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1. Real polynomials with real zeros, Laguerre–Pólya class and R-

functions.

Consider the class of real polynomials P with all zeros real.

Theorem. This class is closed under differentiation.

Proof. Let d = degP . Then degP ′ = d−1, so P ′ has at most d−1 zeros
(counting multiplicity). On the other hand, it follows from Rolle’s theorem
that P ′ has at least d − 1 real zeros (counting multiplicity!). So all zeros of
P ′ are real.

This is a non-trivial proof! We used the following principle: if X ⊂ Y are
finite subsets, and cardX ≥ cardY then X = Y . And the degree d, which
was used in the proof, is not mentioned in the statement of the theorem.

Entire functions are limits of polynomials (uniform on compact subsets in
C). Can this theorem be generalized to entire functions? Not in a straight-
forward way:

f(z) = zez
2/2, f ′(z) = (z2 + 1)ez

2/2.

Definition. Laguerre–Pólya class LP consists of entire functions which are
limits of real polynomials whose all zeros are real.
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Exercise. Let Pn be a sequence of real polynomials with all zeros real. Sup-
pose that Pn → f 6≡ 0 uniformly in a neighborhood of some real point. Then
P is entire and convergence holds on all compacts in the plane.

Class LP is closed under differentiation. It is also closed with respect to
multiplication and taking limits.

Examples.

sin πz = z lim
n→∞

n
∏

k=1

(

1− z2

k2

)

, ez = lim
n→∞

(

1 +
z

n

)n

,

1

Γ(z)
= zeγz lim

n→∞

n
∏

k=1

(

1 +
z

k

)

e−z/k,

e−z2 = lim
n→∞

(

1− z2

n

)n

,

however ez
2 6∈ LP , as we have seen above. Other examples are cos

√
z and

(sin
√
z)/

√
z which are in LP .

Theorem. (Laguerre–Pólya) LP consists of entire functions of the form

f(z) = czmeaz
2+bz

∞
∏

k=1

(

1− z

zk

)

ez/zk , (1)

where c, b and zk 6= 0 are real, m ≥ 0 is an integer, a ≤ 0, and
∑

k

|zk|−2 <∞, (2)

so that the infinite product is absolutely convergent.

This is an example of a parametric description: a formula which gives all
functions of a class in terms of certain parameters whose domain is explicitly
described.

Definition. A function φ analytic in C\R is called an R-function if φ(z) =
φ(z), and Imφ(z) Im z ≥ 0, z ∈ C\R.

Exercise. A parametric description of the class of rational R-functions is
this:

φ(z) = az + b−
∑

k

ck
z − zk

, (3)
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where a ≥ 0, ck > 0, and zk, b are real.

Exercise. Prove that R is a normal family in the upper half-plane H: from
every sequence of functions of class R one can select a subsequence that
converges to a function in R or to ∞ uniformly on compact subsets of H.
Hint: the family of analytic functions mapping the unit disk into itself is a
normal family.

Exercise. A parametric description of R-functions meromorphic in C is

φ(z) = az + b− c0
z
−
∑

k

ck

(

1

z − zk
+

1

zk

)

(4)

where a ≥ 0, ck ≥ 0, zk, b are real, and
∑

k

ck
|zk|2

<∞.

Hint: how positive harmonic functions in the upper half-plane look? See
section 4.

Proof of the Laguerre–Polya theorem. If f is given by (1) then f ∈ LP in
view of the examples given above. Suppose now that Pn are real polynomials
with all zeros real, Pn → f . Assuming wlog that f(0) 6= 0, we have

Pn(z) = cn

dn
∏

k=1

(

1− z

zn,k

)

,

so
P ′
n(z)

Pn(z)
=

dn
∑

k=1

1

z − zn,k
, (5)

so −P ′
n/Pn ∈ R. Notice that

(P ′
n/Pn)

′
(0) =

dn
∑

k=1

z−2
n,k,

so the sums in the RHS are bounded as n→ ∞, thus there cannot be many
zeros on any finite interval, since all summands are positive, and we have the
limit sequence (zk) which enjoys the same property

∑

k

z−2
k < C. (6)
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Thus the limit of −P ′
n/Pn is meromorphic in C, so it is represented by (4)

with integer ck. By integrating (4) and exponentiating we obtain (1).

All LP functions have order at most 2, normal type, which means

|f(z)| ≤ CeA|z|2 , z ∈ C

with some C,A > 0 and every real entire function of order less than 2 with
all zeros real is an LP function by the Hadamard factorization theorem.

We finish this section with mentioning a geometric interpretation of LP
functions. Recall that by Rolle’s theorem zeros of a rational R-function are
interlacent with the poles.

Exercise. Show that the formula

f(z) = c
z − a0
z − b0

∏

k 6=0

(

1− z

ak

)(

1− z

bk

)−1

, (7)

where bk < ak < bk+1, a−1 < 0 < b1 and c > 0 gives a parametric represen-
tation of meromorphic functions of class R. (The sequences ak, bk may be
finite or infinite in one or both directions).

In particular, for a polynomial P ∈ LP we obtain

P ′(z)

P (z)
=

d

z − z0

d−1
∏

k=1

z − wn

z − zn
,

where z0 ≤ w1 ≤ z1 ≤ . . . ≤ wd−1 ≤ zd−1, and d = deg p. This shows
that logP is the Schwarz–Christoffel map in the upper half-plane, mapping
this half-plane onto region with interior angles 0 and 2π. More precisely,
the image of the upper half-plane is a region obtained from the horizontal
strip of width πd by removing horizontal slits (−∞+ iπk, log ck+ iπk], where
(−1)kck are the critical values of P .

This is an example of a comb domain. In general a comb domain is
obtained from a plane, or an upper or lower half-plane, or a horizontal strip
by removing cuts along some rays to the left. The whole boundary of the
domain is contained in the horizontal lines y = πk.

If D is any comb domain (with non-empty boundary), and θ : H → D
a conformal map of the upper half-plane onto D, then exp ◦θ extends to
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the whole plane by symmetry and becomes a Laguerre–Pólya function. This
function is determined uniquely up to a real affine change of the indepen-
dent variable. The comb domain depends on the free parameters ck. So we
obtain another parametric representation of the class LP , with critical val-
ues as parameters. The study of the correspondence between these different
parametrizations is an interesting and non-trivial problem.

2. Wiman and Pólya conjectures.

What happens to the zeros of a real entire function if we differentiate it
repeatedly? Pólya observed in 1944 that for functions of order < 2 the zeros
tend to come closer to the real line, while for functions of order > 2 they tend
to move away from the real line. He made the following two conjectures:

Conjecture A. If f is a real entire function of order less than 2, with
finitely many non-real zeros, then some derivative f (n) is in LP .

