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Introduction

We talk of an algebraic differential equation if it is of the form

(0.1) F(,/h\ ζ Λ 1 ' , ..., у, z) = 0, УО) = ^ГГ '

where F is a polynomial in the first k+ 1 variables, whose coefficients are
analytic functions of the independent variable z. If the conditions of
Cauchy's theorem for the existence and uniqueness of the solution are
satisfied, then (0.1) determines an analytic function in a neighbourhood of a
given point z0. One of the most difficult problems in the analytic theory of
differential equations is that of the analytic continuation of the solution and
of studying it in the whole domain where it exists. It is natural, first of all,
to ask whether there are solutions of (0.1) that are meromorphic in the
finite plane C. A second important problem is to study the properties of
meromorphic solutions immediately from the equation, if it is known that
such solutions exist. This article is devoted to this second problem.
Throughout what follows, unless stated otherwise, by a meromorphic
function we mean one that is meromorphic in C. We always use ζ to denote
an independent variable, ζ G C.

For autonomous first-order equations

(0.2) F(y', y) = 0
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both questions were completely solved in the 19th century. A necessary and
sufficient condition for the existence of meromorphic solutions is given by
the Fuchs criterion (see §1). Every meromorphic solution of (0.2) is either
an elliptic function, or a rational function, or a function of the form
/?(exp az), where R is rational and a E С (see §7).

The first result on meromorphic solutions of non-autonomous equations
was the famous theorem of Malmquist [41]: if the equation y' = R(y, z),
where R is a rational function of two variables, admits a transcendental
meromorphic solution, then this equation necessarily is of the form
y' = a(z)y2+ b(z)y + c(z), that is, it is a Riccati equation. Malmquist's
theorem has many times been generalized and proved by different methods
(see, for example, [3], Ch. V; [22], §5; [31], Ch. IV, and also [32] and
[69]). The simplest proof due to Ktinzi [37] is by the use of the Nevanlinna
theory of meromorphic functions. Starting from the papers of Yosida [69],
Kiinzi [37], and Wittich [62], [63], Nevanlinna theory became a fundamental
tool for the relevant questions.

Many papers have been devoted to generalizations of Malmquist's theorem
to first-order equations that are non-linear in y'. As long ago as 1920,
Malmquist proved the following general theorem [42]: if a first-order
equation

(0-3) F(y', y, z) = 0,

where F is a polynomial in the first two variables with algebraic coefficients,
is irreducible and has a transcendental meromorphic solution, then this
equation satisfies the Fuchs conditions (see also [43]). For brevity, we call
Malmquist's theorems of 1913 and 1920 Theorems I and II, respectively. It
is easy to see that Theorem I is a special case of II.

The paper [42] has had practically no influence on the work of other
authors, although many results obtained after 1920 are simple consequences
of Theorem II. A typical example is [55], in which Malmquist's Theorem II
in a weakened form is suggested as a conjecture. Apparently this situation
is explained by the fact that [42] is written very laconically, and many
essential points of the proofs in it are omitted. It is possible that Malmquist's
Theorem II has aroused distrust. It should be mentioned that for an
understanding of [42] and [43] the review by Schmidt [53] is of great help.

Up to a short time ago, all the results on meromorphic solutions of (0.1)
have been obtained under the assumption that the coefficients of F are
algebraic or rational functions of z. It was thanks to the approach proposed
independently by Laine [38] and A.E. and V.D. Mokhon'ko [14] that it
became possible to study meromorphic solutions of equations with
transcendental coefficients. This approach consists, roughly speaking, in
considering "admissible solutions", that is, those whose Nevanlinna
characteristic grows faster than the characteristics of the coefficients of the
equation. If the latter are algebraic, then the class of admissible solutions
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coincides with that of transcendental solutions (see §2). This accords well
with the classical point of view that one should consider solutions of
differential equations in a class of more "complicated" functions than the
coefficients of the equation (see, for example, [2] , 171; [4], 37). In the
case in question, the growth of the Nevanlinna characteristic is a good
"measure of transcendence" of an algebroid or meromorphic function.

If F is a polynomial in three variables, then (0.3) can be regarded as the
equation of an algebraic surface F(tu tb t3) = 0. Another point of view
turns out to be more fruitful if F in (0.3) is regarded as a polynomial in two
variables over some suitable coefficient field. This approach allows one to
apply the theory of algebraic functions in one variable to (0.3), where the
algebraic dependence of F on ζ becomes unimportant. In this article we
show how the consistent application of this idea allows us to obtain almost
all the most recent results on admissible solutions for equations of both the
first and higher orders.

In § § 1 and 2 we gather all the information about algebraic function
fields, Fuchsian differential fields, and the Nevanlinna theory that is
necessary for what follows. In § §3 and 4 we give a new proof and a
generalization of Malmquist's Theorem II, and also a survey of recent results
on the existence of meromorphic solutions of (0.3). In §5 we investigate,
with the aid of the theory set out in § § 1 -4, the asymptotic properties of
solutions of (0.3) in the most interesting case, when the dependence of F on ζ
is algebraic. §6 is devoted to analogues of the results of § §4 and 5 for
equations of higher order, and also for solutions that are meromorphic in a
circle or a half-plane. Finally, in §7 we examine higher-order equations of
the special form F(y^h), y) = 0 with constant coefficients (equations of
Briot-Bouquet type). We have tried not to repeat results in the books [ 1 ] ,
[2], [3], [4], [27],and [31].

The author is sincerely grateful to A.A. Gol'dberg, who drew his attention
to the classical papers of Malmquist, proposed this article and gave
comprehensive help in writing it out, and also to V.E. Katsnel'son and
V.G. Drinfel'd for useful discussions.

§1. Algebraic function fields and the Fuchs conditions

1. It is convenient to regard the coefficients of (0.1) as elements of some
algebraically closed field. We choose the field A of all algebroid functions,
that is, the algebraic closure of the field of meromorphic functions. A can
be described in the following way. We consider first the field of formal
series of the form

σο

(1.1) 2 fliz(m+i)/B. ffj6C, а0ф0, mtZ, (i6N.
j=0

This field is algebraically closed. We always assume that the exponents of
the powers in (1.1) of terms with α,- Φ 0 do not all have a common factor.
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We now pick out those series (1.1) that converge in some neighbourhood of
0 and can be continued in С to a finitely-valued analytic function without
singularities in С other than algebraic ones. These series also form an
algebraically closed field, which, as is not hard to see, is the algebraic
closure A of the field of meromorphic functions. By an algebroid function
we always mean an element of A, that is, a series (1.1) continued in C. To
two distinct elements of A there may correspond identical analytic functions
in the usual sense of the word, for example, z1^ and —z1^ are, by our
definition, distinct algebroid functions.

We shall have to deal with inequalities of the form

(1.2) Φ (f,(z), Ш, . . ., /n(z)) > 0, ζ 6С, fj 6 Α.

Such inequalities must be interpreted in the following way. We consider
power series of the form (1.1), representing elements/!, .... /„. The germs
corresponding to these series can be analytically continued along a curve Γ
to a point z £ C , and the curve is the same for all the germs and does not
pass through the branch points of ft, ..., /„. The result of the continuation
must satisfy (1.2) irrespective of the choice of Γ. An equation containing
/(z), / G Α, ζ G С, is to be interpreted in a similar way.

2. Let Ao be a field. We always assume, without specifically saying so, that
Ao is of characteristic 0 and algebraically closed. As a rule, Ao will be an
algebraically closed subfield of A. We use the usual notation Ao [tlt ..., tn]
and A0(tb ..., tn), respectively, for the ring of polynomials and the field of
rational functions in η variables with coefficients in Ao. We also use the
notation B[tb ..., tn\ when В is a ring.

Before examining differential equations, we must study relations of the
form F(x, y) = 0, where F G Ao [tit t2]. Suppose that F G Ao [tlt t2] is an
irreducible polynomial. Then the quotient ring AQ[tx, t2]/(F), where (F) is
the ideal generated by F, is an integral domain, and we can consider its field
of fractions 9Г, which for brevity we denote by 91 = A0{tb t2)/F. The
elements of 91 must be representable as rational functions in ^40(i,, t2) whose
numerator and denominator are relatively prime to F. The pair (91, Ao) of
the form indicated is called an algebraic function field in a single variable
over Ao. Since Ao is fixed, we take the liberty of just calling 91 an algebraic
function field.

If Ao — C, then 91 is the field of rational functions on the Riemann
surface of the function у given by the irreducible equation F(y, z) = 0,
F e C [fj, t2]. Information about algebraic fields that we need later is
contained in [ 11 ] , Ch. 1, [20], and [21 ] (for the case Ao = C, see, for
example, [9]).

The field 91 has transcendence degree 1 over Ao. This means that for any
α, β 6 9l· there is a polynomial Q G Ao [th t2] for which Q(a, β) = 0.

A ring V a 91 is called a local ring if Ao С V, 91 ΦΥ, and for every
either a G V or a"1 G V. The elements a 6 91 such that both a G V and
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a"1 e V are called units of V. The set of all units in V is denoted by U{V).
The elements of a local ring V that are not units form an ideal / = I{V).
This ideal is maximal and has a single generator t. Every element a E V can
be represented in the form α = tmu, и £ U(V), m G Z+. ST is the field of
fractions of any of its local rings, therefore, each element α 6 Ш can be
represented in any local ring in the form

(1.3) α = tmu, u£U(V), mEZ,

where m > 0 if and only if α €= V in (1.3). The number m in (1.3) is called
the order of α in V and is denoted by ord^a.

