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Abstract

We describe some results of value distribution theory of holomorphic
curves and quasiregular maps, which are obtained using potential the-
ory. Among the results discussed are: extensions of Picard’s theorems to
quasiregular maps between Riemannian manifolds, a version of the Second
Main Theorem of Nevanlinna for curves in projective space and non-linear
divisors, description of extremal functions in Nevanlinna theory and re-
sults related to Cartan’s 1928 conjecture on holomorphic curves in the
unit disc omitting hyperplanes.
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1 Introduction

Classical value distribution theory studies the following question: Let f be a
meromorphic function in the plane. What can one say about solutions of the
equation f(z) = a as a varies? The subject was originated in 1880-s with
two theorems of Picard (Theorems 1 and 4 below). An important contribution
was made by E. Borel in 1897, who gave an “elementary proof” of Theorem 1,
which opened a way to many generalizations. Borel’s result (Theorem 12 below)
also gives an extension of Picard’s theorem to holomorphic curves C → Pn.
In 1925, R. Nevanlinna (partially in cooperation with F. Nevanlinna) created
what is called now the Nevanlinna Theory of meromorphic functions, which
was subject of intensive research [5]. A good elementary introduction to the
subject is [18]. Griffiths and King [16] extended Nevanlinna theory to non-
degenerate holomorphic maps f : Cn → Y , where Y is a compact complex
manifold of dimension n. In modern times the emphasis has shifted to two
multi-dimensional generalizations: holomorphic curves in complex manifolds
and quasiregular mappings between real Riemannian manifolds. This survey is
restricted to a rather narrow topic: generalizations of Picard’s theorem that are
obtained with potential-theoretic methods. Some other applications of potential
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theory to value distribution can be found in [14, 20, 27]. Recent accounts of
other methods in the theory of holomorphic curves are [21, 29].

We begin with Picard’s Little Theorem:

Theorem 1 Every entire function which omits two values in C is constant.

To prove this by contradiction, we suppose that f is a non-constant entire
function which omits 0 and 1. Then u0 = log |f | and u1 = log |f − 1| are
non-constant harmonic functions in the plane satisfying

|u+
0 − u+

1 | ≤ c, u0 ∨ u1 ≥ −c, (1)

where ∨ stands for the pointwise sup, u+ = u ∨ 0, and c is a constant. There
are several ways to obtain a contradiction from (1). They are based on rescaling
arguments that permit to remove the c terms in (1). To be specific, one can
find sequences zk ∈ C, rk > 0 and Ak → +∞ such that A−1

k uj(zk + rkz) →
vj(z), k →∞, |z| < 1, j = 0, 1, where vj are harmonic functions satisfying

v+
0 = v+

1 , v0 ∨ v1 ≥ 0, vj(0) = 0, (2)

and vj 6≡ 0. This gives a contradiction with the uniqueness theorem for harmonic
functions. The idea to base a proof of Picard’s theorem on (2) comes from the
paper [13] (the main result of this paper is described in Section 3 below). Two
versions of the rescaling argument (existence of appropriate zk, rk and Ak) are
given in [7, 12] and [19], respectively. The second version has an advantage
that it uses only one result from potential theory, Harnack’s inequality. Thus
Picard’s theorem can be derived from two facts: Harnack’s inequality and the
uniqueness theorem for harmonic functions. This makes the argument suitable
for generalizations.

2 Quasiregular maps of Riemannian manifolds

We recall that a non-constant continuous map f between regions in Rn is called
K-quasiregular if it belongs to the Sobolev class W 1,n

loc (first generalized deriva-
tives are locally Ln-summable), and in addition

‖f ′‖n ≤ KJf almost everywhere, (3)

where J is the Jacobian determinant and K ≥ 1 is a constant. The standard
references are [24, 25]. If n = 2, every quasiregular map can be factored as g ◦φ,
where g is analytic and φ a quasiconformal homeomorphism. It follows that
Picard’s Theorems 1 and 4 (below) extend without any changes to quasiregular
maps of surfaces. For the rest of this section we assume that n ≥ 3, and that
all manifolds are connected. The weak smoothness assumption f ∈ W 1,n

loc is
important: if we require more smoothness, the maps satisfying (3) will be local
homeomorphisms (and even global homeomorphisms if the domain is Rn). A
fundamental theorem of Reshetnyak says that all quasiregular maps are open
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and discrete, that is they have topological properties similar to those of analytic
functions of one complex variable. Several other results about analytic functions
have non-trivial extension to quasiregular mappings. One of the striking results
in this area is Rickman’s generalization of Picard’s theorem [25]:

Theorem 2 A K-quasiregular map Rn → Rn can omit only a finite set of
points whose cardinality has an upper bound in terms on n and K.