Conjecture B. If f is a real entire function of order greater than 2, with
finitely many non-real zeros, then the number of non-real zeros of f (n) tends
to infinity with n.

All this has been confirmed and we are going to discuss several theorems
of this kind.

Let LP ∗ be the class of real entire functions of the form Ph, where P is
a real polynomial, and h ∈ LP . So all but finitely many zeros are real.

Theorem 1. (Kim) For every f ∈ LP ∗ there exists n0 such that for n ≥ n0,
f (n) ∈ LP .

This is a refined form of Conjecture 1. In the original form it was earlier
proved by Czordas, Craven and Smyth. Kim extended the result to LP ∗,
with a simpler proof. His proof was further simplified by Ki and Kim.

For Conjecture 2 we have

Theorem 2 (Bergweiler, Eremenko, Langley) Let f = Ph, where P is a real
polynomial and f a real entire function with all zeros real but h 6∈ LP . Then
the number N(f (n)) of non-real zeros of f (n) tends to infinity as n→ ∞.

More precisely:
If f is of finite order then lim infn→∞N(f (n))/n > 0 (Bergweiler–Eremenko),

and if f is of infinite order, then N(f (n)) = ∞ for n ≥ 2 (Langley).

Corollary. For an arbitrary real entire function f there is an alternative:
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Either N(f (n)) = 0 and f (n) ∈ LP for n ≥ n0,
or N(f (n)) → ∞.

This simply stated corollary is in fact a combination of three theorems
with very different proofs.

One can make more precise statements about N(f (n)) with fixed n ≥ 2
for f 6∈ LP ∗, see section 8.

The above results imply that if f is a real entire function, and f (n) has only
real zeros for all n, then f ∈ LP . More than 100 years ago Andres Wiman
made a much more precise conjecture: if f is a real entire function, and ff ′′

has only real zeros then f ∈ LP . This conjecture has been intensively studied
during the last century, the finite order case was proved by T. Sheil-Small,
and the infinite order case by Bergweiler, Eremenko and Langley. We discuss
this in section 8. Then Langley extended the result as follows:

Theorem 3 (Langley) If f is a real entire function of infinite order with
finitely many non-real zeros. Then f (n) has infinitely many non-real zeros
for each n ≥ 2.

This gives the infinite order case of Theorem 2.

3. Proof of Kim’s theorem.

Let f ∈ LP ∗. Then the logarithmic derivative is

f ′(z)

f(z)
= g(z) +

d
∑

j=1

(

1

z − cj
+

1

z − cj

)

, (8)

where g has negative real part in H. We use the identity

Im

(

1

z − c
+

1

z − c

)

=
−2Im z

|z − c|2|z − c|2 (|z − Re c|2 − (Im c)2).

If f ′(z) = 0 this must be positive, at least for one summand in the RHS of
(8) that is |z − Re cj|2 ≤ (Im cj)

2, for some j, so we obtain

Lemma 1. (Jensen’s circles) If f ∈ LP ∗, then non-real zeros of f ′ belong to
the union of discs |z − Re c| ≤ |Im c| over all non-real zeros c of f .

Let us prove Theorem 1 by contradiction. Suppose that f ∈ LP ∗, and
all f (n) have some non-real zeros. The number of non-real zeros is a non-
increasing as a function of n. This follows from the similar fact for polyno-
mials, which is a consequence of Rolle’s theorem.
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Now it is easy to see that there exists an infinite sequence (zn) in the upper
half-plane H such that f (n)(zn) = 0, and the Jensen condition is satisfied:

|zn+1 − Re zn| ≤ (Im zn)
2 (9)

Indeed, by Lemma 1 there are finite sequences of any length with this prop-
erty. Taking subsequences and then applying the diagonal procedure, we
obtain an infinite sequence.

Now we use Lemma 1 to estimate the rate of growth of zn, more precisely
we need

Sm,n = |zm − zm+1|+ |zm+1 − zm+2|+ . . .+ |zm+n−1 − zm+n|.

Using the Cauchy–Schwarz inequality and (9) we obtain

S2
m,n ≤ n

m+n−1
∑

k=m

|zk − zk+1|2 ≤ 2n
m+n−1
∑

k=m

βk(βk − βk+1),

where βk = Im zk. It follows from (9) that βk is a decreasing sequence. Let
β = lim βk ≥ 0. Then we obtain

Sm,n ≤
√

2n(βm(βm − β)),

so for every ǫ > 0 there exists m0 such that Sm,n/
√
n < ǫ for m ≥ m0. This

implies that
S0,n = o(

√
n), n→ ∞. (10)

Now we estimate our function f using a result of Goncharov. For an
entire function f we use the standard notation

M(r, f) = max
|z|≤r

|f(z)|.

Lemma 2. (Goncharov’s inequality) Let f be an entire function and f (n)(zn) =
0 for some sequence (zn), n = 0, 1 . . .. Then for every n ≥ 1 we have

|f(z)| ≤ Mn

n!
(|z − z0|+ |z0 − z1|+ . . .+ |zn−2 − zn−1|)n, z ∈ C,

where

Mn =M(|z|+ |z − z0|+ |z0 − z1|+ . . .+ |zn−2 − zn−1|, f (n)).
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Proof. By the Newton-Leibniz formula,

f(z) =

∫ z

z0

∫ ζ1

z1

. . .

∫ ζn−1

zn−1

f (n)(ζn)dζndζn−1 . . . dζ2dζ1. (11)

To estimate the integral, we consider the broken line L connecting
zn−1, zn−2, . . . , z0, z. This broken line evidently belongs to the disk of radius

|z|+ |z − z0|+ . . .+ |zn−2 − zn−1|

centered at the origin. Thus Mn is the upper estimate for |f (n)| on L. We
choose the path of integration in all integrals in (11) to be parts of L. Set

tj = |zn−1−zn−2|+|zn−2−zn−3|+. . .+|zj+1−zj|, 0 ≤ j ≤ n−2, tn−1 = 0.

Then put s = t0+ |z− z0| and let sk be the length of the part of L from zn−1

to ζk. With these notation,

|f(z)| ≤Mn

∫ s

t0

ds1

∫ s1

t1

ds2 . . .

∫ sn−1

tn−1

dsn.

So we have

t0 ≤ s1 ≤ s, t1 ≤ s2 ≤ s1, . . . , tn−1 ≤ sn ≤ sn−1,

and tj+1 ≤ tj, 0 ≤ j ≤ n− 2. Replacing all lower limits by 0, we obtain

|f(z)| ≤Mn

∫ s

0

ds1

∫ s1

0

ds2 . . .

