = 2R1 . 2

This concludes the proof of the implication (i)⇒(ii).

Gromov hyperbolicity implies a linear isoperi-

metric inequality

The following lemma and proposition apply to a K -almost geodesic space S ,
which means that for every x, y ∈ S and t ∈ [0, ρ(x, y)] there exists a point
z ∈ S such that ρ(x, z) ≤ t + K and ρ(y, z) ≤ ρ(x, y) − t + K . Evidently,
every space with an intrinsic metric is K -almost geodesic for every K > 0.
We assume that S satisfies (ii), and δ > 0 is the parameter from (ii). We fix a
base point w ∈ S and use the notation |u| = |u|w = ρ(u, w), |u−v| = ρ(u, v)
for u, v ∈ S . Then condition (ii) can be rewritten as

|x−y| ≤ 2δ+max {|x− z| + |y| − |z|, |y − z| + |x| − |z|} , x, y, z ∈ S. (9)

Lemma 3 Suppose S is a K -almost geodesic space, satisfying (9). Let d ≥
10δ + 2K , and let x0, . . . , xN−1 be N ≥ 4 points in S labeled by residues
modulo N such that

|xk − xk+1| ≤ d for k ∈ {0, . . . , N − 1}.

Then there exists m ∈ {0, . . . , N−1} such that one of the following conditions
holds:

a) |xm−1 − xm+1| ≤ d, or

b) there exist x ∈ S such that |xk−x| ≤ d for k ∈ {m−2,m−1,m,m+ 1}.

Proof. Let m ∈ {0, . . . , N − 1} with |xm| = max{|x0|, . . . , |xN−1|}. If
|xm−1 − xm+1| ≤ d, we are done. So we may assume |xm−1 − xm+1| > d. On
the other hand, by (9) with x = xm−1, y = xm+1 and z = xm we have

|xm−1 − xm+1| ≤ d+ 2δ. (10)

The same inequality (9), together with |xm−1 − xm+1| > d, gives

max{|xm−1|, |xm+1|} ≥ |xm| − 2δ.
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We may assume without loss of generality that

|xm−1| ≥ |xm| − 2δ. (11)

Notice that
|xm−1| ≥ d/2− δ, (12)

for otherwise

|xm+1 − xm−1| ≤ |xm+1|+ |xm−1| ≤ |xm|+ |xm−1|
≤ 2|xm−1|+ 2δ ≤ d,

which contradicts our assumption.
Put t := 4δ +K . From (12) and d ≥ 10δ + 2K we obtain

0 ≤ t ≤ d/2− δ ≤ |xm−1|,

therefore t ∈ [0, |xm−1|]. By the definition of a K -almost geodesic space,
there exists x ∈ S such that

|x− xm−1| ≤ t+K (13)

and
|x| ≤ |xm−1| − t+K.

Using (9) with y = xm−2 and z = xm−1 , inequality (11) and the definition
of t, we obtain

|x− xm−2| ≤ 2δ + max(t+K + 2δ, d− t+K) ≤ d. (14)

Similarly

|x− xm| ≤ 2δ + max(t+K + 2δ, d− t+K) ≤ d. (15)

Using (9) with y = xm+1 and z = xm−1 , inequality (10) and the definition
of t, we obtain

|x− xm+1| ≤ 2δ + max(t+K + 2δ, d+ 2δ − t+ K) ≤ d. (16)

Thus by (14)–(16) we have |x− xk| ≤ d for k ∈ {m− 2,m,m+ 1}. Finally
(13) implies |x− xm−1| ≤ 4δ + 2K ≤ d, and this completes the proof. 2
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Proposition 5 Suppose that S is a K -almost geodesic metric space, which
satisfies (9). Then for d ≥ 10δ + 2K and N ≥ 3 the following is true.