Even more surprising is that when n = 3, the number of omitted values can
indeed be arbitrarily large, as Rickman’s example in [26] shows.

It turns out that the method of proving Picard’s theorem outlined in Sec-
tion 1, extends to the case of quasiregular maps. One has to use a non-linear
version of potential theory in Rn which is related to quasiregular maps in the
same way as logarithmic potential theory to analytic functions. This relation
between quasiregular maps and potential theory was discovered by Reshetnyak.
He singled out a class of functions (which are called now A-harmonic functions),
that share many basic properties (such as the maximum principle and Harnack’s
inequality) with ordinary harmonic functions, and such that u◦f is A-harmonic
whenever u is A-harmonic and f quasiregular. In particular, log |x − a| is A-
harmonic on Rn\{a}, so if f omits the value a, then log |f−a| satisfies Harnack’s
inequality (with constants depending on K and n). If m values are omitted by
f we can obtain relations, similar to (2),

v+
1 = . . . = v+

m, vi ∨ vj ≥ 0, vj(0) = 0. (4)

for certain A-harmonic functions vj 6≡ 0, j = 1, . . . ,m. Rickman’s example
mentioned above shows that such relations (4) are indeed possible with any
given m > 1, which is consistent with the known fact that A-harmonic functions
do not have the uniqueness property. However, an upper bound for m can
be deduced from (4) using Harnack’s inequality. This gives a pure potential-
theoretic proof of Rickman’s theorem [12, 19]. Notice that this proof does not
depend on the deep result that quasiregular maps are open and discrete. Lewis’s
paper [19] which uses nothing but Harnack’s inequality opened a path for further
generalizations of Rickman’s theorem. The strongest result in this direction was
obtained by Holopainen and Rickman [17]. For simplicity, we state it only in
the special case of quasiregular maps whose domain is Rn.

Theorem 3 Let Y be an orientable Riemannian manifold of dimension n. If
there exists a K-quasiregular map Rn → Y , then the number of ends of Y has
an upper bound that depends only on K and n.

A more general result, with Rn replaced by a Riemannian manifold subject to
certain conditions, is contained in [17].

Notice that there are no restrictions on Y in this theorem. Conditions of
Theorem 3 will be satisfied if Y is a compact manifold with finitely many points
removed, so a K-quasiregular map from Rn to a compact n-dimensional mani-
fold can omit at most N(K,n) points.

Now we turn to the second theorem of Picard mentioned in the Introduction:
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Theorem 4 If there exists a non-constant holomorphic map f : C → S from
the complex plane to a compact Riemann surface S, then the genus of S is at
most 1.

First extensions of this result to quasiregular maps in dimension n > 2 were
obtained by Gromov in 1981 [6, Ch. 6] who proved that the fundamental group
of a compact manifold of dimension n which receives a quasiregular map from
Rn cannot be too large. Gromov applied a geometric method, based on isoperi-
metric inequalities, which goes back to Ahlfors’s approach in dimension 2. The
strongest result in this direction is the following theorem from [31]: If a com-
pact manifold Y of dimension n ≥ 2 receives a quasiregular map from Rn, then
the fundamental group of Y is virtually nilpotent and has polynomial growth of
degree at most n.

We notice that unlike this last result, Theorem 3 has nothing to do with the
fundamental group of Y : removing a finite set from a compact manifold does
not change its fundamental group. Recently, Bonk and Heinonen [2] applied
potential-theoretic arguments, somewhat similar to those outlined above, to
obtain new topological obstructions to the existence of quasiregular maps:

Theorem 5 If Y is a compact manifold of dimension n which receives a K-
quasiregular map from Rn, then the dimension of the de Rham cohomology ring
of Y is bounded by a constant that depends only on n and K.

This result implies that for every K > 1 there exist simply connected compact
manifolds Y such that there are noK-quasiregular maps Rn → Y . The question
whether there exists a compact simply connected manifold Y such that there
are no quasiregular maps Rn → Y (with any K) remains open.

For a compact manifold Y , the natural objects to pull back via f are differ-
ential forms rather then functions. According to the “non-linear Hodge theory”
[28], each cohomology class of Y can be represented by a p-harmonic form, which
satisfies a non-linear elliptic PDE. Such forms and their pullbacks to Rn play a
similar role to the A-harmonic functions above.