∫ sn−1

0

dsn ≤Mns
n/n!.

Our function f ∈ LP ∗ has at most order 2 normal type, which means

|f(z)| ≤ Cea|z|
2

with some a, C > 0. We use Cauchy’s inequalities to estimate f (n):

M(
√
n, f (n)) ≤ n!(r −

√
n)−nM(r, f) ≤ Cn!(r −

√
n)−near

2

,

where r >
√
n. Then we minimize the RHS for r >

√
n. The result is

(

M(
√
n, f (n))

n!

)1/n

= O

(

1√
n

)

, n→ ∞. (12)
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Combining this with Lemma 2 and (10), we obtain for any fixed z ∈ H and
every ǫ > 0

|f(z)| ≤ (ǫ
√
n)n

Mn

n!
≤ (Cǫ)n,

where C is independent of n. This shows that f(z) = 0 and proves the
theorem.

4. Functions with positive imaginary part in H

Class R frequently occurs in a great variety of questions, especially in
spectral theory. It is known under the names Nevanlinna class, Herglotz
class or Krein’s class. The parametric representation of the whole class is
the following:

φ(z) = λz + b−
∫ ∞

−∞

(

1

z − t
+

t

1 + t2

)

dµ(t), (13)

where λ ≥ 0, b ∈ R and µ is a non-negative measure with the property

∫ ∞

−∞

dµ(t)

1 + t2
<∞.

We will also use the following inequalities for ψ ∈ R\{0}:

|ψ(i)| Im z

(1 + |z|)2 ≤ |ψ(z)| ≤ |ψ(i)|(1 + |z|)2
Im z

, (14)

∣

∣

∣

∣

ψ′(z)

ψ(z)

∣

∣

∣

∣

≤ 1

Im z
, (15)

∣

∣

∣

∣

log
ψ(z + ζ)

ψ(z)

∣

∣

∣

∣

≤ 1, |ζ| < 1

2
Im z. (16)

All these inequalities are consequences of the Schwarz lemma, which says
that a holomorphic map of a disk into itself does not increase the hyperbolic
metric (which means exactly (15).

Lemma. (Angular derivative) There exists λ ≥ 0 such that

ψ(z) = λz + ψ1(z),

where ψ1 ∈ R and ψ1(z) = o(z) in every Stolz angle.
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This can be easily deduced from the representation (13).

5. Wiman’s scale.

In the rest of these lectures we discuss real entire functions with almost
all zeros real, which do not belong to the class LP ∗. For such functions of
finite order, A. Wiman introduced a classification which is more refined than
the usual classification by genus. For every non-negative integer p, the class
class V2p consists of all real entire functions of the form

f(z) = eaz
2p+2

w(z), (17)

where a ≤ 0, and w is a real entire function of genus at most 2p+ 1 with all
zeros real, that is

w(z) = zmeQ(z)
∏

k

(

1− z

zk

)

exp

{

z

zk
+ . . .+

1

2p+ 1

(

z

zk

)2p+1
}

,

where Q is a real polynomial of degree at most 2p + 1, and (zk) is a real
sequence, finite or infinite.

Definition. W2p = V2p\V2p−2, p ≥ 1, and W0 = V0.

So W0 = LP . The union of disjoint sets W2p, p ≥ 0 consists of all real
entire functions of finite order with all zeros real.

We also define W ∗
2p as the set of products f = Ph where h ∈ W2p and P

is a real polynomial without real zeros. The degree of this polynomial P is
N(f).

What happens with N(f) when we differentiate?

Theorem. (Laguerre, Borel) If f ∈ W ∗
2p, then N(f ′) ≤ N(f) + 2p.

This will be proved together with the following

Fundamental Lemma. Let h ∈ W2p. Then

h′/h = P0ψ0, (18)

where P0 is a real polynomial, degP0 = 2p, the leading coefficient of P0 is
negative, and ψ0 ∈ R\{0}.

This factorization was stated by Levin and Ostrovskii for arbitrary entire
functions with almost all zeros real, and P0 a real entire function. This
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factorization was used in all subsequent work on the subject. In the case
h ∈ W ∗

2p, we have a similar factorization with a polynomial P0 of degree
at most 2p + N(f), which follows from the Laguerre–Borel theorem. Exact
statement as above is due to Hellerstein and Williamson.

Proof of the Fundamental Lemma and of the Theorem of Laguerre-Borel.
Let f ∈ W ∗

2p, f = Ph, where P is a real polynomial without real roots.
We write f = lim fn, where

fn(z) = P (z)eQ(z)

n
∏

k=1

(

1− z

zk

)

eQk(z),

where degQk ≤ 2p+1 and degQ ≤ 2p+2, when degQ = 2p+2 the leading
coefficient of Q is negative.

f ′
n(z)

fn(z)
=
P ′(z)

P (z)
+Q′(z) +

n
∑

k=1

(

Q′
k(z) +

n
∑

k=1

1

z − zk

)

.

These logarithmic derivatives are O(z2p+1) on the imaginary axis, and O(z2p)
when degQ ≤ 2p+ 1.

By Rolle’s theorem, there is an odd number of zeros of f ′
n on any interval

between the zeros of fn. We choose one on each interval and designate it as
a “Rolle’s zero”. Moreover, if degQ = 2p + 2, the leading coefficient of Q
is negative, then fn(z) → 0 as z → ∞ and we have two extra zeros of fn
outside the convex hall of real zeros of fn. We also count them as Rolle’s
zeros in this case. We order all these Rolle’s zeros in an increasing sequence:
(wk).

Using alternating sequences (zk) and (wk) we form the rational product
φn(z) with poles zk and zeros wk. As poles and zeros alternate, Imφn has
constant sign in H. We put a multiple ±1 in front of φn, to ensure that
φn ∈ R. Then we have

f ′
n/fn = Snφn,

where Sn is a rational function whose poles are zeros of P , and zeros are
“extraordinary zeros” of f ′

n/fn, that is those which are not Rolle’s zeros.
Notice that the number of extraordinary zeros is always even.

Growth comparison on the imaginary axis shows that Sn has a pole at
infinity of order at most 2p+ 1 if degQ ≤ 2p+ 1 and at most 2p if degQ =
2p + 2. As the order of S at infinity must be even, we conclude that in

11



all cases Sn(z) = O(z2p). This the number of extraordinary zeros does not
exceed 2p+ degP .

This proves the Laguerre-Borel theorem.
To finish the proof of the Fundamental lemma, we assume that P = 1,

f = h, so P0 = limSn is a polynomial of degree at most 2p, and we have the
representation (18) with ψ0 = limφn.