If v0, . . . , vN−1 are distinct points on the unit circle ∂D labeled by residues
modulo N in cyclic order, and f : {v0, . . . , vN−1} → S is a map such that

|f(vk)− f(vk+1)| ≤ d for k ∈ {0, . . . , N − 1},

then there exists a triangulation T of the unit disc D by topological triangles
∆1, . . . ,∆M with the following properties:

a) M ≤ 3N ,

b) the set of vertices of T on ∂D coincides with {v0, . . . , vN−1},

c) there is an extension of f to the set of all vertices V of T , satisfying
|f(u)− f(v)| ≤ d, whenever the vertices u and v are connected by an edge
in T .

This follows from Lemma 3 by induction on N as in [8, pp. 62–64]. 2

Now we suppose that S is a surface as in our Theorem satisfying (ii). We
will prove a linear isoperimetric inequality. Since S is K -almost geodesic for
every K > 0 we can choose K = 1 and d = 10δ + 2 in Proposition 5. Let
Ω ⊂ S be a Jordan region, and assume that `(∂Ω) <∞ (otherwise there is
nothing to prove). We consider two cases.

Case 1. `(∂Ω) ≤ 2d. Then by Proposition 3

A(Ω) ≤ 1

4π
`2(∂Ω) ≤ d

2π
`(∂Ω) = C1`(∂Ω).

Case 2. `(∂Ω) > 2d. Consider a parameterization f : ∂D → ∂Ω. Then we
can find distinct points v0, . . . , vN−1 ∈ ∂D in counterclockwise cyclic order
on ∂D labeled by residues modulo N such that

`(f([vk, vk+1])) ≤ d for k ∈ {0, . . . , N − 1}, (17)

where [vk, vk+1] is the subarc of ∂D from vk to vk+1 , and

3 ≤ N ≤ `(∂Ω)

d
+ 1 ≤ 2

d
`(∂Ω). (18)

Proposition 5 provides a triangulation T of D with the set of vertices V and
triangles ∆1, . . . ,∆M and an extension of f to V with the properties a), b)
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and c). We choose an orientation of the triangulation consistent with the
cyclic order of the vertices on ∂Ω. If e is an oriented edge of the triangulation
T with endpoints w1 and w2 , we choose an arc β(e) connecting f(w1) and
f(w2) whose length is at most d + 1. This is possible in view of c). For
edges that differ only by their orientation we choose the same arcs traversed
in opposite directions. For every oriented triangle ∆k of T whose oriented
boundary consists of e1

k, e
2
k, e

3
k we define a closed curve

αk = β(e1
k) ∪ β(e2

k) ∪ β(e3
k).

Here it is understood that the curves β(eik) are traversed according to the
orientation of the edges eik . In the same way we define a closed curve

α =
N−1⋃
k=0

β(e(vk, vk+1)),

where e(vk, vk+1) stands for the oriented edge of T with vertices vk and vk+1 .
From the definition of these curves based on the triangulation T it follows

that for all points w ∈ S that do not lie on α or any of the curves αk we
have

indwα =
M∑
k=1

indwαk.

Using the isoperimetric inequality (6) in Proposition 3 and a) from Propo-
sition 5, we obtain

A ({w ∈ S\α : indwα 6= 0}) ≤
M⋃
k=1

A ({w ∈ S\αk : indwαk 6= 0})

≤ 1

4π

M∑
k=1

`2(αk) ≤
9(d+ 1)2

4π
M

≤ 27(d+ 1)2

4π
N ≤ c1(d)`(∂Ω).

We can find an at most countable set of subarcs with disjoint interiors γk ⊂
∂Ω and subarcs with disjoint interiors βk ⊂ α such that

a) γk ∪ βk are Jordan curves for k ∈ N,

b) If w ∈ S\(∂Ω ∪ α) and indw∂Ω 6= indwα , then w belongs to the interior
region of one of the Jordan curves γk ∪ βk ,
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c) supk∈N {`(γk), `(βk)} ≤ d+ 1 ≤ 2d.