It is natural to conjecture that the theorem of Bonk–Heinonen remains valid
if the requirement that Y is compact is dropped. Such a generalization would
also imply Theorem 3.

3 Holomorphic curves in projective varieties

Here we return to the classical logarithmic potential theory, which allows more
precise quantitative estimates.

Points in the complex projective space Pn are represented by their homo-
geneous coordinates z = (z0 : . . . : zn). Let Y ⊂ Pn be an arbitrary projective
variety. We consider divisors D on Y which are the zero sets of homogeneous
forms P (z0, . . . , zn) restricted to Y . The degree of D is defined as the homoge-
neous degree of P . Suppose that q of such divisors Dj of degrees dj are given,
and they satisfy the condition that for some integer m < q − 1 every m + 1 of
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these divisors on Y have empty intersection. We are going to study the dis-
tribution of preimages of divisors Dj under a holomorphic map f : C → Y
whose image is not contained in ∪Dj . To such a map correspond n + 1 entire
functions without common zeros: f = (f0, . . . , fn). Thus we are interested in
the distribution of zeros of entire functions Pj ◦ f = Pj(f0, . . . , fn).

We introduce the subharmonic functions

u = ‖f‖ =
√
|f0|2 + . . .+ |fn|2 and uj = log |Pj ◦ f |/dj .

The assumption on intersections of Dj easily implies that

|
∨
j∈I

uj − u| ≤ c for every I ⊂ {1, . . . , q}, such that card I = m+ 1. (5)

This relation is a generalization of (1). The rescaling procedure mentioned
in Section 1 permits to remove the constant c in (5) and obtain subharmonic
functions v1, . . . , vq and v in a disc which satisfy∨

j∈I
vj = v, I ⊂ {1, . . . , q}, card I = m+ 1, (6)

and such that v is not harmonic.
If f omits q = 2m+1 divisors in Y , then all vj in (6) will be harmonic (while

v is not!) and it is easy to obtain a contradiction. Indeed, let Ej = {z : vj(z) =
v(z)}. Then (6) with q = 2m+ 1 implies that for some I of cardinality m + 1,
the intersection ∩j∈IEj has positive area. It follows by the uniqueness theorem
that all vj for j ∈ I are equal. Applying (6) with this I we obtain that v = vj
for j ∈ I, so v is harmonic, which gives a contradiction. Thus we obtain the
following generalization of Picard’s theorem proved by V. Babets in 1983 for
the case Y = Pn, m = n, and under a stronger restriction on the intersection
of divisors [7].

Theorem 6 Let Y be a projective variety. If a holomorphic map C→ Y omits
2m+ 1 divisors, such that the intersection of any m+ 1 of them is empty, then
f is constant.

Notice that dimension of Y is not mentioned in this theorem. A more careful
analysis of (6) and more sophisticated rescaling techniques yield a quantitative
result of the type of the Nevanlinna’s Second Main Theorem. To state it, we
recall the definitions of Nevanlinna theory. If µ is the Riesz measure of u, then
the Nevanlinna characteristic can be defined as

T (r, f) =

∫ r

0

µ({z : |z| ≤ t}dt
t
− log ‖f(0)‖.

Let n(r,Dj) be the number of zeros (counting multiplicity) of the entire function
Pj(f0, . . . , fn) in the disc {z : |z| ≤ r}, and

N(r,Dj , f) =

∫ r

0

n(t,Dj)
dt

t
, (7)
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supposing for simplicity that gj(0) 6= 0, j = 1, . . . , q. The following version of
the Second Main Theorem was conjectured by Shiffmann in 1978 and proved in
[13]:

Theorem 7 Let Y be a projective variety, and q divisors Dj of degrees dj in Y
satisfy the intersection condition of Theorem 6. Let f : C→ Y be a holomorphic
map whose image is not contained in ∪jDj. Then

(q − 2m)T (r, f) ≤
q∑
j=1

1

dj
N(r,Dj, f) + o(T (r, f)),

when r →∞ avoiding a set of finite logarithmic measure.