It can be shown that the quotient ring V/I is the same as the field Ao.
Therefore, any element a £ V can be represented in the form a = ao+aly
ao G ^o> ai e Λ consequently, щ = ta2, oc2 Ε V. Continuing this procedure
we obtain a formal expansion of a £ V in a Puiseux series

(1.4) α = ί™α0 + i m + 1

a i 4- . . ., aj ζ 4 0 .

Here /rz > 0. A similar expansion can also be obtained for any element
o f J I , making use of (1.3). Here m = ord^a in (1.4) can be any integer.

When Ao = C, a local ring is the set of all rational functions on the
Riemann surface that do not have a pole at a given point. Thus, local rings
are in one-to-one correspondence with the points of the Riemann surface.
The ideal / of a local ring is the set of rational functions that vanish at the
point in question. As the generator t of I one can take any function that
has a simple zero at the given point. This terminology can naturally also be
used in the case of an arbitrary field Ao. We sometimes refer to local rings
as points, and to a generator of / as a local parameter at the point. If m > 0
in (1.3), we say that the element α has a zero of order m at the point V,
and if m < 0, that it has a pole of order —m. In the case of an arbitrary
field Ao, just as for AQ = C, an arbitrary element α € Ш has ord^a φ 0 at
only finitely many points V, and ^]οτάνα = 0, where the summation is
over all points of 91.

3. A divisor is a point function that takes integer values and is different
from 0 at only finitely many points. The sum of all the values taken by a
divisor δ is called its degree and is written deg δ. The divisor δ(α) of an
element α £ И is the point function equal to ordva at V. Here deg δ(α) = 0
for any а Е Я . A divisor is called non-negative if all its values are non-
negative. The divisors form an Abelian group under addition, which is
isomorphic to the free Abelian group generated by the points. We use the
expression δ! > δ 2 if 5t- δ 2 > 0 for divisors δι and δ 2 , that is, δγ - δ 2 is a
non-negative divisor.

Let δ be a fixed divisor. We consider the set JC(5) of the elements of
with the property that δ(α) > —δ. It is easy to see that £(δ) is a vector
space over Ao. The following theorem enables us to compute the dimension
of £(δ).
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The Riemann-Roch theorem. There is an integer g > 0, depending only
on the fields Ao and 21, such that for any divisor

dim JC (6) = deg δ + 1 - g + Δ(δ),

where Δ(δ) > 0, and Δ(δ) = 0 //deg δ > 2g- 1.

Here dim £ < 0 means that jE is empty. The number g is called the genus
of 21 over Ao.

4. As we have already said, any two elements α, β £ 21 are connected by a

relation

(1.5) Q(a, β) = Qm(*)r + · • · + <?„(«) = 0, Qj € A^tJ.

We wish to find a connection between ordKa and οτάνβ for those points V
of SI at which οχάνα < 0. The following classical method serves to do this.
On the plane we plot the points with the coordinates (/, deg Qj), 0 </ < m ,
and two more points (0, 0) and (m, 0). We consider the polygon that is the
convex hull of this set of points. From the boundary of the polygon we
remove the vertical segments and the segment [0, m] of the /-axis. The
remaining part of the boundary is called the Newton diagram of the
polynomial (1.5).

The gradients of the Newton diagram, taken with the opposite sign, form
a finite set of rational numbers. This set coincides exactly with the set of
numbers ordKj3/ordFa, where V ranges over the finite set of points at which
ord^a < 0.

We also need the following well-known fact. Suppose that the polynomial
(1.5) is irreducible. For the existence of a point V such that ord^a > 0 and
οτάνβ < 0 it is necessary and sufficient that deg Qm > 0. More precisely,

0-6) deg Qm = - 2 οτΛν β,

where the summation is over all points V such that o r d F a > 0 and
ordKj3 < 0.

5. The theory of first-order differential equations can be constructed
formally, without using the notion of a solution. To do this we must
consider, instead of a single equation, the collection of all equations that are
obtained from each other by a rational change of the unknown function and
its derivative. We give the precise definitions.

Let 21 = A0(tx, t.2)/F be an algebraic function field in one variable over A0.
An operator D: 91 -> 21 is called a differentiation if it has the following
properties: D(A0) С AQ, ΰ(α+β) = Ό(α) + Ό(β), Ω{αβ) = αΖ>|3+|3£)α.

The pair (21, D) (more precisely, the triple (21, Ao, D)) is called a
differential algebraic function field in one variable over the base field Ao.

Suppose that the action of D is given on AQ. In order to extend D to the
whole field 21 it is sufficient to specify the action of D on one element
a ζ 21\-4<ъ a n d this can be done arbitrarily. For suppose that Da = β, and
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let у be any element of ИЧ^о- We consider the irreducible equation
connecting α and 7: Q(a, y) = 0, Q € Ao [tb t2]. We write Q' for the
polynomial obtained from Q by applying D to all its coefficients. Then Dy
can be determined from the equations

(1.7) J<LDa + ^

(the polynomial bQ/ду is prime to Q, because Q is irreducible, consequently,
dQ/ду (a, y) φ 0 on ЭД, and therefore, (1.7) always can be solved for Dy).
It is easy to verify that this extension has all the properties of a differentiation.

Definition 1. A differential algebraic function field (й, Ao, D) in one
variable is called Fuchsian if all its local rings are closed under differentiation.

We give two criteria for a differential field to be Fuchsian.

Criterion 1. For each element α ζ ft we consider the irreducible polynomial
connecting a and Da:

(1.8) Q(Da, a) = Qm(a)(Da)m + . . . + Q0(a), Q} 6 АЬ[1Х\.

The differential field is Fuchsian if and only if deg Qm - 0 in (1.8) for all

α 6 SS. •

Proof. Suppose that the field is Fuchsian. Then ordv0L > 0 implies that
ordyDa. > 0. Therefore, by (1.6), deg Qm — 0 in (1.8). Now suppose that
the field is not Fuchsian. Then there is a local ring V and an element α €Ξ V
such that Da φ. V, that is, o r d K a > 0 and ordK£>a < 0. Then, by (1.6), a
satisfies (1.8) with deg Qm > 0.

The following criterion has the advantage that it can be stated in terms of
a single element of ?I \ Л о and is, therefore, handy for verification in
practice.

Criterion 2 (the Fuchs conditions). Let a 6 Я be an element such that a
and Da generate 1 over Ao We consider the irreducible equation (1.8). For
the differential field (21, D) to be Fuchsian it is necessary and sufficient that
the following conditions are satisfied:

A. deg Qm = 0, deg Q, < 2(m-j), 0 <j < m, in (1.8).
B. Suppose that in some local ring V

Da - b0 -j- 1пщ, b0 6 Ao, щ 6 U(V),

a = a0 4 tmu2, a0 ζ Ao, u2 6 U(V),

with m > 2 (such local rings are called branch points over a). Then
Da0 = b0 and n> m~ \.

С Suppose that at some local ring V

Da = t-nuv Ul 6 U(V),

a = r m u 2 , u2 6 U(V),

with m > 2 (such local rings are called ramified poles over a). Then
η < m+ 1.
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The proof of Criterion 2 is no more difficult that that of Criterion 1 and
amounts to differentiation in local rings (see [4], [44]).

Fuchs obtained his Criterion 2 as a necessary and sufficient condition for the general integral of
the equation (0.3) to have no movable critical points. Here a critical point of a solution is said to be
movable if its position depends on the arbitrary constant in the general integral. In this article we do
not make use anywhere of the concepts of general integral and movable critical point, therefore, we
do not give rigorous definitions and a statement of the theorem of Fuchs [1 ], [4]. We remark that
condition С was omitted in Fuchs' original paper. This omission was subsequently repeated in the
majority of books on the analytic theory of differential equations (for example, in [4]). The fact
that condition С is necessary was first noticed by Hill and Berry in 1910 ([1], 310; [44], 15).

One can also examine Fuchsian differential fields when Ao is not
algebraically closed or has non-zero characteristic. The book [44] is devoted
to the general theory of such Fuchsian fields; it carries over to arbitrary
Fuchsian fields results obtained in the 19th century for differential equations
without movable critical points.

The importance of Fuchsian differential fields for the analytic theory of
differential equations is made clear by the following three results. Classical
proofs of these results are contained in [4], Ch. II. For modern proofs and
generalizations to arbitrary fields, see [44]. In the statements we give here
we assume that Ao is algebraically closed and has characteristic 0.

Theorem 1 (Fuchs). If a Fuchsian differential field (91, Ao, D) has genus 0,
then it is a Riccati field. This means that there is an element a f ?I such
that a and Da generate 21 over AQ, and

Da = a0 + axa + α3α
2, α} £ Ao, 0 < ! / < ! 2.

A differential field (>Д, Ao, D) is called a Clairaut field if ?I is generated
over Ao by elements a and β such that Da = 0, ΰβ = 0.

