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PROOF OF A CONDITIONAL THEOREM OF LITTLEWOOD
ON THE DISTRIBUTION OF VALUES OF ENTIRE FUNCTIONS

UDC 517.53

A. E. EREMENKO AND M. L. SODIN

ABSTRACT. It is proved that for any entire function / of finite nonzero order there is
a set S in the plane with density zero and such that for any a € C almost all the roots
of the equation /(ζ) = α belong to S. This assertion was deduced by Littlewood from
an unproved conjecture about an estimate of the spherical derivative of a polynomial.
This conjecture is proved here in a weakened form.

Bibliography: 11 titles.

§1. Introduction

For a meromorphic function /, denote by pj its spherical derivative,

Let D{z,R) = {w € C: \w - z\ < R} and D(R) = D(0,R), and let m2 be Lebesgue
measure on the plane C. In [1] Littlewood considered the quantities

<p(n) = sup pp dm2 — sup sup - 11 pp dm2-
ρ J J ρ r>o r J J

D(r)

Here the supremum is over all polynomials Ρ of degree η, η = 1,2,·· · . The analogous
quantities for rational functions will be denoted by il>{n). It follows from the Schwartz-
Bunyakovskii inequality that

4>{n) < I dm2 · sup / / pj / / p}dm2

1/2

/

The second integral is none other than the spherical area (with multiplicity counted of
the image of the disk D(l) under the action of a rational function of degree n. Thus,
this integral does not exceed ττη, and we get that

<p{n) < tl>(n) < iryfii. (1.1)

The best-known lower estimates were obtained by Hayman [2]:̂ >(n) > A\yjn and <p(n) >
A2 logn. Here Αι and A2 are absolute constants. Thus, inequality (1.1) gives the correct
order of ψ(η). Up to the present time it was not known whether estimate (1.1) can be
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strengthened for φ{ή). It was conjectured in [1] that there are absolute constants A and
a such that

<p{n) < Αη1/2-α. (1.2)

Littlewood deduced [1] the following remarkable consequence of this conjecture: For any
entire function f of finite nonzero order there exists a small portion S of the plane such
that for any a € C the roots of the equation f(z) — a belong to S with a negligible
exception. For example, for f(z) — ez we can take S — {x + iy: \y\ > x2}. Then the set
S has zero density, i.e.,

m2(Sr\D{r))=o{r2), r ->• oo,

and for any a all the roots of the equation ez = a fall in S with finitely many exceptions.
In this article we prove this corollary (Theorem 2) and get the estimate <p(n) =• o{yjn),

η —> oo (Theorem 1). Theorems 1 and 2 are contained in §§3 and 4, respectively. The
proofs of both theorems use two lemmas from potential theory which are contained in
§2. These lemmas may also be of independent interest.

§2

LEMMA 1. Suppose that u > 0 is a subharmonic function on a domain G C C,
μ = μη is the associated measure in the Riesz sense, and Ν — {ζ € G:u(z) — 0}. Then
there exist Borel sets Ε and L such that Ν — Ε U L, m2L = 0, and μΕ = 0.

PROOF Assume that G and u are bounded. The transition to the general case does
not involve difficulties. We take Ε to be the set of points of density of Ν which belong
to N. Let L — N\E. By Lebesgue's theorem (see, for example, [3]), m2L = 0.

We show that μΕ = 0. Fix a point ZQ € Ε and an arbitrarily small number ε > 0.
Let ro, 0 < ro < ε, be such that D(zo,ro) C G and

m2{(G\N)nD(zo,r)) <6r2, r < r0,

where έ = (44 • 3 • 51og2)^1. Denote by 9(r) the angular measure of the set {G\N) Π
dD(zo,ro). We show that on each interval [r, 2r] C (0, TO] there is a point r* such that
9{r*) < η = 4~4 · 3 " 1 . Indeed, if 0(r*) > η, r < r* < 2r, then, by the Schwarz-
Bunyakovskii inequality,

r2= dt) < ' '[
Jr

< m2{{G\N) Π D{zo,2r))^1 Iog2 < Αδτ2η~ι Iog2 = §r 2

a contradiction.
Thus, on each interval [r, 2r] C (0,r0] there is a point r* such that θ {τ*) < η. There-

fore, there exists a sequence (r^) with the following properties:

fc_i < 1/2, A; = 1,2,. . . , (2.1)

0{rk) < η, A; = 1 , 2 , . . . . (2.2)

Let Μ — sup{u(z): ζ 6 G} and Mk = sup{w(z): \z - zo\ — rk}, k = 0,1,2, • • · . Using the