First we show that the leading coefficient of P0 is negative. Let a0 be a
zero of h. Then the residue of h′/h at a0 is positive, and the residue of ψ0

is negative, so P0(a0) < 0. Since the number of extraordinary zeros on each
interval (aj, aj+1) is even, the total number of real extraordinary zeros on the
left of a0 is even. So P0(x) → −∞ as x → −∞. As P0 is of even degree, we
conclude that its leading coefficient is negative.

Now we prove that d = degP0 = 2p, so

P0(z) = czd + . . . , c < 0.

Let λ0 ≥ 0 be the angular derivative of ψ0. Then in every Stolz angle

h′(z)/h(z) = cλ0z
d+1 + o(zd+1), z → ∞.

Integrating this along the straight lines we obtain

log h(z) =
cλ0
d+ 2

zd+2 + o(zd+2), z → ∞.

If cλ0 < 0, we compare this with (17) and obtain that d = 2p. If λ0 = 0
we obtain that a = 0 in (17), so the genus g of h is at most 2p + 1. The
logarithmic derivative of h has the form

h′(z)

h(z)
= T (z) + zg

∑

j

∑

j

mj

agj (z − aj)
, (19)

where T is a polynomial. On the other hand (18) combined with (4) gives

h′(z)

h(z)
= P0(z)

(

λ0z + b−
∑

j

Aj

(

1

z − aj
+

aj
1 + a2j

)

)

, (20)

where λ0 ≥ 0, Aj ≥ 0 and b is real. We also have

∑

j

Aj

a2j
<∞. (21)
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Equating the residues at the poles of (19) and (20), we obtain

P (aj) = −mj/Aj < 0. (22)

Now we have 0 < −P0(aj) ≤ C|aj|d for some C > 0. Then (21) and (22)
imply

1

C

∑

j

mj

|aj|d+2
≤ −

∑

j

mj

a2jP0(aj)
=
∑

j

Aj

a2j
<∞,

which shows that d+ 2 ≥ g + 1, that is d ≥ g− 1. If g = 2p+ 1 we conclude
that d ≥ 2p. If g = 2p we conclude the same because d is even. It remains to
notice that g ≥ 2p − 1 because h belongs to W2p. This completes the proof
of the lemma.

Remark. Class R which is also denoted N0 in honor of Nevanlinna can
be characterized by the following property: it consists of functions analytic
in C\R for which all quadratic forms

φ(zj)− φ(ζk)

zj − ζk
wjwk

are positive semi-definite. This is the Schwarz–Pick Theorem. Krein and
Langer considered generalized Nevanlinna classesNκ which consist of of func-
tions for which these forms have at most κ negative squares. Functions in
the Fundamental Lemma belong to these classes Nκ.

6. Beginning of the proof of Theorem 2 for functions of finite order.

Rescaling and the saddle point asymptotics.

Let f = Ph, where P is a real polynomial, and h ∈ W2p, p ≥ 1. The
Fundamental lemma gives

f ′

f
= P0ψ0 +

P ′

P
, degP0 = 2p ≥ 2. (23)

Using (14) we obtain
rf ′(ir)

f(ir)
→ ∞, r → ∞. (24)

Proving the theorem by contradiction, we assume that N(f (k))/k → 0 for
k ∈ σ, k → ∞, where σ is some sequence. Using (24), we find positive
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numbers ak → ∞, such that
∣

∣

∣

∣

akf
′(iak)

f(iak)

∣

∣

∣

∣

= k,

and define

qk(z) =
akf

′(akz)

kf(akz)
.

Then |qk(i)| = 1, and (23) with (14) imply that {qk} is a normal family. So
passing to a subsequence we may assume that

qk → q, k → ∞

uniformly on compact subsets of H. We obtain from the Fundamental lemma
that

q(z) = −z2pψ(z), (25)

where ψ : H → H\{0} is a function of class R. We choose a branch of the
log in a neighborhood of f(iak), put bk = log f(iak) and define

Q(z) =

∫ z

i

q(ζ)dζ, Qk(z) =

∫ z

i

qk(ζ)dζ.

Then

Qk(z) =
log f(akz)− bk

k
→ Q(z), k → ∞

uniformly on compacts in H, and Qk(i) = 0. Our branches of log are well
defined on every compact subset of H when k is large enough because f has
finitely many zeros in H and ak → ∞.

Let z be a point inH and 0 < t < Im z. Then the disk {ζ : |ζ−akz| < tak}
is in H and does not contain zeros of f when k is large. Cauchy’s formula
gives

f (k)(akz) =
k!

2πi

∫

|ζ|=akt

f(akz + ζ)

ζk
dζ

ζ
(26)

=
k!

2πi

∫

|ζ|=akt

exp(kQk(z + ζ/ak) + bk)

ζk
dζ

ζ
.

So

|f (k)(akz)| ≤
k!

(akt)k
exp

(

Re bk + kmax
|ζ|=t

ReQk(z + ζ)

)

,

14



and defining

uk(z) =
log |f (k)(akz)| − Re bk − log k!

k
+ log ak,

we obtain
uk ≤ max

|ζ|=t
ℜQk(z + ζ)− log t.

Since Qk → Q we deduce that the uk are uniformly bounded from above on
compact subsets, hence after choosing a subsequence, we obtain

uk → u in D′.

Here u is a subharmonic function or u = −∞.
The Riesz measure ∆u is the limit of the Riesz measures of uk. So our

assumption that N(f (k)) = o(k) will imply that u is harmonic in H.
The plan is the following: we will derive a functional equation for u,

u

(

z − 1

q(z)

)

= ReQ(z) + log |q(z)|, z ∈ S, (27)

where S = {a : |z| > R, δ < arg z < π − δ} for some positive R, δ < π/4,
using the saddle point asymptotics in (26), and then prove that this functional
equation cannot have harmonic solutions. Saddle point asymptotics was used
by Pólya to obtain the limit distribution of zeros of f (k) when f = expP ,
with a polynomial P . In this simple case the asymptotic distribution is
obtained explicitly. Our new ingredients are rescaling f(akz) and the study
of the resulting functional equation for u. In the special case when f is of
completely regular growth, which means that r−ρ log |f(rz)| has a limit in
D′, as r → ∞, such a functional equation was obtained by Evgrafov.

To explain the derivation of (27) we rewrite (26) as

f (k)(akw) =
k!

2πi

∫

|ζ|=rk

exp (log f(ak(w + ζ))− k log akζ)
dζ

ζ
,

which some rk > 0 which we can choose. The saddle point method involves
the stationary point of the function under the exponent, that is a solution of
the equation

d

dζ

(

log f(ak(w + ζ))

k
− log akζ

)

=
akf

′(ak(w + ζ))

kf(ak(w + ζ))
− 1

ζ
= qk(w+ζ)−

1

ζ
= 0.