Theorem 2 (Poincare). If a Fuchsian differential field (21» Ao, D) has genus
1, then it is either a Clairaut field or a Poincare field. The latter means that
% is generated over Ao by a pair a and D(a) such that

(Ζ?(α))ζ=ο(α-λ1) ( α - λ 8 ) ( α - λ 8 ) , a £ Ao,

λι, λ2, λ 3 €E AQ, the \j are pairwise distinct, and D(\j) = 0.

Theorem 3 (Schwarz and Nishioka). Every Fuchsian differential field of
genus g > 2 is a Clairaut field.

Suppose, for example, that AQ is the field of all algebraic functions in z. The equation
F(y', y, z) = 0 can be regarded as the equation of a family of curves depending on the parameter z.
Suppose that z0 is a point in general position, that y0 and y'o are the coordinates of some point on
the curve, and that F(y'o, y0, z0) = 0. It follows from the Fuchs conditions that the Cauchy problem
y(zo) = JO, y'(?o) = y'o has a unique solution depending analytically on y0 and y'Q. This solution
determines an isomorphism between the curves of our family. The classical proofs of Theorems 1,2,
and 3 are based on this argument. For example, to prove Theorem 3 one considers the Weierstrass
points that are preserved under the isomorphism.

We remark that the proof of Theorem 3 in [4], Ch. II, § 14, is incomplete.
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§2. Admissible solutions

1. In the preceding section we have described fields connected with
differential equations. We now pass to properties of the fields in which we
consider solutions of the equations.

Suppose that / Ё Л . We assume that / is continued to a finitely-valued
analytic function in C. Suppose that r > 0 is chosen so that none of the
branch points of/ project into the set {z: \z\ = r, ζ Φ r}. Over this set /
splits into single-valued branches// (/ = 1, ..., k). We set

m (r, fj) = -gL j log+ | / (re«) | dQ (a- = max (α, Ο)),
о

h

т(г,П = ^^т(г, fj).
3 = 1

It is easy to show that the function m(r, / ) thus defined can be extended by
continuity to all values of r > 0. It is called the Nevanlinna proximity
function.

We consider the germ и of / over an arbitrary point z0 € C. It can be
given by a series

taj(z-zo)
u+h)/n, ajtC, A6Z, «6N.

3=0

We assume that the exponents in the terms with α;· Φ 0 have no common
factor. Therefore, the number к = ord ν is uniquely determined by the
germ. (In § 1 a similar notation had a different meaning, but this should not
lead to any confusion.) Let Vj (/ = 1, ..., /) be all the germs of / projecting
into the disc {ζ: | ζ | ̂  r} such that ord vt < 0. We set

n(r, /)= Σ (-ordvy),

4 ^r+4rn(°' /Hogr*
о

T(r, /) = ro(r, f)+N(r, /).

In the second formula m denotes the number of branches of/. The
functions N(r, /) and T(r, / ) are called, respectively, the number of poles
and the Nevanlinna characteristic. We list the chief properties of m(r, / ) ,
N(r, / ) , and T(r, / ) . Proofs of these properties for meromorphic functions
are contained in [3], [8], [16], and [19]. For the case of algebroid
functions, see [15], [50]-[52], and [60].

1°. T(r, f) f oo as r-> oo.Here
T(r, f) = 0(logr), r->oo,

if and only if/ is an algebraic function (over C).
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2°. Τ (г, / + * ) < Т(г, 1) + T(r, g) + 0(1), г-+ оо.

3°. Г(г, / * ) < Г ( г , /) + Г(г, *).

4°. J (г, -1) = Τ (г, Л+ 0(1), г -^оо,

is the Jensen formula.

5°. Τ (r, j ± - a ) = T ( r , f) + 0 ( 1 ) , r ^ ос, а£С

is Nevanlinna's first main theorem.

6°. T(r, Г) = пГ(г. /) + 0(1), г -+ oo, η 6 N.

7°. го (г, -£-) = о(Г(г, /)) + 6>(log r), r-> oo,

outside a set of values of r of finite measure is the Nevanlinna lemma on the
logarithmic derivative. This lemma is a fundamental tool in the investigation
of meromorphic solutions of differential equations.

8°. Suppose that /, gh ..., gn are algebroid functions, and that
F € C Uo> h> •••> *ni is a polynomial such that bF/bt0 Φ 0. Then from
F(f, ft, ..., gn)

 Ξ 0 it follows that

T(r, f) = 0(T(r, ft) + . . . + T(r, gn)), r-> oo.

More precise estimates are obtained in [13].
All the properties except 4°, 5°, and 7° follow easily from the definition

of the characteristic. If a E С, we set

N(r, a, f) = N(r, j^r), αφοο; Ν (r, oo, f) = N (r, f).

It follows from 5° that N(r, a, f) < T(r, / ) + 0 ( l ) , as r -*• °°, for any a e C.
The following theorem is often useful.

Valiron's theorem. For all a E. C, excluding an exceptional set of plane
measure zero,

N(r, a, / ) = (1 + o(l))T(r, /), r - ^ o o .

(See, for example, [8], 151.) The estimate of the exceptional set in this
theorem can be considerably improved ([16], 280).

2. The Nevanlinna characteristic is convenient for selecting subfields of A.
We consider a function φ on [0, °°) with the property that φ > 0, log r =
= 0(<fi(r)), as r ->· oo. We write Αφ for the set of elements of A for which

T(r, f) « Ο(φ(Γ», Г-+ОО.

Here and in what follows the symbol « means that equality holds outside
some set of finite measure. This definition is required because later on we
have to make use of the lemma on the logarithmic derivative. It follows
from 2°, 3°, and 4° that Αψ is a field, and from 8° that this field is
algebraically closed. If ψ(τ) = log r, then, by 1°, Αφ is the field of all
algebraic functions over С We now write ίΡφ for the smallest field that
contains Αφ and all meromorphic functions. Roughly speaking, a?5,, consists
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of all algebroid functions that have few branch points. For example, if
ψ{τ) = log r, then ίΡφ consists of the algebroid functions with finitely many
branch points.

We are interested in relations of the form

(2.1)

where x, у £ $>φ \ Αψ. We assume that F is irreducible. We consider the
algebraic function field VI in one variable over Αφ: SSL — Λφ{ίχ, t2)/F. If
x, у Ε ί̂ φ \ 4 φ , then χ and у are transcendental over Αφ. The relation
(2.1) enables us to define a field homomorphism μ: % -*• αΡν that is the
identity on Αψ. Under this map, an element α = R(th t2) €= 91 goes tc
R(x, y) G ,%. The converse is also true: to every field homomorphism
μ: ?Ι ->- S^that is the identity on Αφ there corresponds a relation (2.1).

Definition 2. A homomorphism μ: 91 -»- ΖΡφ is called admissible if μ is the
identity on Αφ.

Since any non-zero homomorphism of fields is injective, μ(?[) <£ Αφ for an
admissible homomorphism. 21 can be identified with some subfield of jTV
Henceforth we do not distinguish between α and μ(α) if μ is an admissible
homomorphism.

3. We consider the differential equation

(2.2) F(y', y) = 0, F eAvltx, i 8 ].

F is irreducible.

Definition 3. A solution у £ ^ Φ of (2.2) is called admissible if у ф. Αψ.

The field ?V is endowed with a natural differentiation ί. It is clear that
dz

the differential equation (2.2) has an admissible solution if and only if there

is an admissible homomorphism of differential fields μ: (91, D)

% = Αν{^, t2)iF, F(Da, a) = 0,

-έί*(γ) f o r a 1 1 vew.
4. We now show how Nevanlinna theory can be applied in investigating
admissible solutions of differential equations.

First of all we establish the following relation for functions in ύ^φ:

(2.3) T(r, / ' ) < (2 + o(l))T(r, /) + O(cp(r)). r-> oo,

outside some set of finite measure. For this purpose we first estimate
N(r. / ' ) · Clearly, n(r, / ' ) < 2n(r, / ) + e(r, f), where e(r, f) denotes the
number of branch points o f / t h a t project into the disc {ζ: | ζ Κ>}. Now /
has the form R{hx, ..., hk), where the /z;- are meromorphic, and R £
£ Αφ {tx, ..., tk). The branch points o f/are, therefore, the branch points of
the coefficients of R. Consequently,

r

f (e(t, f) - e(0, /)) ^ + e(0, /) log r « О(ц>{г)),
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and hence,
(2.4) N(r, / ' ) < 2N(r, f) + 0(«p(r)), r ^ oo,

outside a set of finite measure.
By the lemma on the logarithmic derivative,

m(r, /') = in (/·,-£-·/)<m(r, - f ) +
+ m (r, f) + О (1) да m (r, /) + о (Г (г, /)) + 0 (log г).

From this and (2.4) we obtain (2.3).
Using only the properties 2°, 3°, 4°, and 6° of the Nevanlinna characteristic,

A.Z. Mokhon'ko [12] has proved the following theorem:
Suppose that f is a meromorphic function and R Ε Αφ(ίχ). Then

(2.5) T(r, R(f)) « nT{r, f) + Ο(φ(Γ)),

where η is the degree of the rational function R (we have made an
insignificant change in the statement).

The first theorem of this type was proved by Valiron [60] (see also [2]),
for the case when R is a rational function of /and z.

We now prove Malmquist's Theorem I in the form given by A.Z. and
V.D. Mokhon'ko [14] and Laine [38].