Poisson formula, we get by (2.2) that

Mk+l < r* + r f c + 1 Γ u(z0 + rke°) άθ
rk rk Jo

< (3r?)fc+1M.
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It follows from (2.1) that 4" f c - 1 < rk+1/r0; therefore,

Mk+l < (3 • 4 4 r , ) f c + 1 (r , + 1 / r o ) 4 M = (rk+1/r0)
4M < r3

+1 (2.3)

for sufficiently large k.
Let n(t) = μΟ(ζο: t). It follows from the Poisson-Jensen formula, the fact that U{ZQ) —

0, and (2.3) that for sufficiently large k

n(rk/e) < Γ ^ dt < ±- [ u(z0 + rke
ie) άθ < Mk < r3

k.
Jrk/e t 2 π JO

Thus, each point z$ G Ε can be included in a disk D{ZQ, R{ZQ)) such that μϋ(ζο, R{ZQ))
< e3(R(z0))3, and R{z0) < ee~3 for all ZQ e E. According to a theorem on coverings
(see, for example, [3], p. 5). there exists a countable covering of Ε by these disks with
multiplicity at most six: Ε C [Jk D(zk,R(zk)). We have that

μΕ <J2vD(zk, R(zk)) < e3 ^
k k k π

Since ε > 0 is arbitrary, this leads us to conclude that μΕ = 0, which is what was
required to prove.

We show the connection between Lemma 1 and [4] [6]. Let flbea domain having a
Green's function, and assume that o o G D . Extending to C\D the Green's function with
a pole at oo by assigninig the value zero, we get a function u > 0 which is subharmonic
in C. The Riesz measure μ of this function coincides with the harmonic measure at oo
with respect to D. In this case Lemma 1 becomes a result of 0ksendal (see [4] and [5])
asserting that the harmonic measure μ and Lebesgue measure m<i are mutually singular.
If it is assumed in addition that D is simply connected, then a stronger result is known
[6]: μ is singular with respect to the Hausdorff measure m\+E for any ε > 0.

The following ''stable" variant of Lemma 1 appears to be plausible.

CONJECTURE. There exist absolute constants Β > 0 and β > 0 such that for any
function u subharmonic in D(l) with 0 < u < 1 and any ε > 0

{ze D(\):u(z) < e } C L E U £ £ ,

where τη^ε < Βεβ and μΕε < Βεβ.

Simple examples show that this conjecture can be true only for β < 1/2. It is possible
to deduce (1.2) with any a < 1/2 — β/2 from our conjecture by the method used below
in proving Theorem 1.

To formulate the next lemma we require some definitions.
Fix a number C > 0 and denote by U the set of functions u subharmonic in D{2) with

the properties u(z) < C, ζ < 2, and u(0) > —C.
The following facts from potential theory can be found, for example, in [7] and [8]. The

set U is a compact subset of the space L1 — L1(D(2),dni2)- All the topological terms
below relate to the topology of Ll unless otherwise stated. The convergence un —» u
implies weak convergence of the associated measures in the Riesz sense: μη —> μ. This
means that

D(2)

for each continuous function g with compact support in D(2). If μη —* μ, then
l i m n _ 0 0 μηΚ < μΚ for each compact set Κ C D{2).

The subset U+ C U consisting of nonnegative functions is closed in U; hence it is
compact.
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LEMMA 2. Suppose that u e U+ and δ > 0. Then there exist a set Ε c £>(1)
and a number ε > 0 with the following properties. For any function υ 6 U in the ball
\\u-v\\ <e

μνΕ < δ, (2.4)

{zeD{l):v{z) <e}cEl>Lv, (2.5)

where
m2Lv < 6. (2.6)

PROOF. Applying Lemma 1 to the function u, we find a set Ε (change its notation
to E*) and a set L with the properties in Lemma 1. Let

Λί ι=Ιηΰ(ϊ) , Μ2 = Ε* Π #00, M3 = {z e~D(l):u{z)

Choose a number ε > 0 such that the closed set If = {z € Z?(l):u(<;) > 2ει} C M3

satisfies the condition
m2(M3\K) < δ/4. (2.7)

Choose Ε to be a compact subset of M2 such that

m2{M2\E) < δ/A. (2.8)

Since μ«Μ2 = 0 and £ C M2,
μ«£ = 0. (2.9)

In view of (2.9) there exists an ε2 > 0 such that if ν G U and ||u - v\\ < ε2, then

μνΕ < δ. (2.10)

Further, if \\u - v\\ < ει<5/4 and Xv = {z e D(l): \u(z) - v(z)\ > ει}, then

m2Xv < — if \u-v\dm2 < —\\u-v\\ <δ/4. (2.11)
ει JJ ει

Let ε = πήη(ει,ε2,ει5/4). UveU, \\u - v\\ < ε, then (2.4) holds because of (2.10).
Moreover,

{z e D{1): v{z) < ε} c (D{l)\K) U Xv

= XVU {M3\K) U {M2\E) UMiUE=:LvUE,

and, by (2.7), (2.8), and (2.11),

m2Lv < m2Xv + m2{M3\K) + m2(M2\E) + πι2Μχ < δ.