15



Instead of slowing this equation, we choose an arbitrary z is a Stolz angle,
and set w = z − 1/qk(z) and ζ = z − w = 1/qk(z). With this choice, ζ is a
saddle point, and we obtain an asymptotics by evaluating the function under
the integral (28) at this point. This gives

1

k

(

log f (k)

(

ak

(

z − 1

qk(z)

))

− ck

)

∼ Qk(z) + log qk(z).

Letting k → ∞ we obtain (27).
Of course, this asymptotics needs justification. This is obtained using the

estimates which f ′/f satisfies due to the Fundamental Lemma.
After that it remains to prove that there is no harmonic function that

satisfies (27)

7. Functional equation and completion of the proof.

We recall that
q(z) = −z2pψ(z),

where φ : H → H\{0},

ψ(z) = lim
k→∞

ψ0(akz)

|ψ0(iak)|
.

Lemma. Define

Q(z) =

∫ z

i

q(ζ)dζ,

and

F (z) = z − 1

q(z)
. (28)

Then there is no harmonic function u in H satisfying

u(F (z)) = ReQ(z) + log |q(z)|

in a Stolz angle.

Proof. Suppose that there is such a harmonic function Then there exists
a holomorphic h, u = Reh and

h(F (z)) = Q(z) + log q(z).
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Differentiating and using q = Q′, and using (28), we obtain

h′(F (z)) = q(z) =
1

z − F (z)
.

There exists a branch G of the inverse F−1 which is defined in a Stolz angle
S and satisfies

G(w) ∼ w, w → ∞, w ∈ S. (29)

In particular, G(w) ∈ H for w ∈ S and w large enough. We have

h′(w) = q(G(w)) =
1

G(w)− w
(30)

for w ∈ S and |w| large enough. Since h is holomorphic in H, we see that
G has a meromorphic continuation to H. Using the definition of q, second
equation in (30) can be rewritten as

ψ(G(w)) =
1

G2p(w)(w −G(w))
. (31)

We will derive from this that G maps H into itself. It is sufficient to show
that ImG(z) 6= 0 in H. In view of (29) there exists a point w0 ∈ H such
that G(w0) ∈ H. If g takes a real value in H, then there exists a curve
φ : [0, 1] → H beginning at w0 and ending at some point w1, such that
G(w(t)) ∈ H for 0 ≤ t < 1, but G(φ(1)) ∈ R. We may assume that
G(w1) 6= 0; this can be achieved by a small perturbation of the curve ψ and
the point w1. Using (31) we obtain an analytic continuation of ψ to the real
point G(w1) along the curve G(φ). We have

lim
t→1

Imψ(G(φ(t))) ≥ 0,

because the imaginary part of ψ is non-negative in H. It follows that as
w → w1, the RHS of (31) has negative imaginary part, while the LHS has
non-negative imaginary part, which is a contradiction. So G maps H into
itself.

Then Lemma on the angular derivative and (29) shows that Im (G(w)−
w) > 0 in H. Combining this with the second equation (30) we obtain
Im q(G(w)) < 0 for w ∈ H. Using (29) we find in particular that Im q(eiπ/(2p)y) <
0 for large y. On the other hand,

Im q(eiπ/(2py) = y2pImφ(eiπ/(2p)y) ≥ 0.
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This contradiction proves the Lemma.

A simple compactness argument shows that there exist positive c and δ
depending only on p such that the subharmonic function u satisfying (27)
must have Riesz measure at least c in δ < arg z < π− δ. However no explicit
estimate of these δ and c is known.

Some ingredients of the proof of the Wiman conjecture

8. Sheil-Small’s argument

We recall the result.

Let f be a real entire function with all zeros real. Then f ′′ has some
non-real zeros.

The condition that f is real is essential: for f(z) = ee
iz

, f ′′ has only real
zeros. Also, second derivative cannot be replaced by the first: for f(z) =
esin z, f ′ has all zeros real but f 6∈ LP .

The simplest special case is that f is of finite order, and has no zeros.
Even this special case was unsolved for long time.

So we have f = ep, f ′′ = (p′′ + p2)ep, and setting L = p′ = f ′/f we have
to prove the following

Theorem. (Sheil-Small, 1989). For a real polynomial L of degree ≥ 2, zeros
of L′ + L2 cannot be all real.

If all roots of L are real, this was conjectured by Pólya in 1917 and proved
by Prüfer in 1918. Here is Prüfer’s proof. Let x1 < . . . < xk be all distinct
roots of L. It is easy to see that the number of common real roots of L and
L′ +L2 is n− k, where n = degL. A root of L′ +L2 which is not a root of L
satisfies L′/L2 = −1. But the function L′/L2 is strictly monotone on every
interval between the adjacent toots of L:

L
d

dx

(

L′

L2

)

=

(

L′

L

)′

−
(

L′

L

)2

< 0.

This proves that L′+L2 has at most n+1 real roots if all roots of L are real.

The following ingenuous proof of the general case due to Sheil–Small.
Notice that it uses complex variables, unlike Prüfer’s proof.
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Let F (z) = z − 1/L. Consider the sets

Λ = {z ∈ H : ImL > 0} and K = {z ∈ H : ImF (z) > 0}.

As ImL > 0 implies Im (z−1/L(z)) > 0, every component V of Λ is contained
in a component U of K.

Notice that all components of Λ are unbounded, by the maximum prin-
ciple.

A zero ζ of L is called good if ζ is real and L′(ζ) < 0. All other zeros of L
are called bad. Each bad zero lies on ∂V ∩ ∂U for some components V ⊂ U
of Λ and K.

If U is a component of K, then F : U → H is a covering, and the degree
of this covering must be equal to the number of bad zeros on ∂U plus one, if
U contains some V because components of V are unbounded. Thus such a
component U must contain critical points of F . But critical points of F in
K are zeros of L′ + L2:

(z − 1/L)′ = 1 + L′/L2 = (L2 + L′)/L2.

It remains to notice that L has no bad zeros only in the case when L has
only one good zero, that is L(z) = −az + b.

One can improve this argument by saying that the number of zeros of
L′ +L in H is at least the number of bad zeros. A more careful count shows
that multiplicity can be also taken into account.

We obtain:

Exercise. The number of non-real roots of L′ +L2 is at least degL− 1, and
the number of real roots is at most degL+ 1.

The proof of Sheil-Small extends to the case of finite order f using the
Fundamental Lemma. Now L is the logarithmic derivative which has a rep-
resentation of the Fundamental Lemma. It can have simple poles, but these
poles are real, and residues at them are positive. It follows that no pole can
lie on ∂Λ. So we have that the components of Λ are unbounded.