This theorem is stated in [13] only for the case Y = Pn, m = n but the same
proof applies to the more general statement. When m = n = 1 we obtain
a rough form of the Second Main Theorem of Nevanlinna; with worse error
term, and more importantly, without the ramification term. A corollary from
Theorem 7 is the defect relation:∑

j

δ(Dj , f) ≤ 2m, where δ(Dj , f) = 1− lim sup
r→∞

N(r,Dj , f)

djT (r, f)
. (8)

The key result of potential theory used in the proof of Theorem 7 is of
independent interest [11]:

Theorem 8 Suppose that a finite set of subharmonic functions {wj} in a region
in the plane has the property that the pointwise minima wi∧wj are subharmonic
for every pair. Then the pointwise minimum of all these functions is subhar-
monic.

This is derived in turn from the following:

Theorem 9 Let G1, G2, G3 be three pairwise disjoint regions, and µ1, µ2, µ3

their harmonic measures. Then there exist Borel sets Ej ⊂ ∂Gj such that
µj(Ej) = 1, j = 1, 2, 3, and E1 ∩ E2 ∩E3 = ∅.

For regions in R2 (the only case needed for theorems 7 and 8) this is easy to
prove: just take Ej to be the set of accessible points from Gj and notice that
at most two points can be accessible from all three regions [11]. It is interesting
that Theorem 9 holds for regions in Rn for all n, but the proof of this (based
on advanced stochastic analysis rather then potential theory) is very hard [30].

We notice that the number 2 in Picard’s Theorem 1, as well as in Theorem 7,
thus admits an interpretation which seems to be completely different from the
common one: with our approach it has nothing to do with the Euler characteris-
tic of the sphere or its canonical class, but comes from Theorem 9. Recently, Siu
[29] gave a proof of a result similar to Theorem 7 (with Y = Pn, m = n) using
different arguments which are inspired by “Vojta’s analogy” between Nevanlinna
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theory and Diophantine approximation. However Siu’s proof gives a weaker esti-
mate em ≈ 2.718m instead of 2m in (8), and his assumptions on the intersection
of divisors are stronger than those in Theorem 7.

The constant 2m in (8) is best possible. Moreover, one can give a rather
complete characterization of extremal holomorphic curves of finite lower order.
We recall that the lower order of a holomorphic curve is

λ = lim inf
r→∞

logT (r, f)

log r
.

Theorem 10 [8] Let D1, . . . , Dq be divisors and f a curve satisfying all the
hypotheses of Theorem 7. Suppose in addition that f has finite lower order and
that equality holds in the defect relation (8). Then
(i) 2λ is an integer, and λ ≥ 1,
(ii) T (r, f) = rλ`(r), where `(r) is a slowly varying function in the sense of
Karamata: `(cr)/`(r)→ 1, r →∞ uniformly with respect to c ∈ [1, 2],
(iii) All defects are rational: δ(Dj , f) = pj/λ, where pj are integers whose sum
is 2mλ.

When m = n = 1, this result was conjectured by F. Nevanlinna [23]. After
long efforts, mainly by A. Pfluger, A. Edrei, W. Fuchs and A. Weitsman, D.
Drasin finally proved F. Nevanlinna’s conjecture in [4]. The potential-theoretic
method presented here permitted to give a simpler proof of Drasin’s theorem,
and then to generalize the result to arbitrary dimension, as well as to obtain a
stronger result in dimension 1 which is discussed in the next section. The proof
of Theorem 10, is based on the following result about subharmonic functions:

Theorem 11 Suppose that v, v1, . . . , vq, q ≥ 2m+1 are subharmonic functions
in the plane, which satisfy (6), and in addition v(z) ≤ |z|λ, z ∈ C, and
v(0) = 0. Then the function

h =

q∑
j=1

vj − 2mv

is subharmonic. If h is harmonic, then 2λ is an integer and

v(reit) = c|r|λ| cosλ(t− α)|,

where c > 0 and α is a real constant.

4 Functions with small ramification

We recall the definition of the ramification term in Nevanlinna theory. Suppose
that the image f(C) of a holomorphic curve f : C→ Pn is not contained in any
hyperplane. This means that f0, . . . , fn in the homogeneous representation of
f are linearly independent. Let n1(r, f) be the number of zeros in the disc {z :
|z| ≤ r} of the Wronski determinant W (f0, . . . , fn), and N1(r, f) the averaged
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counting function of these zeros as in (7). If n = 1, then n1 counts the number
of critical points of f . The Second Main Theorem of Cartan [18] says that for
every holomorphic curve f whose image does not belong to a hyperplane, and
every finite set of hyperplanes {a1, . . . , aq} in general position, we have