Lemma 2 is proved.

§3.

THEOREM 1. <p(n) = Ο(Λ/ΤΪ) as η —• oo.

PROOF. By the Schwarz-Bunyakovskii inequality, for any measurable set Κ C D(l)

/ / pj dm2 < < m2K · Pf dm,2 > (3-1)

κ κ κ
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(cf. §1). If the theorem is false, then there exist arbitrarily large indices n, nth-degree
polynomials P n , and a number χ > 0 such that

pPn dm2 > x\/n. (3.2)

We consider the sequence of nonnegative subharmonic functions

vn(z) = - log y/1 + \Ρη(ζψ = if log \z - ξ\ άμη(ξ)

/ / ' -ilog

1

A direct computation shows that

Avn{z) = 2p2

Pn(z)/n (3.3)

(see, for example, [9], p. 19). In particular, μ η (Ο) = 1. Passing to a subsequence if
necessary, we assume that μη —> μ weakly in each disk D(R), R > 0.

We now consider two cases.
1°. l imC n < +oo. Again choosing a subsequence, we assume that vn —> u € U+. Let

us apply Lemma 2 with 6 = ζ 2 /(16π 2 ) to the function u. We get a partition of D(l)

into three sets E, Ln = LVn, and Mn = { z £ D(l):vn(z) > ε}, and for sufficiently large

η in the chosen sequence
μηΕ < δ, m2L2 < δ. (3.4)

By (3.1), (3.3), and (3.4),

/ Ν 1/2

/ / pPn dm2< π I p2

Pn dm2 + {nnm2Ln)
1/2

EuLn V Ε J

= {π2ημηΕ)1'2 -

Further, the image of Mn under the mapping Pn is contained in the exterior of the
disk of radius \fe2ne — 1 about zero. Therefore, the spherical area of this image (with
multiplicity taken into account) tends to 0 as η —* oo along the chosen sequence. Hence,
by (3.1),

ppndm2 = o(l), ra-K». (3.6)

Mn

But (3.5) and (3.6) contradict (3.2).
2°. Cn —* +oo. Then it follows from the Cartan-Ahlfors lower estimate for the

potentials (see, for example, [8] or [7]) that for sufficiently large η in the chosen sequence

Vn(z) > 1,
when m2Ln < 6. Of course, as in the first case, we again contradict (3.2), and Theorem
1 is proved.

§4.

Let / be an entire function of order λ < oo. We consider a comparison function
V{r) = rxl{r) such that

^J^T ^ (,/ ) |/(
and l(r) ~ /(2r), r —> oo. Such a function V(r) always exists [9].
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Denote by n{r, a) the number of roots of the equation f(z) = a (counting multiplicity)
in the disk D(r), and by n(r, a; S) the number of roots of this equation on the set SC\D(r).

THEOREM 2. Suppose that f is an entire function of order λ < oo, and let V be a
comparison function. Then there exists a set S of density zero such that for all a g C

n(r,a) = n(r,a;S) + o(V(r)), r —> oo.

REMARK 1. A consideration of elliptic functions shows that Theorem 2 ceases to be
true for meromorphic functions.

REMARK 2. Theorem 2 loses its content if λ = 0. In this case, as shown by Gol'dberg
and Zabolotskii [10], we have that n(r,a) = o(V(r)), r —•> oo, for all a € C. But if
λ > 0, then it is well known [9] that lim,.-,,» n(r, a)/V(r) > 0 for all but possibly one
exceptional value of α € C.

We remark that a stronger assertion than Theorem 2 both about the characteristic of
S and about an estimate for the remainder is deduced in [1] from the conjecture (1.2).

PROOF OF THEOREM 2. We use the notation x+ = max(z,0) and x~ = (-z) + . Let
E L ( / ) be the set of α € C such that

Jo>0 IJV't ) - «I

for an unbounded set of values r. It is known [11] that

m2EL(f) = 0. (4.2)

Assume without loss of generality that /(0) = 1 and that 0 ̂  E^(/). We choose a
large number Μ > 0 and consider on D{2) the family of subharmonic functions

log 1/(2-2)^-01 n = 1 2

' ' 7 " ' (4-3)
Vn,a(z) =

a e Q = {o € C: \a\ < M, \a - 1| > ̂ } .