Applying the representation of the Fundamental Lemma to e−czf(z) with
a real c, we obtain that L − c is a product of a polynomial with a function
with positive real part in H. Therefore L takes every real value finitely many
times in H (at most p).

Now consider the boundary C of a component V of λ. It is mapped
by L into the real line monotonically, so C is a curve unbounded in both
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directions, and the image of this curve is an interval (a, b) ⊂ R. It follows
from the Lindelöf theorem that a = b = ∞, and we conclude that there are
finitely many components V , each bounded by finitely many curves C.

Each component V is contained in some component U of K. Furthermore
F has no critical points in H. If there is at least one bad zero on ∂U , then
F : U → H cannot be bijective, so F |U must have an asymptotic value in H.

This means that there is a curve γ : (0, 1) → U which tends to ∞ and
such that F (γ(t)) → α ∈ H as t→ 1. Then we have

L(z) → 0, (32)

and zL(z) → 1 on γ. Let z = x + iy ∈ γ, |z| = r. By (14) we have
|ψ(z)| > Ay/r2 with some A > 0. Also φ(z) > Ar2. Since zL(z) → 1 on γ,
we conclude that y → 0 on γ. Now since F (z) → α = δ+iǫ on γ, where ǫ > 0,
we see taking imaginary parts that y − Im 1/L(x) → ǫ, so −Im 1/L(z) → ǫ.
Thus for large |z|, ImL(z) > 0 on γ so z ∈ Λ and we obtain a contradiction
between (32) and L(z) → ∞ in Λ.

Exercise. Prove that if f = Ph, where P is a real polynomial, and h ∈ W2p,
then f ′′ has at least 2p non-real zeros.

The most complicated case is that of infinite order. For this case, we
only outline some main ideas. When f has infinite order, the Fundamental
Lemma only says that

L = φψ, (33)

where ψ ∈ R\{0}, and φ is an arbitrary real entire function. The main part
of Sheil-small argument gives the following.

Proposition. Let
F (z) = z − 1/L(z),

where L is defined by (33). Assume that ψ in (33) has at least one zero.
Then F has at least one non-real asymptotic value in H. This means that
there is a curve γ in H tending to infinity, and such that F (z) → α ∈ H as
z → ∞, z ∈ γ.

Proof. First of all F has no critical values over H, that is no zeros z of
F ′ such that H(z) ∈ H. This is because

F ′ = 1 + L′/La = f ′′f/(f ′)2,
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and f and f ′′ have only real zeros.
Second, all components C of the set {z ∈ H : L(z) ∈ H} are unbounded,

and
lim sup
z→∞,z∈C

ImL(z) > 0 (34)

for each such component. This is because a pole of L cannot lie on the
boundary of such a component, by the same argument as above. Then by
assumption there is at least one zero of φ, which is a zero of L. Then L
must have at least one extraordinary zero (either lying in H or a real zero x
with L′(x) > 0. This is because the number of extraordinary zeros on every
interval between two poles of L is even. This extraordinary zero must be on
the boundary of some component V of Λ. Then there is a component U of K
which contains V and has the same zero on the boundary. If the restriction
F : U → H is a covering, then the degree of this covering is at least 2,
because F has at least one pole on ∂U , and in addition lim supF (z) = ∞
when z → ∞ in U , which follows from (34). But F has no critical points,
therefore it must have an asymptotic value.

The rest of the proof of the Wiman conjecture consist of estimates of F
which eventually lead to the conclusion that F cannot have an asymptotic
value.

An arbitrary entire function φ can behave at ∞ in an arbitrarily compli-
cated way. To make some conclusion one needs a growth estimate of φ. This
is performed with the help of a proper generalization of Nevanlinna theory.

9. Nevanlinna theory, Hayman’s theorem and a lemma of Zalcman-

Pang.

Everyone knows Picard’s theorem: if a meromorphic function f omits 3
values than f is constant.

Nevanlinna theory gives a quantitative version of this. Let n(r, f) be the
counting function of poles in {z : |z| ≤ r} (counting multiplicity), and

N(r, f) =

∫ r

0

(n(t, f)− n(0, f))
dt

t
+ n(0, f) log r,

m(r, f) =
1

2π

∫ π

−π

log+ |f(reiθ)|dθ.
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The Nevanlinna characteristic is

T (r, f) = N(r, f) +m(r, f).

This is an increasing function of r, and for rational functions we have T (r, f) =
d log r + O(1), where d is the degree, while for transcendental functions
T (r, f)/ log r → ∞.

The Nevanlinna characteristic should be considered as a generalization
of degree of a rational function to transcendental functions. It enjoys the
following properties:

T (r, f + g) ≤ T (r, f) + T (r, g) +O(1), (35)

T (r, fg) ≤ T (r, f) + T (r, g) +O(1), (36)

T (r, fn) = nT (r, f), (37)

T (r, 1/f) = T (r, f) +O(1). (38)

Notice that the last equality is Jensen’s formula. All the rest are trivial.

Exercise. If T is a function from the set of rational functions to the set
of positive numbers which satisfies these properties without O(1) terms then
T (f) = c deg f, for some c > 0.

The main analytic fact is called the Lemma on the logarithmic derivative:

m(r, f ′/f) = O(log T (r, f) + log+ r), r → ∞, r 6∈ E,

where E is a set of finite measure. We will denote any function like in the
RHS of this formula by S(r, f). This is the “error term” in Nevanlinna theory.
A variant of the lemma on the logarithmic derivative for functions in the unit
disk is

m(r, f ′/f) = O(log T (r, f) + log(1− r)−1), r → 1, r 6∈ E,

where
∫

E
(1− r)−1dr <∞.

Let n1(r, f) be the counting function of critical points of f (including
multiplicity), the explicit expression is

n1(r, f) = n(r, 1/f ′) + 2n(r, f)− n(r, f ′).

We define N1(r, f) as before. Finally, let N(r, f) be the Nevanlinna counting
function of poles without multiplicity.

22



With these notation, the Second Main theorem of Nevanlinna says that

q
∑

j=1

m(r, (f − aj)
−1) +N1(r, f) ≤ 2T (r, f) + S(r, f). (39)

It follows that

(q − 2)T (r, f) ≤
q
∑

j=1

N(r, (f − a)−1) + S(r, f).

Taking q = 3, we see that this indeed a generalized Picard’s theorem.
Nevanlinna theory permits to obtain many results similar to Picard’s

theorem, where instead of omitted values of f one considers omitted values
of derivatives.