Theorem 4. Suppose that the differential equation y' = R(y), R Ε Αφ(ίχ),
has an admissible solution. Then R is a polynomial of degree at most 2.

Proof. By the change у >-»· y'l + a, a E С, we can put the equation into the
form y' — P(y)/Q(y), where P, Q Ε Αφ [it], Ρ and Q are relatively prime,
and deg Ρ = 2+deg Q. Therefore, η = deg (P/Q) = 2 + deg Q. Using (2.3)
and (2.5) we obtain

(2 + deg (?) T(r, у) + 0(<р(г)) да T(r, y') < (2 + o(l)) Г (г, у) + 0(ф(г))

as r -*• °°, outside a set of finite measure. Hence it is clear that if у is an
admissible solution, then deg Q = 0 and y' = P(y) is a Riccati equation.
Since under a fractional-linear change of the unknown a Riccati equation
goes to an equation of the same type, the theorem is proved.

5. Our proof of Malmquist's Theorem II and generalizations of it is based
on the same idea. We wish to obtain a relation between the Nevanlinna
characteristics for functions x, у Ε |/\ connected by (2.1). To do this we
suppose that we are given an admissible embedding of ЧЛ = Αψ(ίν t2)/F into
J7V We recall that we identify elements α 6 ЭД with their images under this
embedding. By property 8° of the characteristic, for any α, β ζ § [ \ 4 φ ,
there is a constant к such that

(2.6) T(r, a)^kT(r, β) + 0(<p(r)), r-^ oo,

outside a set of finite measure. We introduce an equivalence relation on the
set of all functions defined on [0, °°) (not necessarily positive): ψι ~ ф2 if
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for any α

Ψι(Ό - Ыг) « о(Г(г, α)) + 0(φ(Γ)), r -> с».

It follows from (2.6) that the words "for any" in this definition can be
replaced by "there is". In connection with this definition we write ф1 > 0
if \pt > \p2 f° r some function ф2 ~ 0> a n d Ψι ̂  Ψ2 if Ψι~ Ψ2 ̂  0·

Introducing the notation q+ = max(qr, 0), q~ = (-g)+, we can write any
divisor δ in ?I in the form δ = δ + - δ", where δ+ and δ" are non-negative
divisors.

Theorems. Suppose that 31 is admissibly embedded in -7>ф. Then for any

deg6-(a)r(r, β)~ deg6-(p)r(r, a).

Remark. This theorem and its proof remain valid if <f<p in the statement is
replaced by the whole of A. The exceptional sets of finite measure also play
no part in Theorem 5. We have stated the theorem in a form convenient for
subsequent applications.

Suppose, for example, that 21 is a field of genus 0. Then there is an
element γ 6 51 such that 21 = -4φ(γ). If 1 is admissibly embedded in S3^,
Theorem 5 gives

T(r, a) « (deg R + o(l))7'(r, γ) + <9(cp(r)),

where a = R(y), R G Αψ{ίλ). This is a little weaker than (2.5), but it is
enough for our purposes.

It is not known whether 7°ф has a subfield of transcendence degree 1 and genus g > 2 over Αφ.
Μ Αφ = С, then ^ φ is simply the field of meromorphic functions, and there are no such subfields,
by virtue of Picard's theorem that curves of genus g > 2 cannot be uniformized by means of
meromorphic functions. If φ = log r, then the question reduces to the following: can two
transcendental meromorphic functions / and g satisfy a relation

F{j(z), g(z), z) = 0,

where F is a polynomial in three variables such that for a point ZQ in general position the curve
F(x, y, ZQ) = 0 has genus greater than 1?

§3. Proof of Theorem 5

1. Let / be an algebroid function, and let f){z), 1 < / < n, denote all the
values of this function at a point ζ Ε С. We set /*(z) = max | /7·(ζ) |. The

i
function f* is single-valued, non-negative, and continuous in the extended
sense. We write Ε for the smallest class of functions σ: С -*• R+UI{oo} that
contains all functions of the form /*, / G Αφ, and is closed with respect to
addition, multiplication, and taking the upper envelope of finite families.
For functions σ G Ε one can introduce analogues of the Nevanlinna
characteristics. We set

2л

m(r, σ ) = - ^ - f log+o(reid)dQ.
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It is clear that m(r, o) * Ο(φ(τ)) for σ Ε Ε. Functions in Ε can become
infinite at isolated points. In a neighbourhood of any such point z0

a(z — z0) | ζ — z 0 | f t -»- C, ζ -*• z0,

where A: is a rational number and 0 < С < °°. We call к the order of the
pole of σ at z0. Using this definition of order, we introduce quantities
n(r, σ) and N(r, σ) in the same way as for algebroid functions. It is easy to
see that N(r, σ) «0(<^(r)) for σ G E.

If /. g £ A and ax, σ2 G Ε, then the inequality

| / ( ζ ) | < σ ι ( ζ ) |g(z)1 +σ 2(ζ)

implies that 7Xr, / ) < T(r, g)+O(ip(r)) outside a set of finite measure.
Indeed, for example,

N(r, / ) < Mr, g) + N(r, σ3) + N(r, σ2) « 7V(r, gr) + 0(<p(r)),

and m(r, / ) can be estimated in a similar way. In particular, for an
algebroid function / the conditions / G Αφ and /* £ Ε are equivalent.

Lemma 1. Let R €Ξ ̂ ( / j ) be a rational function such that the degree of its
numerator does not exceed that of the denominator, and suppose that βΕ,Α.
Then there is a function a & Ε such that from I/J(z)l > σ(ζ) it follows that
\R{&){z)\<o{z).

Proof. Let

If

)
}=0

then

There is a function σ Ε Ε such that ^(z) < σ(ζ) and s2(z) < σ(ζ). This
implies what the lemma asserts.

Lemma 2. Suppose that α, β G Я α«ί/ δ"(α) = δ~(β); then T(r, a) «

Proof. We consider the relation between α and β:

(3.1) е г оф)а т + . . . + ρβ(β) = 0, ρ, 6 ̂ „UJ, 0 < ; < т.

By the hypothesis of the lemma, from ordKj3 < 0 it follows that o r d F a =
= ordKj3, consequently, the Newton diagram is a segment with the end-
points {m, deg Qm) and (0, w + deg Qm). Therefore, in (3.1)

(3.2) deg Qo = m + deg Qm,

deg Qj< m — / + deg Qm, 1 < / < от — 1.
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We rewrite (3.1) in the form

(3.3)

From (3.2) it follows that the R,- satisfy the conditions of Lemma 1.
Applying the standard estimate for the roots of a polynomial in terms of its
coefficients, we find that there is a function σ Ε Ε such that l|3(z)l > σ(ζ)
implies that \β(ζ)/α(ζ)\ < σ(ζ). Consequently, we always have Ιβ(ζ)Ι<
< σ(ζ)(Ια(ζ)Ι + 1). Hence, T{r, β) < Г(г, a) + O(<p(r)) outside a set of finite
measure. Interchanging α and β, we obtain the assertion of the lemma.

Lemma 3. Suppose that α, β, γ €Ξ?Ι, /ήαί ί/ze divisors δ~(α) a«c? δ~(|3) do
noi intersect {that is, δ~(α)δ~(0) = 0), аис? ίήαί δ"(α)+ δ~(0) = δ~(7). Then
T(r, 7 ) * T(r, a)+ T(r,

Proof. We consider again the relation (3.1) between a and β. By the
hypothesis of the lemma, from ord F 0 < 0 it follows that ord K a > 0.
Therefore, the Newton diagram has no sections with a negative gradient, and
so in (3.1)

(3.4) deg <?,< deg Qm (j = 0, . . ., m - 1).

Now (3.1) can be rewritten in the form

am + Rm-i (β) α"1"1 + · . · + До (β) = 0,

where by (3.4) the rational functions Rf satisfy the conditions of Lemma 1.
Hence we find that there is a function ax G Ε such that from Ij3(z)l > ax{z)
it follows that la(z)l < ox(z). Similarly, there is a function σ2 S Ε such that
from \a{z)\ > o2(z) it follows that l/3(z)l < σ2(ζ). We set σ = max(o,, σ2)
and show that

(3.5) T(r, a) + T(r, β) « T(r, a + β) + О(Ф(г)).

We write 5Ί = {ζ: | α(ζ) | > σ(ζ)}, 5 2 = {ζ: | β(ζ) | > σ(ζ)}. The sets 5 t and
S2 do not intersect. We write N(r, S, f) for the numerical function in which
we count only those poles that lie in S. Then

N(r, Slt a) « N(r, a)

N(r, Stt β) « ЛГ(г, β)

Л'(г, α + β) « N(r, 5 l t α + β) + iV(r, 5 2 Ι α + β) + <%(/·)) »

» iV(r, Su a) + iV(r, 5 a , β) + 0(<p(r)) « iV(r, α) + iV(r, β)

Similarly it can be proved that m(r, a + j3) « m(r, a)+m(r, β) + Ο(φ(τ)), from
which we obtain (3.5).

We now remark that δ"(7) = δ~(α + β). The assertion of the lemma
therefore follows from (3.5) and Lemma 2.

