On Jentzsch sets of functions analytic in the unit disc

Alexandre Eremenko

Sometime 1993

Dear Lee:

Let f be an analytic function in the unit disc $U = \{z : |z| < 1\},\$

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad |a_n|^{1/n} \to 1.$$

Denote by

$$s_n(z) = \sum_{k=0}^n a_k z^k, \quad n = 1, 2, \dots$$

the partial sums of the Maclaurin series of f. Following L. Rubel we denote by J(f) the set of all limit points of zeros of s_n . Then the classical theorem of Jentzsch says that J(f) contains the unit circle. The structure of J(f) in U is clear: it coinsides with the set of zeros of f. Some interesting results about the part of J(f) outside the unit circle were recently obtained by Rubel's student Qian [Q].

Here we will prove the following theorem which partially answers a question of Rubel.

Theorem 1 Let h be a function holomorphic in $D(R) := \{z : |z| < R\}, 1 < R \le \infty$. Then $J(f) \cap \{z : 1 < |z| < R\} = J(f - h) \cap \{z : 1 < |z| < R\}.$

The idea of the proof actually goes back to H. Delange's thesis [D], see also [B, p. 386].

Proof. Put

$$u_n = \frac{1}{n} \log |s_n| = \int_{\mathbf{C}} \log |z - \zeta| d\mu_n + \epsilon_n,$$

where $\epsilon_n = (1/n) \log |a_n| \to 0$. Here μ_n are probability measures in **C** charging every zero of s_n with mass 1/n. So in particular $\mu_n(D(1/2)) \to 0$ as $n \to \infty$. Evidently $\{u_n(0)\}$ is bounded from above, so

$$\int_{\mathbf{C}} \log |\zeta| d\mu_n \le C. \tag{1}$$

Let μ be the weak limit of some subsequence of μ_n in $\overline{\mathbf{C}}$. We have $\mu(D(1/2)) = 0$ and this together with (1) implies that $\mu(\infty) = 0$, and so μ is a probability measure on \mathbf{C} . Now we have

$$u_n(z) \to u(z) = \int_{\mathbf{C}} \log |z - \zeta| d\mu,$$

where the convergence takes place in L^1_{loc} . Evidently, u(z) = 0, |z| < 1, so $\mu(U) = 0$ and

$$\int_{\mathbf{C}} \log |\zeta| d\mu = 0$$

Thus μ is supported by the unit circle. It follows that u is harmonic in $\mathbb{C}\setminus \overline{U}$ and $u(z) = \log |z| + o(1), z \to \infty$. These properties of u imply that $u(z) = \log^+ |z|$. Now it follows that μ is the uniform distribution on the unit circle, which constitutes and improvement of the Jentzsch theorem due to Szegö. (The limit $\mu_n \to \mu$ actually exists because the above argument is applicable to any limit measure μ .

To continue the proof we need the following result about convergence of potentials [A]. For arbitrary set $E \subset \mathbf{C}$ define the 1-content $m_1(E)$ in the following way. Consider all coverings of E by countable systems of discs. For each such covering take the sum of radii of these disks. Then $m_1(E)$ is the infimum of such sums taken over all coverings.

Lemma 1 Let $\mu_n \to \mu$ weakly. Denote by u_n and u the corresponding potentials. Then

$$m_1(\{z: |u_n(z) - u(z)| > \delta\} \to 0$$

for every $\delta > 0$.

Fix arbitrary small $\epsilon > 0$ and put $\delta = (1/2) \log(1 + \epsilon)$. Choose a natural N so large that for n > N we have

$$m_1(\{z: |u_n(z) - u(z)| > \delta\} < \epsilon \tag{2}$$

and

$$\frac{1}{n}\log|h_n(z)| < \frac{\delta}{2}, \quad |z| < R - \epsilon,$$
(3)

where h_n is the *n*-th partial sum of *h*.

Let G_n be the union of those components of the set $\{z : 1 < |z| < R, u_n(z) < \delta\}$ which intersect the set $\{z : 1 + 2\epsilon < |z| < R - 2\epsilon\}$. We claim that G_n does not intersect $D(1 + \epsilon)$ for n > N.

Indeed if a component K of G_n intersects $D(1+\epsilon)$ then it intersects both boundary components of the annulus $\{z : 1 + \epsilon < |z| < 1 + 2\epsilon\}$. On the other hand we have $u(z) > 2\delta$, $|z| > 1 + \epsilon$ and $u_n(z) < \delta$, $z \in K$. So $|u(z) - u_n(z)| > \delta$, $z \in K \cap \{z : 1 + \epsilon < |z| < 1 + 2\epsilon\}$ and this contradicts (2).

We proved that $G_n \subset \{z : |z| > 1 + \epsilon\}$. Similarly we prove that $G_n \subset D(R - \epsilon)$.

Now $u(z) = \log^+ |z| > 2\delta$, $z \in G_n$ and $u_n(z) < \delta$, $z \in G_n$, from which follows that $|u(z) - u_n(z)| > \delta$, $z \in G_n$. Thus every component of G_n has diameter less then ϵ in view of (2).

All zeros of $s_n - h_n$ in $\{z : 1+2\epsilon < |z| < R-\epsilon\}$ are contained in G_n by (3). And every component of G_n contains a zero of s_n by the Minimum principle. On the other hand, every zero of s_n in $\{z : 1+2\epsilon < |z| < R-\epsilon\}$ is contained in some component of G_n . And $s_n - h_n$ has a zero in this component by Rouché's theorem.

This shows that the distance between the zero set of s_n and the zero set of $s_n - h_n$ in $\{z : 1 + 2\epsilon < |z| < R - \epsilon\}$ is at most ϵ , which proves the Theorem.

References

- [A] V. S. Azarin, On the asymptotic behavior of subharmonic functions of finite order, Math. USSR Sbornik, 36 (1980), 135-153.
- [B] A. Beurling, Collected Works, vol. 1, Birkhäuser, Boston, Basel, Berlin, 1989.
- [D] H. Delange, Sur la convergence des séries de polynomes de la forme $\sum a_n P_n(z)$ et sur certaines suites de polynomes, Ann. École Norm. Supèr., 56 (1939), 173-275.

[Q] Qian. Thesis. University of Illinois at Urbana– Champaign.)

Department of Mathematics, Purdue University West Lafayette IN 47907 e-mail: eremenko@math.purdue.edu