This family is contained in a certain set U (defined before Lemma 2).
It follows from (4.1) and (4.3) that for α φ E L (/)

dist(« n , o ,C7+)<| | t ; n , e -u+ e | | = | |«- a | |

" ' , 4- 1
n>n o (a), (4.4)

/o Jo 6 |/(2»re«) - a\

where C\ is a constant depending only on V.
For each δ > 0 and each function u S U+ we choose a number ε = ε(δ, u) < δ according

to Lemma 2 and consider the covering of the set U+ C U by balls of radii ε(δ, ω)/3 about
each point u € U+. In view of compactness there exists a finite subcovering by balls
about some points i t^, 1 <i<N$. Let

η(δ) = min{e(6, ul<6)/3:1 < i < N6} — 0, «5 -> 0.

Choose a sequence δη —* 0 decreasing so slowly that

Οιη/ν(2η)<Ί(δη)=ο(1), η -οο. (4.5)

Let ι>η = t>ni0. The nonnegative function υ+ is contained in one of the Ngn balls in the
finite covering constructed above. Denote the center of this ball by un and its radius by
εη. By construction, 3εη = e(6n,un) and η{δη) < εη

| | ι ι η - « + | | < ε η . (4.6)
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Let us apply Lemma 2 to u = un, δ = δη. By the choice of εη, the assertion of the
lemma holds with ε = 3εη. Lemma 2 gives us sets En and Ln = Lv+ such that for any
function ! ) £ ( / with ||i> — un\\ < 3εη

μνΕη < 6η (4.7)

and, moreover, by (4.6),

{zeD{l):v+{z)<3en}cEnULn, (4.8)

m2Ln < δη. (4.9)

Using the inequality log"1" \a + b\ < log+ \a\ + log"1" |i»| + log2 and (4.5), we get that

\v+Jz) - v+(z)\ < C2(V(2n))-1 < Ί(δη) < εη (4.10)

for ζ Ε D{2) and η > no(a). By (4.10) and (4.8), for any a e Q we have that

{z e D{l):vn,a{z) < εη} C {z € I>(1): υη(ζ) < 2εη} CEnULn (4.11)

from some index on.
Now let Sn = {ζ: 2 " " 1 < \z\ < 2 n, 2~nz € Ln) and SQ = [J™ Sn. In view of (4.9)

m2{SQ Π £>(2")) = m 2 i ( j S t ] < j ; 2k6k = o{2n), η -> oo.
^ f c = l ' fc=l

Therefore, the set S® has zero density.
Let a E Q\EL{/)· We estimate the number of α-points of / in the set {z:2n~1 <

z\ < 2n}\Sn. This number is equal to

V{2n^VnJ{z:l/2<\z\<l}\Ln).

Note first that the function υ η , α is harmonic on the set {ζ Ε D(2): vna(z) > εη}. There-
fore, by (4.11),

μυη,α{{ζ: 1/2 < \z\ < l}\Ln) < μνυ,α(Εη). (4.12)

Further, it follows from (4.4), (4.5), (4.10), and (4.6) that for a € Q\EL{f)

ΙΚ,α - " n | | < ΙΚ,α ~ Vn,a\\ + \\Vn,a ~ Vn\\ + \\vn ~ un\\

< η{δη)+εη+εη < 3εη, η>ηο{α).

Consequently, (4.7) is applicable to υ η > α , and we get that

μυηαΕη < δη. (4.13)

Using (4.12), (4.13), and the properties of the comparison function V', we get that the

number of α-points of / in D(2)\ | J " Sfc is

fc=l fc=l

Therefore, for a E Q\EL{f)

n(r,a) = n(r,a;SQ) + o(V{r)), r-»oo.

We now consider the countable family of sets

Qk = {aE C: \c\ < k, \a -
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which together cover the whole plane C except for the point 1. To each Qk there
corresponds a set S{k) — SQk of density zero such that for all a e

n(r,a)=n(r,a;S{k)) + o(V{r)), r -> oo. (4.14)

We choose an increasing sequence of positive numbers (r&), r;t —> oo, such that

m2{(S(l)l)---llS{k))nD(r))<2-kr'2, r > rk. (4.15)

Let So = Ufcli(S(fc)\#(rfc)). If rfc_i <r<rk, then m2{S0C\D{r)) < 2" f c + 1r 2 by (4.15).
Consequently, the density of So is equal to 0. It follows from (4.14) that for α φ E L ( / ) ,

α φ I,

n(r,a) = n(r,a,S0)+o(V(r)), r -> oo.

Finally, adding to So the set f~1{EL(f) U {1}) of measure zero (by (4.2)), we get the
desired set S. The theorem is proved.

The authors thank V. S. Azarin, A. L. Vol'berg, A. A. Gol'dberg, and S. Yu. Favorov
for a discussion of this work and for valuable comments.
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