(q − n− 1 + o(1))T (r, f) +N1(r, f) ≤
q∑
j=1

N(r, f, aj), (9)

when r→∞ avoiding a set of finite measure. This implies the defect relation

q∑
j=1

δ(aj , f) + θ(f) ≤ n+ 1, where θ(f) = lim sup
r→∞

N1(r, f)

T (r, f)
,

and δ(a, f) was defined in (8). So, if n = 1, and the sum of deficiencies equals 2,
then θ(f) = 0. The work of F. Nevanlinna [23] mentioned in Section 3 actually
suggests something stronger than he conjectured: that the weaker assumption
θ(f) = 0 for functions of finite lower order implies all conclusions (i)-(iii) of
Theorem 10. This stronger result was proved in [9]. It follows that for functions
of finite lower order the conditions θ(f) = 0 and

∑
δ(a, f) = 2 are in fact

equivalent. There is some evidence that this result might have the following
extension to holomorphic curves in Pn:

Conjecture Let f be a holomorphic curve of finite lower order, whose image
is not contained in any hyperplane. If N1(r) = o(T (r, f)), r → ∞, then λ is a
rational number and assertion (ii) of Theorem 10 holds.

This is not known even under a stronger assumption that the sum of defi-
ciencies is n+ 1.

5 Cartan’s conjecture

According to a philosophical principle of Bloch and Valiron [1], to theorems
about entire functions should correspond theorems about families of functions
in the unit disc, in the same way as Landau’s theorem corresponds to Picard’s
theorem. One can supplement Theorem 6 with an explicit estimate of derivative
of a holomorphic map from the unit disc to projective space that omits 2m +
1 hypersurfaces satisfying the intersection condition of Theorem 6. To prove
such generalization of Landau’s theorem, one replaces the use of the uniqueness
theorem for harmonic functions by the corresponding quantitative result as in
[22].

In 1887 Borel proved an extension of Picard’s theorem, from which Theorem
6 and many other similar results (see, for example, [15]) can be derived:

Theorem 12 (Borel) If f1, . . . , fp are entire functions without zeros, that sat-
isfy

f1 + f2 + . . .+ fp = 0, (10)
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then there is a partition of the set J = {f1, . . . , fp} into classes I, such that for
every I, all functions in I are proportional and their sum is zero.

When p = 3 it is equivalent to the Picard’s Little Theorem. The question
is what kind of normality criterion corresponds to Theorem 12 in the same way
as Montel’s criterion corresponds to Picard’s theorem. The following conjecture
was stated by H. Cartan in his thesis [3] (see also [18] for a comprehensive
discussion of this conjecture).

Conjecture A Let F be an infinite sequence of p-tuples f = (f1, . . . , fp) of
holomorphic functions in the unit disc, such that each fj has no zeros, and (10)
is satisfied.

Then there exists an infinite subsequence F ′ of F and a partition of the set
J = {1, . . . , p} into classes I, such that for f in F ′ and every class I we have:

(∗) there exists j ∈ I such that for every i ∈ I the ratios fi/fj are uniformly
bounded on compact subsets of the unit disc, and

∑
i∈I fi/fj → 0 uniformly on

compact subsets of the unit disc.

One obtains this statement by replacing “proportional” by “have bounded
ratio” and “equals zero” by “tends to zero” in the conclusions of Borel’s theorem.
When p = 3, Conjecture A is equivalent to Montel’s theorem.

Let us call a subset I ⊂ J = {1, . . . , p} having the property (∗) a C-class
of the sequence F ′. Cartan proved in [3] that under the hypotheses of Conjec-
ture A there exists an infinite subsequence F ′, such that either the whole set
J constitutes a single C-class, or there are at least 2 disjoint C-classes in J .
This result implies that Conjecture A is true for p = 4, which corresponds to
holomorphic curves in P2 omitting four lines. Indeed, it follows from (∗) that
each C-class contains at least two elements, so if there are two disjoint C-classes
they have to be a partition of the set J of four elements. For p ≥ 5, Cartan’s
result falls short of proving his conjecture because the union of the two C-classes
whose existence is asserted might not coincide with the whole set {1, . . . , p}.

It turns out that Conjecture A is wrong as originally stated, beginning from
p = 5 (that is in dimensions ≥ 3). A simple counterexample was constructed in
[10]). Nevertheless a small modification of the statement is valid in dimension
3:

Conjecture B Under the assumptions of Conjecture A its conclusions hold is
the disc {z : |z| < rp}, where rp < 1 is a constant that depends only on p.

This was proved in [10] when p = 5, that is for holomorphic curves in P3

omitting 5 planes.
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