2. Proof of Theorem 5. In §2.5 we introduced an equivalence relation ~
on the set of all functions on [0, °°). We write Ζ for the corresponding set
of classes. We recall that '£ is also equipped with the ordering >.
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On divisors of the form δ~(α), α ζ ?[', we define a function κ(δ~(α)) =
= T(a) = T(r, a). This function takes values in % and is well-defined by
virtue of Lemma 2. Our aim is to prove that the divisor function κ(δ~(α)) is
"proportional" to deg δ~(α). ^he proof consists of several steps. To begin
with we extend κ to all divisors by linearity so that it becomes a non-
negative class function.

First of all, we remark that κ is homogeneous in the following sense: if
δ "(α) = Αΐδ-(β), then κ(δ~(α))~ ηκ(δ~(β)). It is enough to verify this for
natural numbers n. But δ~(β") = ηδ~(β) = δ"(α) and Τ(βη) ~ ηΤ(β) by
§2.1,6°.

In order to extend κ to all non-negative divisors we use the Riemann-Roch
theorem (§1.3). We consider a non-negative divisor δ that takes a value
к > 2g at a single point V and is equal to 0 at all other points (we write
this divisor in the form δ = к V). We claim that there is an element а б Я
such that δ~(α) = δ. For if there were no such element in £(δ), then we
would have £{kV) — ((k— l)V), which is impossible, because by the
Riemann-Roch theorem dim £{{k~ l)V) = k + g—l, whereas
dim £((k— \)V) = k+g— 2. Thus, if the degree of a divisor δ is sufficiently
large, then there is an element α ζ 51 such that δ~(α) = δ. Suppose now
that δ is an arbitrary non-negative divisor. By the above, nb = δ~(α) for
some « E N and a f X . We can, therefore, set κ(δ) = и"1 Да). By
homogeneity, as already proved, this is well-defined.

We extend our function κ'to all divisors of Я in the following way:
κ(δ) = κ(δ+) - κ(δ-). Clearly,

(3.6) κ(δ)>0, if δ > 0 .

It now follows easily from Lemma 3 that

(3.7) κ(δχ + δ2) ~ κ(δχ) + κ(δ2).

For, suppose that δ̂  = 2 k)Vt, where the Vt are points, 1 </ < 3, δ,+ δ2 =
i

= δ 3 , and k[ + k\ = кг

а. By homogeneity and Lemma 3 we find that

κ (δ,·) = 2 *jx(V,)(/ = 1 , 2 , 3), which implies (3.7).
i

The last property of κ we used consists in the fact that it is a class
function:

(3.8) κ(δ(α))~ 0 for all а 6 Я,

which follows readily from §2.1, 4°. Indeed,

κ (δ (α)) ~ κ(6+ (α)) - κ (δ-(α)) ~ κ (δ" ( ± ) ) -

3. We can now complete the proof of Theorem 5. It is enough to prove
that if deg δ = 0, then κ(δ) ~ 0. Suppose that deg δ = 0. We claim that

(3.9) κ(δ)>0.
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Suppose that (3.9) does not hold. This means that there is an element
α € ? Ι \ ^ φ , a natural number n, and a set X С [0, °°) of finite measure such
that simultaneously

(3.10) κ(ι·, 6 ) < - J L x ( r , δ-(α)), г£Х,

(3.11) φ (г) = оЫг, δ)), г ζ Χ.

We consider the divisor δχ = (η + 1) δ + δ~(α). Since deg 5j = deg δ~(α) > 0,
by the Riemann-Roch theorem there are а к £ N and a |3 € 21\-4<р such that
W5, > 5(0), that is, Λδ,- δ(0) > 0. Applying (3.6), (3.7), and (3.8) in
succession, we find that κ(Αδ1)> 0, x(6j) > 0, κ ( δ ) > - (η+ Ι)"1 κ (δ-(α)), that
is,

— ί ± ^ - κ ( Γ , δ-(α))+Ο(φ(Γ))

outside a set of finite measure; but this contradicts (3.10) and (3.11) and
proves (3.9). To obtain the reverse inequality it is sufficient to apply (3.9)
to the divisor - δ .

The theorem is now proved.

4. Corollary of Theorem 5. Let F ΕΑψ [tly t2] bean irreducible polynomial.
We write m and η for its degrees in tt and t2, respectively. If the identity
F(f, g) = 0 holds, where f, g G ^ , then

mT(r, f) « (n + o(l)) T(r, g) + 0(<p(r)).

This is also true for arbitrary algebroid functions/, g G A. See also [70],
where estimates are obtained for the non-analytic branches of algebroid
functions.

§4. Malmquist's theorem

1. Theorem 6. Let φ be a positive function such that log r - Ο(φ(τ)), and
let

(4.1) F(y', y) = 0, F e ^ J i i , i2],

be an irreducible differential equation. If (4.1) has an admissible solution,
then this equation satisfies the Fuchs conditions.

Proof. Suppose that (4.1) has an admissible solution. Then we can consider

the admissible embedding of the corresponding differential field (?(, D) in

(fp(fi JLY as was done in §2.3. Any element α ζ ?Ι \ A(f satisfies an

irreducible differential equation

(4.2) Qm(a)(Da)m + . ..+ Q0(a) = 0,

QjeAJtJ, deg Qm^n.

By the change a >-» oTlJra, a E С, in (4.2), we can achieve that

(4.3) deg Qj = η + 2(m - /) (/ = 0, . . ., m).
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We assume that (4.3) holds for (4.2). We search for a relation between
deg δ~(α) and deg b~(Dd). By (4.3), the Newton diagram consists of a single
segment with gradient -2 . Therefore, if οτάνα < 0, then ordyDa = 2ordKa.
Moreover, there are η points at which o r d K a > 0 and ord vDoc < 0 (see 1.6).
Thus,

deg δ~(Όα) = 2deg δ "(α) + n.

By Theorem 5,
T(r, Da)~ (2 + re(deg o-fa))- 1 )^, a).

On the other hand, by (2.3), T(r, Da) < (2 + o(l))T(r, ά) + 0(φ(τ)) outside a
set of finite measure. Consequently, η = 0, because a G Αφ. Thus, the
criterion 1 for Fuchsian fields is satisfied and we have proved the theorem.

2. Malmquist's Theorem II is obtained from Theorem 6 if we put φ(τ) = log r.
Then Αφ = Alog is the field of all algebraic functions over C. If the
polynomial in Theorem 6 is linear in y', we obtain Theorem 4. It is worth
mentioning especially a slight generalization of Theorem 4, which we obtain
with the aid of Theorems 6 and 1:

Suppose that (4.1) has an admissible solution and that the field
Ш = Αφ(ίι, t2)/F has genus 0. Then (4.1) can be transformed to a Riccati
equation w' — aw2+bw + c, a, b, с G Αφ, by means of an algebraic change
Q(w, y) = 0, Q e Αφ[ίν t2].

Admissible solutions of the Riccati equation have been studied a great
deal([3], [39], [45], [63], [64]) by methods of the theory of meromorphie
functions.

The special case of Theorem 6 when the degree of F in y' is at most 2
and Ψ(Γ) = log r was proved by Steinmetz [55]. His method does not
enable one to consider the case of an arbitrary polynomial F.

We remark that the Fuchs conditions are only necessary and not sufficient
for an equation to have even one meromorphic solution. In the case of
autonomous equations, the Fuchs conditions are necessary and sufficient for
the general solution to be meromorphic. But non-autonomous equations,
generally speaking, may have fixed singular points in the finite plane. In
this context a class of functions discovered by Steinmetz [55] is of interest;
their general solution is meromorphic:

{w — b(z)w)2 = w(a(z) + c(z)w)2,

where a, b, and с are polynomials in z. The distribution of the values of the
solutions of these equations is studied in detail in [55].

It is profitable to consider the following example [57]:

fa, У /О A \ 9

This equation satisfies the Fuchs conditions. It has wt = (cos z 3 / 2 ) - 1 as a
meromorphic solution, and also the many-valued algebroid solution
w2 = (sin z 3 ' 2)" 1 .
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3. A number of papers, beginning with [67], is devoted to the study of
meromorphic solutions of an equation

(4.4) (y')n = P(y, *)/Q(y, *).

in which Ρ and Q as polynomials in у are relatively prime. The coefficient
field of Ρ and Q is often regarded as being some algebraically not closed
field of rational functions or a subfield of Αφ consisting of meromorphic
functions. We remark that whether Ρ and Q are relatively prime does not
depend on what field they belong to. This follows from the properties of
the resultant of two polynomials.

It is easy to see that if Ρ and Q are relatively prime and deg Q > 1, then
all irreducible factors of the polynomial Q(y)sm -P{y) are of the form
Qn(y)s"+ ... +Qo(y), with deg Qn>\. When we now apply to (4.4)
Theorem 6 and the criterion 2 of §1, we obtain the following result: if
(4.4) has an admissible solution, then deg Q = 0 and deg Ρ < 2m. This fact
was first proved by Yosida for the case φ{ϊ) = log r [67]. Thus, (4.4), if it
has an admissible solution, of the form

(4.5) (y')m = Ρ (у), Ρ 6 4 „[fil, deg P < 2m.