Hence

A ({w ∈ S\(∂Ω ∪ α) : indw∂Ω 6= indwα}) ≤
1

4π

∞∑
k=1

(`(γk) + `(βk))
2

≤ 1

2π

∞∑
k=1

(
`2(γk) + `2(βk)

)
≤ d

π

∞∑
k=1

(`(γk) + `(βk)) ≤
d

π
(`(∂Ω) + `(α))

≤ d

π
(`(∂Ω) + 2dN)) ≤ 5d

π
`(∂Ω) = c2(d)`(∂Ω).

Combining the last two estimates we finally obtain

A(Ω) = A ({w ∈ S\∂Ω : indw∂Ω = 1})
≤ A ({w ∈ S\α : indwα 6= 0}) + c2(d)`(∂Ω)

≤ (c1(d) + c2(d))`(∂Ω) =: C1(d)`(∂Ω).

2

A linear isoperimetric inequality implies tight-

ness

To show that S is tight it is enough to give an upper bound for ‖f ′(0)‖
whenever f : D → S is an injective conformal map. The bound for other
points and other holomorphic maps will then follow from Schwarz’s Lemma.

Let f : D→ S be a conformal map. Then the images f(D(t)) of the discs
D(t) = {z : |z| < t} for t ∈ (0, 1) are Jordan regions. Let A(t) = A(f(D(t)))
and `(t) = `(f(D(t))), t ∈ (0, 1). Then by assumption we have

A(t) ≤ C1`(t), 0 < t < 1. (19)

For r ∈ (0, 1) we consider the family of curves Γr consisting of all circles
{z ∈ D : |z| = t} with t ∈ [r, 1). Then for the conformal modulus of this
curve family (cf. [1]) we have mod Γr = (2π)−1 log(1/r) for r ∈ (0, 1). On
the other hand, the density

λ(z) :=
1− |z|2
2`(|z|) ‖f

′(z)‖, r ≤ |z| < 1,
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is admissible for Γr . Hence

mod Γr ≤
∫
r≤|z|<1

‖f ′(z)‖2 (1− |z|2)2

4`2(|z|) dm(z) =

∫ 1

r

dA(t)

`2(t)

≤ C2
1

∫ 1

r

dA(t)

A2(t)
≤ C2

1

A(r)
.

Therefore

A(r) ≤ 2πC2
1

log(1/r)
, 0 < r < 1. (20)

On the other hand, by Proposition 3

A(t) ≤ 1

4π
`2(t) =

1

4π

[∫ 2π

0

1− t2
2
‖f ′(teiθ)‖t dθ

]2

≤ t

2

∫ 2π

0

(1− t2)2

4
‖f ′(teiθ)‖2t dθ =

t

2
A′(t).

Thus for 0 < t1 ≤ t2 < 1∫ t2

t1

2

t
dt = 2 log(t2/t1) ≤

∫ t2

t1

A′(t)

A(t)
dt = log(A(t2)/A(t1)),

which implies A(t1)/t21 ≤ A(t2)/t22. Now we obtain from (20)

‖f ′(0)‖2 = lim
t→0

4A(t)

πt2
≤ 16

π
A(1/2) ≤ 32C2

1

log 2
.

This completes the proof of the implication (iii)⇒(iv). 2

Tightness implies the curvature condition (i)

In this section we denote the total variation of the integral curvature by |ω| ,
and let B(a, r) := {x ∈ S : ρ(a, x) ≤ R} for a ∈ S , R > 0. We first need
several lemmas about discs and circles on our Aleksandrov surface S .

Lemma 4 Every relatively compact open metric disc B in S is a Jordan
region.

A more general result of Burago and Stratilatova [6, Theorem 2] shows that
this is true if ω+(S) < π .
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Lemma 5 Suppose a disc B(a,R), where a ∈ S and R > 0, is relatively
compact in S and |ω|(B(a,R)) ≤ K0 . Then

A(B(a,R)) ≤ C(K0)R2,

where C(K0) depends only on K0 .