For example,

Theorem. (Milloux) If f is a meromorphic function, and f ′ is not constant,
then

T (r, f) ≤ N(r, f) +N

(

r,
1

f

)

+N

(

r,
1

f ′ − 1

)

−N

(

r,
f ′ − 1

f ′′

)

+ S(r, f),

Proof. Applying the second main theorem to f ′ we obtain

m

(

r,
1

f ′

)

+m(r, f ′) +m

(

r,
1

f ′ − 1

)

≤ 2T (r, f ′)−N1(r, f
′) + S(r, f)

= m(r, f ′) +m

(

r,
1

f ′ − 1

)

+N(r, f ′) +N

(

r,
1

f ′ − 1

)

− N

(

r,
1

f ′′

)

− 2N(r, f ′) +N(r, f ′′) + S(r, f).

Now N(r, f ′′)−N(r, f ′) = N(r, f), and

N

(

r,
1

f ′ − 1

)

−N(r,
1

f ′′
) = N

(

r,
1

f ′ − 1

)

−N

(

r,
f ′ − 1

f ′′

)

,

and we obtain

m(r, 1/f ′) ≤ N(r, f) +N

(

r,
1

f ′ − 1

)

−N

(

r,
f ′ − 1

f ′′

)

+ S(r, f). (40)
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Now

T (r, f) ≤ m(r, 1/f) +N(r, 1/f) +O(1)

≤ m(r, 1/f ′) +N(r, 1/f) +m(r, f ′/f) +O(1)

≤ m(r, 1/f ′) +N(r, 1/f) + S(r, f).

Combining this with (40), we obtain the statement.

As a corollary one obtains that if f omits 0 and ∞, and f ′ omits 1, then
f is constant.

A remarkable improvement of this is the following

Theorem. (Hayman) If f is a meromorphic function, and f ′ is not constant,
then

T (r, f) ≤ 3N(r, 1/f) + 4N(r, (f ′ − 1)−1) + S(r, f).

Proof. Consider the auxiliary function

g =
(f ′′)2

(f ′ − 1)3
.

If f(z) has a simple pole, then g(z) is finite and g′(z) = 0. Denoting by
Ns(r, f) the counting function of simple poles, we obtain

Ns(r, f) ≤ N(r, g/g′). (41)

Function g has poles at the same points where f ′ − 1 = 0, so

N(r, g) ≤ N

(

r,
1

f ′ − 1

)

. (42)

The zeros of g occur at multiple poles of f and at the poles of (f ′ − 1)/f ′′.
Therefore

N(r, 1/g) = N(r, f)−Ns(r, f) +N(r, (f ′ − 1)/f ′′). (43)

From (42) and (43) we obtain

N(r, g′/g) = N(r, g) +N(r, 1/g)

= N

(

r,
1

f ′ − 1

)

+N(r, f)−Ns(r, f) +N

(

r,
f ′ − 1

f ′′

)

.(44)
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Applying to (41) the first main theorem, the lemma on the logarithmic deriva-
tive, and (44), we obtain

Ns(r, f) ≤ N(r, g′/g) +m(r, g′/g)−m(r, g/g′) +O(1)

≤ N(r, g′/g) + S(r, f)

= N

(

r,
1

f ′ − 1

)

+N(r, f)−Ns(r, f) +N

(

r,
f ′ − 1

f ′′

)

,

from which follows

2Ns(r, f) ≤ N

(

r,
1

f ′ − 1

)

+N(r, f) +N

(

r,
f ′ − 1

f ′′

)

. (45)

As multiple poles are counted in N(r, f) at least twice, we obtain, using
Milloux’s theorem

Ns(r, f) + 2(N(r, f)−Ns(r, f)) ≤ N(r, f) ≤ T (r, f)

≤ N(r, f) +N(r, 1/f) +N

(

r,
1

f ′ − 1

)

−N

(

r,
f ′ − 1

f ′′

)

+ S(r, f).

Multiplying this by 2 and combining with (45), we obtain

N(r, f) ≤ 2N(r, 1/f) + 3N(r, 1/(f ′ − 1)) + S(r, f),

Combining this with Milloux inequality, we obtain the result.

It follows that f(z) 6= 0 and f ′(z) 6= 1 imply that f is constant. Unlike
Picard’s theorem, this only has two conditions on omitted values.

We will need two generalizations of this result of Hayman to functions in
the upper half-plane.

First of them is valid for any region. We recall that Montel’s theorem
says that the family of meromorphic functions in any region which omit 3
fixed values, is normal. This is an instance of the general principle which
is called the “Bloch Principle”. If a condition imposed on a meromorphic
function in the plane implies that the function is constant, then the same
condition imposed on a family of meromorphic functions in a region must
imply that this family is normal.

The version that we use is due to L. Zalcman and X. Pang.
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Theorem. (Zalcman and Pang). Let F be a family of meromorphic functions
in the unit disc without zeros, and suppose that F is not normal. Then for
every α > −1 there exist a number r ∈ (0, 1), a sequence zn, |zn| < r,
functions fn ∈ F and positive numbers ρn → 0 such that

ρ−α
n fn(zn + ρnz) → f(z)

uniformly (with respect to the spherical metric) on compact subsets of the
plane, and the limit function f is not constant.

For example, taking α = 0 we obtain that Montel’s theorem follows from
Picard’s theorem.

Proof. We only give a proof for α = 1, the case we need. If the family is
not normal, there is a sequence fn and z∗n, |z∗n| ≤ r∗ < 1 such that

|f ′
n(z

∗
n)|

1 + |fn(z∗n)|2
→ ∞.

Choose arbitrary r ∈ (r∗, 1). We have

(1− |z∗n/r|2)2|f ′
n(z

∗
n)|

(1− |z∗n/r|2)2 + |fn(z∗n)|2
≥
(

1−
∣

∣

∣

∣

z∗n
r

∣

∣

∣

∣

2
)2

f ′
n(z

∗
n)|

1 + |fn(z∗n)|2
.

The RHS tends to ∞, so the left hand side also does. Therefore, we may
assume that the LHS≥ 1.

Then we choose tn ∈ (0, 1) and zn, |zn| < r so that

max
|z|<r

(1− |z/r|2)2t2n|f ′
n(z)|

(1− |z/r|2)2t2n + |fn(z)|2
:= max

|z|<r
Φn(z) = 1,

and is achieved for z = zn. Indeed, for tn = 1, this expression is positive
and |z| < r and zero on the boundary (we used here the assumption that
f(z) 6= 0). So there is a positive maximum, and this maximum tends to
+infty. Then tn → 0, the maximum evidently tends to 0, so there exists tn
for which this maximum equals 1.

Then we have

t2n
(1− |z∗n/r|2)2|f ′

n(z
∗
n)|

(1− |z∗n/r|2)2 + |fn(z∗n)|2
≤ Φn(z

∗
n) ≤ 1,

so tn → 0.