Using criterion 2, we can select among the equations (4.5) those that belong
to the Fuchs class (the details of this are carried out in [1 ] , § 13.8). One
obtains the following types of equations:

A. The Riccati equation y' = ay2+by + c, a, b, с G Αφ.
B. Equations of the form {y')m = aP{y), a G Αφ, Ρ G С [ i j . All such

equations can be integrated by means of elliptic functions ( [1] , §13.81).
С The equation ( / ) 2 = c(z)(y-a(z))(y-b)(y-d),<a, с G Αψ, b, d G С

Thus, (4.4), if it has an admissible solution, belongs to one of the types
A, B, or C. In the particular case of rational coefficients (<p(r) Ξ log r), this
was established independently by Bank and Kaufman [26] and Steinmetz
[54].

4. We now pass on to the investigation of properties of the solutions. Up
to the present time, a fairly complete investigation of properties of the
solutions has only been achieved for the equation (4.4), that is, effectively
for the equations A, B, and С Suppose that the coefficients of these
equations are rational functions. Then the order of every transcendental
solution is either л/2 or n/3, where η > 0 is an integer. If the order is 0,
then T(r, y) = (c + o(l))logV [24], [25], [26]. The distribution of the
values of meromorphic functions determined by the equations A, B, and С is
studied in detail in [54], [55], and [57]. In [24] it is conjectured that any
transcendental solution of an arbitrary first-order differential equation with
rational coefficients has the property that T(r, у) Ф o(log2r), r -* °°. With
the help of Theorems 1,2,3, 4, and 6 we can obtain a more precise statement.
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Theorem 7. Suppose that a transcendental meromorphic function у satisfies
the equation F(y', y, z) - 0, F G С [tu t2, t3\ Then у is a function of finite
rational order p. If ρ > 0, then the limit

(4.6) 0 < lim r-PT (r, y)<°o
r-*oo

exists, and if ρ = 0, then the limit

(4.7) 0<lim(]og2r)-'7'(r, j/)<oo
r->oo

exists.

That the order is finite was first proved by Gol'dberg [5] ; see also [71 ] .
(Incidentally, [5] contains the only reference to Malmquist's Theorem II
known to the author.)

The following example shows that the case (4.7) can actually occur:

(4.8) wl%- = (z2 - l ) " 1 ^ - ex)(w - e2)(w - e3).

Here eh e2, and e 3 are such that the Weierstrass elliptic function ψ with
periods 2m and 1 satisfies the equation (ψ1)2 =(<§> — e1)) ($> — e2) (ψ — ея).

The general solution of (4.8) is given by the formula w = <^(\ (z2 — l)~l/2dz\.

It is not hard to show that w is meromorphic on С and satisfies (4.7) (see
also the following §5). This example was discovered by Bank and Kaufman
[24].

§5. The asymptotic behaviour of solutions

1. In this section we give a sketch of a proof of Theorem 7 and present
some related results.

Suppose that a transcendental meromorphic function у satisfies the
differential equation F(y', y, z) = 0, where F is a polynomial in three
variables. As usual, we regard F as a polynomial in two variables over the
field y4iog (Aioe — Αφ for <p(r) Ξ log /-). Then у must satisfy an irreducible
equation over Atog

(5.1)

A transcendental function у satisfying (5.1) gives an admissible embedding of

differential fields u: (?J, D) ->• (,3\, - ) . By Theorem 6, ?i is Fuchsian. By

Theorem 3, the genus g of ?[ is 0 or 1 (in the case of larger genus there are
no admissible embeddings of 21 in 5\) . We now consider the two cases
separately.

2. g = 0. In this case ЭД is a Riccati field, by Theorem 1, consequently,
there is an element α G 21 satisfying the equation

(5.2) w = aw2 4- bw ~i~ c, a, b, с ζ А]о„.
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By a linear substitution w = dx+e, d, e £ Aloe, (5.2) takes the form

x ' = h(z) - x \ h£Al0S.

The latter equation in its turn reduces to a linear second-order equation, and
the asymptotic behaviour of its solutions is well known. For details, see [3].

3. g = 1. By Theorem 2, И is a Poincare field, that is, some element w Ε
satisfies the equation

(5.3) (w')* = a(z)(Aw>-g2w-g3), g2, &CC

where a(z) is an algebraic function. We remark that by Theorem 5 it is
sufficient to prove (4.6) or (4.7) for any a R \ Alog in place of y. It is,
therefore, sufficient to study the asymptotic behaviour of solutions of (5.3).
The general solution of this equation has the form w =• $>(Φ(ζ)), where the
Weierstrass elliptic function ψ satisfies the equation (ψ')'1 = 4^3 — g2<§> — g3,
and Φ(ζ) is an Abelian integral, άΦ/dz = (a(z))~l.

Suppose that r0 > 0 is so large that for \z I > r0 the Abelian integral has
no branch points with finite projections. We fix an arbitrary connected
piece of the Riemann surface of Φ over {ζ: | ζ | > r0} and we call the
restriction of Φ to this piece a branch of the Abelian integral over °°. For
any such branch one of the two asymptotic equations holds:

(5.4) ф(г) = az^ + o(\ ζ | λ ) , z-voo, o 6 C

where λ is a rational number, or

(5.5) φ(ζ) = a log ζ + b + o(l), ζ -> oo, a, b 6 C.

It is clear that if there are branches of the form (5.4), then only those for
which λ > 0 have an influence on the asymptotic behaviour of w. Let λ 0 be
maximal among the numbers λ corresponding to the branches (5.4), and
suppose that λ0 > 0. It is not hard to show that then

T(r, w) = (const + o(l))r 2 4 r^ oo.

4. We consider in more detail the case when there are no branches of the
form (5.4) with λ > 0. Then there must be at least one branch of the form
(5.5) (otherwise w would have an essential singularity at oo). We consider
any branch of (5.5). Without loss of generality, we may assume that a = 1
and b = 0 in (5.5), since under a linear change of its argument ψ goes to the
same function with another period lattice. The function Φ is single-valued
on the Riemann surface of the logarithm in a neighbourhood of °°, and

Φ(ζ) = log ζ + o(l), ζ -»- oo.

It is clear that w has no branch points for \z I > r0, since Φ is holomorphic
for such z, and ψ is meromorphic on С Moreover, w is an algebroid
function, therefore, w is single-valued on the Riemann surface of z1/n for
some η > 1 and ζ > rt. We consider the new function

(5.6) u(z) = w(zn) =
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where <§Ύ is the Weierstrass function with a new period lattice, and

(5.7) E(z) = log ζ + o(l), ζ -»- oo,

on the Riemann surface of the logarithm. It is clear that и is single-valued.
We claim that one of the periods of fi is 2πί. By (5.6), (5.7), and the fact
that и is single-valued, we have the relation

(5-8) «Ί(ζ + 2ni -f αίζ)) = f&),

where a(?) = o(l) as Re(J) -»• <».
Let Jo be arbitrary and let fb ..., f;-, ... be an infinite sequence of points

that are congruent to ζ0 modulo the periods of fv as Re f,· -*• °°. Substituting
f,· in (5.8) and passing to the limit as / -»· °°, we obtain

ψχ (ζ0 + 2πί) = ^(ζο).

In view of the fact that ξ0 was arbitrary, <$>i has the period 2m.
Let τ be the second period of ^ г То simplify the ensuing formulae, we

suppose that τ is real. The case of an arbitrary τ can be examined in exactly
the same way.

We consider the half-strip

Π = {ζ: Re ζ > О, О < Im ζ < 2л}.

Let a G С be a number such that §Ί(Ζ) Φ a on the boundary of Π, and let
(zk) be a sequence consisting of all the α-points of <g>1 in Π. It is clear that
dist(zk, ЭП) > δ > 0. Suppose that r0 is so large that \E(z) - log z I < δ/2 < 1
for \z\ > r0. We consider the image V{r) under E(z) of the annulus
r0 < \z\ < r with a cut along the positive semi-axis. We can choose a branch
of E(z) so that

{ζ: logr0 + l < R e C < l o g r - l ; - y < Im ζ < 2 π - |-} =

= П ' ( г ) с Г ( г ) с П ' ( г ) =

- { ζ : l o g r 0 - l < R e C < l o g r + l ; —1-< Ιηιζ<2π + A

Suppose now that b Ε С is so close to a that all Ь-points of fi lie in a
δ/4-neighbourhood of α-points. Temporarily, we write n(D, b, /) for the
collection of fe-points of/in D. Then for all b in the indicated neighbourhood
of a,

n(U'(r), b, β Ί ) < и(г, 6, к) + 0(1)< га(1Г(г), 6, fx) + 0(1), г-»- oo.

Since $>! has a real period,

п(П'(г), Ь, «Ч) = п(П*(г), 6, f,) + 0(1) = с log r + 0(1),

с = const, г-ν се.
Hence, «(/-, b, и) = с log r+O(l), r -*· °°. Therefore,

', Ь, и) =
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The last equation holds for all b in some neighbourhood of a. By Valiron's
theorem (§2.1) we conclude from this that T(r, u) = (c+o(l))log2/·.
Consequently, T{r, w) = (c + o(l))log2r, as required.

5. Theorem 7 does not settle the question of the growth of meromorphic
solutions of first-order equations with rational coefficients. It is not known,
for example, whether any rational number can serve as the order of a
meromorphic solution. The only examples known are when ρ = и/2 or n/3,
where η is a non-negative integer [26].

We present some results on the growth of entire solutions that are not
contained in Theorem 7.