Proof. The discs B(a, r), r > 0, are Jordan region by the previous
lemma. An estimate proved by Burago and Stratilatova [6, p. 120] shows
that for 0 < r < R

`(∂B(a, r)) ≤ r
(
2π + |ω|(B(a, r))

)
.

Combining this with the isoperimetric inequality in Proposition 3, we obtain

A(B(a, r)) ≤ 1

4π
`2(∂B(a, r)) ≤ 1

4π
(2π + |ω|(B(a, r)))2r2.

Letting r tend to R the lemma follows. 2

Actually, for non-positively curved surfaces one can prove the sharp esti-
mate

A(B(a,R)) ≤ (π + |ω|(B(a,R))/2)R2,

but we do not need this result.

Lemma 6 Let a ∈ S . Suppose that the discs B(a, r) are relatively compact
and that A(B(a, r)) ≤ Kr2 for r ∈ (0, R], where R > 0 and K > 0. Let
Γ be the family of all curves connecting B(a,R1) with S\B(a,R2), where
0 < 2R1 ≤ R2 ≤ R. Then

mod Γ ≤ 16K

log(R2/R1)
.

Proof. We define a Borel density λ on S by

λ(x) =


1

ρ(x, a) log(R2/R1)
for x ∈ B(a,R2)\B(a,R1),

0 elsewhere.

Then λ is admissible for Γ because for every γ ∈ Γ we have∫
γ

λ(x)|dx| ≥ 1

log(R2/R1)

∫ R2

R1

ds

s
= 1.
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Let N be the integer such that R
−(N+1)
2 < R1 ≤ R22−N . Then N ≤

(log 2)−1 log(R2/R1). Using the notation Bk = B(a, 2−kR2), k ∈ {0, . . . , N+
1}, we obtain

mod Γ ≤
∫
S

λ2 dA =

∫
B(a,R2)\B(a,R1)

λ2 dA

≤
N∑
k=0

∫
Bk\Bk+1

λ2 dA ≤ 1

log2(R2/R1)

N∑
k=0

A(Bk)

(R22−(k+1))
2

≤ 4(N + 1)K

log2(R2/R1)
≤ 8NK

log2(R2/R1)
≤ 16K

log(R2/R1)
.

2

Now the proof of the implication (iv)⇒(i) and of the Theorem is con-
cluded by

Proposition 6 Let B(a,R) be a disc in an Aleksandrov surface which is a
Jordan region, and

|ω|(B(a,R)) ≤ 1. (21)

If f : D→ B(a,R), f(0) = a, is a conformal homeomorphism, then

R ≤ C max
|z|<1/2

‖f ′(z)‖,

where C > 0 is a universal constant.

Proof. Lemmas 5 and 6 imply the existence of a universal constant c ∈
(0, 1/2] such that

mod Γ1 <
2π

log 2
,

whenever B(a,R) satisfies (21) and Γ1 is the family of curves in B(a,R)
connecting B(a, cR) to S\B(a,R). Since B(a,R) is a Jordan region, we
have lim|z|→1 ρ(f(z), a) = R.

Let us show that B(a, cR) does not contain f(D(1/2)). Suppose that it
does. Let Γ2 be the family of all curves in D, connecting D(1/2) with ∂D.
Then the curves in the family f(Γ2) := {f ◦ γ : γ ∈ Γ2} connect B(a, cR)
with S\B(a,R). Thus by the conformal invariance of the modulus we have

2π

log(1/2)
= mod Γ2 = mod f(Γ2) ≤ mod Γ1 <

2π

log(1/2)
,
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a contradiction. So there exists w ∈ D(1/2) with the property ρ(f(w), f(a)) ≥
cR. Hence

cR ≤ ρ(f(w), f(a)) ≤ 1

2
max
|z|<1/2

2

1− |z|2‖f
′(z)‖

≤ 4

3
max
|z|<1/2

‖f ′(z)‖.

2
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