26



We set ρn = (1−|zn/r|2)tn, then ρn/(r−|zn|) → 0, and thus the functions
hn(z) = fn(zn + ρnz)/ρn are defined in the discs whose radii tend to ∞. It
remains to estimate their spherical derivatives in these disks.

|h′n(z)|
1 + |hn(z)|2

=
ρ2n|f ′

n(zn + ρnz)|
ρ2n + |fn(zn + ρnz)|2

≤ 1,

while at z = 0 this is equal to 1. So hn tend to a limit f and this limit is not
constant.

Corollary. Let f be a function holomorphic in H, such that f(z) 6= 0 and
f ′′(z) 6= 0. Then the family

{f(rz)/rf ′(rz) : r > 0}
is a normal family.

Proof. Let gr(z) = f(rz)/(rf ′(rz)). Then gr are meromorphic, zero-free,
and

g′r − 1 = −ff ′′/(f ′)2,

and this is zero-free. So the family is normal by the previous theorem.

10. Tsuji characteristics

Second generalization of Hayman’s theorem that we need is obtained by
generalizing Nevanlinna theory to functions in a half-plane.

It was developed independently by Tsuji and Levin–Ostrovskii. They
defined the characteristics in the following way. Let n(r, f) be the number of
poles, counting multiplicity is {z : |z − ir/2| ≤ r/2, |z| ≥ 1}, then

N(r, f) =

∫ r

1

n(t, f)

t2
dt, r ≥ 1,

and

m(r, f) =
1

2π

∫ π−sin−1(1/r)

sin−1(1/r)

log+ |f(reiθ sin θ)|
r sin2 θ

dθ,

The Tsuji characteristic is

T(r, f) = m(r, f) +N(r, f).

It is easy to show that the Tsuji characteristic has the same algebraic prop-
erties (35)-(38) as the Nevanlinna characteristic. The following version of the
Lemma on the logarithmic derivative holds:

m(r, f ′/f) = O(log+ T(r, f) + log r).
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These formal properties permit to repeat all arguments of Milloux and Hay-
man in the upper half-plane, and to obtain the following

Theorem. (Levin–Ostrovskii). If g is meromorphic in H, g(z) 6= 0 and
g′(z) 6= 1, z ∈ H. Then T(r, g) = O(log r), r → ∞.

This is obtained by exactly the same arguments as Hayman’s theorem
but using the Tsuji characteristics instead of Nevanlinna characteristics.

In the Tsuji characteristics, the half-plane is exhausted by horocycles.
We need to pass to the more usual exhaustion by concentric discs. For this
the following lemma is used:

Lemma A. Let g be meromorphic in H, and put

m0π(r, g) =
1

2π

∫ π

0

log+ |g(reiθ)|dθ.

Then for R ≥ 1 we have

∫ ∞

R

m0π(r, g)

r3
dr ≤

∫ ∞

R

m(r, g)

r2
dr.

This is proved by a change of the variables in the double integrals. It
follows from this lemma that our entire function ψ0 in the Levin–Ostrovskii
representation is of order at most one.

A lower estimate will be obtained from the normal family argument:

Lemma. For every δ > 0 and K > 1 we have

|wL(w)| > K, δ < argw < π − δ, (46)

for all |w| outside a set E of zero logarithmic density.

Proof. Consider the functions gr(z) = 1/(rL(rz) in a sector

Ω = {z : 1/2 < |z| < 2, δ/4 < arg z < π − δ/4}.

Suppose that w0 is such that

|w0L(w0)| > K, |w0| = r.

Then
|gr(z0)| ≥ 1/K, z0 = w0/r
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and by normality

|gr(z)| > 1/K1, |z| = 1, δ/2 < arg z < π − δ2,

with some K1 > 0 which depends on δ and K, but is independent of r. This
shows that

|wL(w)| = |wψ0(w)P0(w)| ≤ K1

on most of the circle, which is incompatible with P0 having order at most 1.

Corollary. Function P0 has at least one zero.

11. Carleman’s estimate. Direct and indirect singularities. Con-

cluding argument.

Let u be a non-constant subharmonic function in the plane, B(r, u) =
max|z|=r u(z), and θ(r) the angular measure of the set

{θ : u(reiθ) > 0}.

Suppose that θ(r) < 2π for all r, and B(r0, u) ≥ 1. Then

log ‖u+(4reiθ)‖1 ≥ logB(2r, u) ≥ π

∫ r

r0

dt

tθ(t)
+ c,

where c is an absolute constant.

This was proved by Carleman to derive what is called the Denjoy–Carleman–
Ahlfors theorem: an entire function of order ρ cannot have more than 2ρ
asymptotic values. Our application is similar:

Lemma. Function F cannot have more than 4 finite non-real asymptotic
values.

Proof. Consider the auxiliary functions

G(z) = z2L(z)− z =
zF (z)

z
− F (z), hα(z) =

1

F (z)− α

Then g has no poles in H and T(r, g) + T(r, h) = O(log r) by the properties
of the Tsuji characteristic. Then Lemma A implies

∫ ∞

1

m0π(r, g) +m0π(r, hα)

r3
dr <∞. (47)
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Since F is real on the real axis, we can take disjoint paths γj in H such that
F (z) → αj z → ∞. Let Dj be domains between these paths, and θj(r) the
angular measures of Dj ∩ {z : |z| = r}. It is clear from the definition that
g(z) → αj on γj, and as g is holomorphic in H it must grow in Dj. We apply
Carleman’s inequality to subharmonic functions

uj(z) = log+ |g(z)/c|

. We obtain

log ‖uj(4reiθ)‖1 ≥ π

∫ r dt

tθj(t)
+O(1),

so

logm0π(4r, g) ≥
∫ r dt

tθj(t)
+O(1),

and by Cauchy–Schwarz inequality,

n2 ≤
n
∑

j=1

θj(t)
n
∑

j=1

1

θj(t)
≤ π

n
∑

j=1

1

θj(t)
.

So n log r ≤ logm0π(4r, g) +O(1) which contradicts (47).

So F has finitely many asymptotic values and no critical values inH. As it
has at least one asymptotic value, this must be a logarithmic singularity. Let
D be a component of preimage of a small disk around the asymptotic value α
in the upper half-plane. Then D contains no α-points of F , and by Lemma B,
θ(r) = o(1). Then Carleman’s inequality applies to the subharmonic function

u(z) = log+ |hα/c|

shows that hα is of infinite order, contradicting (47).
This completes the proof of the Wiman conjecture.
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[9] G. Pólya, Über die Nullstellen sukzessiver Derivierten, Math. Z., 12
(1922) 36–60.
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