Theorem 8 (Malmquist). Suppose that у is an entire solution of the
equation F(y', y) = 0, where F is a polynomial with rational coefficients
and irreducible in the algebraically closed field of rational functions Alog. Then

T(r, y) = (const -f o(l))rn/'2, r -> oo,

where η is a natural number.

This theorem is, in fact, contained in [42] (we have made an insignificant
change in the statement).

Theorem 9. Let F be an arbitrary polynomial with rational coefficients.
Every entire transcendental solution of the equation F(y', y) = 0 is of order
not less than 1/2 (see [17], 70).

The papers [5], [68], and [22] contain effective methods for giving upper
bounds for a meromorphic solution in terms of the coefficients of the equation.

§6. Higher-order equations

1. Up to now we have been concerned exclusively with first-order equations.
In this section we attempt to apply the theory set out in § § 1 -3 to
equations of higher order. For other results on higher-order equations, see §7.

We write H(y) for an arbitrary differential polynomial, that is, a sum of
differential monomials ay>»(y')it . . . (t/(ft));'fc, where a G Αφ. The numbers
k, d — /0+/1+ •·· +Jk, a n d κ = / 0 + 2/Ί+ ... + (k+ \)jk are called, respectively,
the order, the degree, and the differential weight of the monomial. The
order k(H) of a differential polynomial Η is defined as the greatest of the
orders of the monomials in H. The degree d(H) and the weight κ(#) are
defined in a similar way.

Suppose that Hx is a differential polynomial over Αφ. A meromorphic
solution of the differential equation Hx(y) is said to be admissible if у ф. Αφ.

Theorem 10. Let F G Αφ [r1( t2] be an irreducible polynomial and H(y) an
arbitrary differential polynomial over Αψ. If the equation

(6.1) F(H(y), y) = FnMlTHy) + . . .+ F0(y) = 0, F,

has an admissible solution, then deg Fm = 0.
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Proof. Let у be an admissible solution. Then there is an admissible
embedding SI -*• &>v, where SI = Αφ(ίχ, t2)/F, under which tx goes to H(y)
and t2 to y. As usual, we identify elements with their images. Suppose that
deg Fm Φ 0. Then by (1.6), there is a local ring V in 21 such that у G V,
H(y) φ. V. Let t be a generator of the maximal ideal /of V. We fix Fand t
up to the end of the proof.

By the Riemann-Roch theorem, there is an element w G 21 that belongs to
all the local rings of 21 except V, and in V

(6.2) w = t'qUl, wx 6 U(V), q 6 N.

(We recall that U = U(V) denotes the set of units of V.) The following
equations hold:

(6.3) pr(w)yr + . . . + Ρ Μ =.- о, Pi eA^tj,

(6.4) Qi(w)H' + . . . + Q0(w) = 0, Qj e A^tj]

(we assume, as always, that (6.3) and (6.4) are irreducible). Since V is the
unique point at which ord F w < 0 and since ordvy > 0 at this point, the
Newton diagram of (6.3) consists of sections with non-negative gradient,
therefore,

(6.5) deg Ρ 7 · < deg PT (.7 = 0, . . ., r - 1).

Similarly, since ο\Λ.νΗ < 0, the Newton diagram of (6.4) consists only of
sections with negative gradient, therefore,

(6.6) deg Q} < deg Qo (j = 1, . . ., I).

We now consider (6.3) and (6.4) as identities between the algebroid
functions H(y), w, and y. We write Xx for the set of projections of all
branch points of H(y) and w. Now let X2 be the set of projections of all
zeros and poles of all the coefficients of Pj and Qj and the coefficients of H.
Suppose that z0 £ Xt U X2. If w has a pole at z0, then, by (6.3) and (6.5),
y(z0) is finite, and, by (6.4) and (6.6), H{y) has a pole at z0. Since this is
impossible, all the poles of w are contained in Xt U X2. Hence it is not hard
to deduce that

(6.7) N(r, w) « 0(q>(r)).

We now wish to estimate m(r, w). For this we need the following notation.
We take any element χ G SI. There is an irreducible relation

S(x, t) = 0, S eAv[tu fj.

We define the elements dx/dt and Ьх/dz of SI by the formulae
dx _ D2S (x, t) dx _ S' (x, t)

~dt ~ Dj,S (x, t) ' dz ~~ DXS (x, t) '

where D^ and D2 are the operators of differentiation of a polynomial with
respect to the first and second variable, respectively, and S' is the polynomial
obtained from S by differentiating its coefficients with respect to z. We
remark that Ъх/dz depends on the choice of t, but this does not matter for
our purposes, since t is fixed.
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It is easy to see that the decomposition (1.4) at V:

can be differentiated according to the usual rules:

- ^ = таог
т'1 + (то + 1) a,tm + ...,

dx _ da0 m

~V l
dz — ~dV l + dz l + · · •

Suppose now that

(6.8) у = tnu2, u2£U, re> 0.

We regard (6.8) as an equation between algebroid functions over С and
differentiate it repeatedly with respect to ζ f ' = JL):

V dz )

y> = nt
n-^

for any / G N. We recall that V[tlt ..., tt] is the ring of polynomials with
coefficients in V. Substituting these expressions in H(y) — H(y, y', ..., (

we obtain

(6.9) Η^) = ι η ά ρ ( - γ , . · . , - ψ - ) , p e v [ t u . . . , t h ] ,

where d = d(H). From (6.2) we find that t~q = wu5, usG U. Differentiating
this equation repeatedly with respect to z, we obtain

(6.10) i ^ = M ; - ( - ^ , . . . , ^ ) , MjtVltu ...,tj], /6IM.

Substituting (6.10) in (6.9) and noting that Η = Гриь, u6 G U, and
ρ = -ordyH > 0, we obtain

and finally, by virtue of (6.2),

(6.H) w / = ^

with s > 0.
We now estimate the coefficients of &2. If χ G V, then the irreducible

polynomial

Qm{w)xm + . . . + Q0(w) = 0, Qj 6 A „[fj, 0 < / < m,

satisfies the condition deg Qj < deg Qm, therefore, we can apply Lemma 1
of §3 to the equation

m , <?т-т И m-ι _j_ <?o И _ n

^ (?m И "Г · · · < ^ m („,)
Consequently, there is a function σ G Ε such that lw(z)l > σ implies that
IJC(Z)I < σ. Applying this to the coefficients of $2, we obtain from (6.11)
the inequality
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which is valid for some ff,eF and N > 0. Hence, by the lemma on the
logarithmic derivative, m(r, w) « ο(Γ(/·, w))+Q(^(/·)), r -*•«>. Together with
(6.7), this shows that w £ Αφ, which contradicts the assumption that the
solution is admissible. This proves the theorem.

2. We now consider some consequences of Theorem 10. Suppose that the
differential polynomial has the form H(y) = >>(fc). In the equation

(j/(h))m + *•„_, (y) (y<*>)"-' + ...+F0(y) = 0, F, 6 Λ [i,],

we make the substitution у = νν-1 + α, where a e С is a suitable constant.
The equation takes the form

))™-1 + . . · + Р,И = 0,

where Я is some differential polynomial and η - max (deg F/-(k+ \){m -/)) >
j

3* 0. Applying Theorem 10, we obtain the following result: for the
irreducible equation

(6.12) Fm{y)^T+---+F0(y) = 0, ^,ΕΛρΙί.],

to Aave a« admissible solution it is necessary that
(6.13) deg J ^ < (k + l)(m - /) (/ = 0, . . ., m).

For A: = 1 this reduces to the condition A of criterion 2 of § 1. It is
interesting that (6.13) is the same as the necessary condition given by Chazy
[28] for the absence of movable singular points in the general integral of
(6.12).

If F in Theorem 10 is linear in H, then the equation is

(6.14) Ш..1У) = Ш - , P

to which [30], [40], [58], [59], and [54] are devoted. We assume that Ρ
and Q are relatively prime. In [30] and [54] independent proofs are given
that for the absence of an admissible solution of (6.14) it is necessary that
deg Q = 0 and deg Ρ < κ(#). Various special cases of this assertion were
obtained earlier in [40] and [58]. [59] contains the same result, but with
a different definition of an admissible solution.

We deduce the result quoted about equation (6.14) from Theorem 10 and
the theorem (2.5) of A.Z. Mikhon'ko. By Theorem 10, deg Q = 0. On the
other hand, it is easy to show that

T{r, H(y)X Ш) + o(i))T(r, y) + 0(<p(r))

outside a set of finite measure (this relation is similar to (2.3)). It follows
from this and (2.5) that deg P < κ(#) in (6.14).

We now consider admissible solutions of (6.14) for which

(6.15) N(r, у) « 0(<p(r)), r - ^ o o ,

in particular, entire solutions. If there is an admissible solution, then
deg Q = 0, by Theorem 10. Now let d = d{H) be the degree of H.
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If deg P> d, then after dividing (6.14) by yd, by the lemma on the
logarithmic derivative we obtain the estimate

m(r, y) « 0(<p(r)), r->- oo.

Thus, if deg P> d, then (6.14) has no admissible solutions with the property
(6.15). This result was obtained in [66], and for к = 1 in [67].

3. In the proof of Theorems 6 and 10, the fact that the relevant meromorphic
algebroid functions are defined on the whole plane is used essentially at only
one place, in applying the lemma on the logarithmic derivative. This enables
us to prove similar theorems for functions that are defined in the unit disc
and in a half-plane. Here for the case of the disc we make use of the
Nevanlinna characteristic, and for the half-plane we use the Tsudzi
characteristic (see [8]). We content ourselves with stating a result similar to
Theorem 6 for functions in the unit disc.

The lemma on the logarithmic derivative in this case takes the form

m (r, ^-) < ( κ + 1 + о (1)) log (1 - r ) " 1 + ο (Τ (r, w)), r£ X,

where X С [0, 1) is some set for which

(6.16) j (l-r)-x-ldr<oo
χ

(see [3] and [16], 256).
Suppose that a positive function <p(r) is given on [0, 1) with the property

that log (1 -r)~l = ο(φ(τ)). We write Αψ for the set of algebroid functions
on {z: | ζ | < 1} for which

T(r, /) = 6>(cp(r)), r - > l , r$X,

where X is some set with the property (6.16), for any κ > 0 .

Theorem 11. If an irreducible equation F{y', y) = 0, F £ A^t^ t2], has a
solution у φ. Αφ that is meromorphic on {ζ: \ ζ j < 1}, then it satisfies the
Fuchs conditions.

An analogue of Malmquist's Theorem I for functions that are meromorphic
in the unit disc was first obtained by Hille [32].

We define the order of a function meromorphic in the disc by the formula
Γ-— log+ Τ (r, i)

ρ = l i m — у — λ ' .p _ i — l o g ( l — r) ·

Theorem 12. Suppose that a first-order equation with rational coefficients
has a solution that is meromorphic in the unit disc. Then the order of the
solution is a finite rational number.

This result follows from Theorem 11 in the same way as Theorem 7
follows from Theorem 6. Earlier, the assertion of Theorem 12 was known
only for solutions that are holomorphic in the disc [61 ] . Theorem 10 also
has an analogue for functions that are meromorphic in the disc.
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We do not linger to state corresponding results for a half-plane. Some a
priori estimates of the growth of solutions in a half-plane are contained in
[7], [18], and [22].

We also mention [72], which studies meromorphic solutions of
homogeneous second-order equations. Such equations are reduced to first
order by the substitution w = y'/y, after which one can apply the theory in
§§1-5.

§7. Autonomous equations of Briot-Bouquet type

1. In contrast to first-order equations, the information available at present
on meromorphic solutions of higher-order equations is very meagre. The
only equations that have been studied with reasonable completeness are
certain special equations whose general solution is meromorphic: Painleve
equations (see [1] and [4]). The properties of meromorphic solutions of
Painleve equations are investigated in detail in the classical paper [73].

We consider a very simple class of higher-order equations, for which a
complete investigation of its meromorphic solutions is possible in certain
cases. These are the equations of Briot-Bouquet type

(7.1) F (!/<">, y) = Fm (y) Q/(h>)m + . . . + Fo (y) = 0, F, 6С \t].

F is an irreducible polynomial. For к — 1 these are the classical Briot-
Bouquet equations mentioned in the Introduction. If (7.1) with к — 1 has
a non-constant meromorphic solution, then all its solutions are meromorphic.
For к > 1 this is no longer true. Picard [47] has studied meromorphic
solutions of (7.1) for к = 2 (see Theorem 15 below). Even now, 100 years
after [47], the equations (7.1) continue to arouse interest [31], [33]-[36],
[10], [74]. But it is clear from [33], [35], and [74] that Picard's result
has been forgotten.

First of all, we remark that every transcendental solution of (7.1) is
admissible, therefore, (6.13) is a necessary condition for the existence of
transcendental solutions. We give more precise necessary conditions. For
this purpose we consider the Riemann surface Jf of the algebroid function
s(y) defined by the relation F(s, y) = 0. We write Μ for the set of points
of this Riemann surface that project to у = °°. For each point F £ M w e
set q(V) = OTdvsloravy.

Theorem 13. Suppose that (7.1) has a transcendental meromorphic solution y.
Then:

i. q{V) = 1 for at most two points V G M; for all other points V Ε Μ
we have q(V) = 1 + k/n, where к is the order of the equation and η is a
natural number.

ii. For у to be entire it is necessary and sufficient that q(V) = 1 for all

кем.
iii. If у has at least one pole of order n, then there is a point V Ε Μ for

which q{V) = l + k/n.
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iv. // there is a point V G Μ such that q(V) = 1 + k/n, then every
meromorphic solution has infinitely many poles of order n.

The condition (6.13) is obtained from this with the aid of the Newton
diagram.

Suppose that (7.1) has a meromorphic solution y. Then the pair of
functions y(fe) and у gives a covering map π: С -> 9~. The following
theorem holds for π.

Picard's theorem. Suppose that π is non-rational. If the genus of !F is 0,
then every point V £ $F, with the exception of at most two, has infinitely
many inverse images in С // the genus of .Ψ is 1, then every point V 6 $F
has infinitely many inverse images in C. If the genus of OF is greater than 1,
then there are no such maps.

We write W for the set of all elliptic functions and functions of the form
i?(exp az), where R is rational and a G C.

We claim that for к = 1 all meromorphic transcendental solutions of
(7.1) belong to W.

We consider a point V 6 & that is not a branch point and has infinitely
many inverse images zb z2, ••• under π. The Cauchy problem for the
equation F{y', y) = 0 with the initial condition π(0) = V has a unique
solution, therefore, the meromorphic functions y{z~Zj) (/' = 1, 2, ...)
coincide. Consequently, у is a periodic function. Without loss of generality
we may assume that its period of least modulus is 2πί. If every point V 6 &
has finitely many inverse images in the strip {z: 0 < Im ζ < 2π}, then it is
easy to see that у = i?(exp z), where R is a rational function. If some point
V 6 ,F has infinitely many inverse images in this strip, then the preceding
arguments are again applicable, consequently, у is an elliptic function. This
argument seems to be due to Rellich [49], although the assertion we have
proved was already known to Briot and Bouquet (see also [74], where
another proof is given).

It can happen that a similar argument is applicable to certain equations
(7.1) with k> 1.

Lemma 4. Suppose that к is odd. Then there are only finitely many
meromorphic solutions of (7.1) with a pole at 0.

This lemma is proved by substituting the Laurent series with undetermined
coefficients in (7.1) and successively computing these coefficients. Making
use of Rellich's idea, Theorem 13, and Lemma 4, we can obtain the
following result.

Theorem 14. Suppose that к is odd and (7.1) has a meromorphic solution
with at least one pole. Then this solution belongs to W.

For a proof, see [ 1 0 ] .
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Lemma 4 is not true for even к (there is a mistake in [36] at this point).
But for к = 2 the following theorem holds:

Theorem 15. If (7.1) with к = 2 has a meromorphic solution y, then у £ W.
(See [47], and also [33], [35], and [74].)

When the genus of & is 1, there is a complete description of the
meromorphic solutions of (7.1) [ 10]. In this case, by the uniformization
theorem [9] , we must have

(7.2) г/(*> = Oitefe)), у = Ф20?(г)),

where Φ! and Φ 2 are elliptic functions and g is an entire function.
Differentiating the second equation in (7.2) к times and substituting the
result in the first equation, we obtain the relation

(7.3) Σ Φ;<*(*))A,(z) = 0,

where the Φ;· are elliptic functions with a common period lattice, and the hj
are differential polynomials in g. Using Valiron's theorem (§2.1), it can be
shown that the equation (7.3) is possible in just one case, wheng =az + b.
Thus, the only transcendental meromorphic solutions of (7.1) when 2F is of
genus 1 are the elliptic functions.

This result, and also Theorems 14 and 15, make plausible the conjecture
that transcendental meromorphic functions satisfying (7.1) always belong to
W. But this has not yet been proved even for the equation ylw = y5.

2. Identities like (7.3) arise in other problems of the analytic theory of
differential equations. The following interesting result was obtained by
Steinmetz in an investigation of the factorization of meromorphic solutions.

Theorem 16. Let Fo, ..., Fm, and h0, ..., hm be arbitrary meromorphic
functions, m> 1, F, ψ 0, 0 < / < m, and let g be a non-constant entire
function such that

m

2 T(r, hj)^KT(r, g), K = const.

>t> + РМЖ + • • • + Fn{g)hm = 0,

then there are polynomials Po, ..., Pm, Pj ψ 0, such that

Po(g)K + Р&Уц + • • · + Pm(g)hm as 0.

We now consider a differential equation of the form

(7.4) H(y) = #(2/<ft>, . . ., у) = О,

where Η is a differential polynomial over the field of rational functions.
From Theorem 16 we can obtain, for example, this result.
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Theorem 17 (Steinmetz [56]). Let f be a transcendental meromorphic

function and g an entire function. If the meromorphic function у = f(g)

satisfies (7.4), then f and g satisfy, respectively, the equations

#,(/) = 0, H2(g) = 0,

where Hx and H2are differential polynomials with d(ff i)^ й(Я),и(Я 1 )^ κ(#).

Regarding the factorization of solutions of differential equations, see also

[45] and [46].

In this survey we have not touched on questions of the growth of

meromorphic solutions of higher-order equations. Results in this area are of

an extremely special nature; see, for example, [6] and [23]. In the case of

entire solutions, a great deal more has been done; in this case one can apply

the Wiman-Valiron theory and the modifications of it set out in detail in

[2], [3], [29], and [17].
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