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Abstract

The theory of entire functions and its applications were at the
center of Ostrovskii’s research interests throughout his entire career.
He made lasting contributions to several aspects of this theory, and
many of his works had a significant influence on subsequent research.
In this note, we address some of these works.

2010 MSC: 30D20, 34L05. Keywords: entire function, linear dif-
ferential operator.

1. Growth of entire functions and their value distribution by ar-
guments

We start with Ostrovskii’s earliest results, included in his PhD thesis, in
which he extended and strengthened seminal results of Krein and Edrei. He
published announcements of these results along with sketches of the proofs
in a series of Doklady notes (1957-1960). A detailed exposition appeared in
the Izvestiya paper [64]. Most of them, in somewhat stronger versions, were
included in the Goldberg–Ostrovskii treatise [25, Sections VI.2, VI.3].

In 1947, Krein introduced the class of entire functions f such that 1/f is
represented by an absolutely convergent series of simple fractions

1

f(z)
= a+

b

z
+
∑
λ∈Λ

cλ

( 1

z − λ
+

1

λ

)
,

where a, b, and cλ are real, Λ ⊂ R, and
∑

Λ |cλ|/λ2 < ∞. We will denote
this class by K. Krein proved that

Functions of the class K have finite exponential type.
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Moreover, Krein showed that functions from K have a bounded type in the
upper and lower half-planes, that is, in each of the half-planes they are repre-
sented as a quotient of two bounded analytic functions. The latter property
yields that functions from K belong to the Cartwright class, which consists
of entire functions f of exponential type with a growth bound on the real
axis: ∫

R

log+ |f(t)|
1 + t2

dt <∞.

Functions of the Cartwright class possess a regularity of growth and of zero
distribution described in books by Levin [48, Lectures 14–17] and Koosis [39].

It is also important to mention that Krein proved his theorem under
an assumption weaker than Λ ⊂ R, namely that the zeros of f satisfy the
Blaschke condition in the upper and lower half-planes∑

λ∈Λ

∣∣Im (1/λ)
∣∣ <∞. (1)

Edrei’s theorem [19, Theorem 1] deals with meromorphic functions with
three radially distributed values, which is a seemingly different class of func-
tions. We will quote here only its special case pertaining to entire functions
in which case only two valued are needed (the third one is ∞):

If f is an entire function such that for some distinct a, b ∈ C all but
finitely many solutions to the equations

f(z) = a, f(z) = b

lie in a finite union of rays

D(α1 . . . αN) =
⋃

1≤j≤N

{z = reiαj : 0 ≤ r <∞}, 0 ≤ α1 < . . . < αN < 2π,

then f has a finite order of growth

ρf ≤ max
1≤j≤N

π

αj+1 − αj
, (2)

where αN+1 = 2π + α1.

In particular, if an entire function f has real ±1-points, then its order of
growth does not exceed one. We will return to this class of entire functions
in Section 3.
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It should be mentioned that the bound (2) under the a priori assumption
that f has a finite order of growth is implicitly contained in the work of
Bieberbach [13].

A remarkable joint feature of these theorems of Krein and Edrei is that
both of them do not have a priori assumptions on the growth of the entire
function. Their similarity, communicated to Ostrovskii by Goldberg, allowed
Ostrovskii to significantly extend both of them. Here, we will bring only
special cases of his results. The interested reader can find more general
versions in [25, Section VI.2].

Following Ostrovskii, we say that a-points zk = rke
iθk of an entire func-

tion f are very close to the system of rays D(α1 . . . αN), if they satisfy the
Blaschke condition in each of the complementary angles to these rays. That
is, the N series∑

rk≥1,
θk∈(αj ,αj+1)

r
− π
αj+1−αj

k sin

[
π

αj+1 − αj
(θk − αj)

]
, j = 1, 2, . . . , N,

converge (in the case, when N = 2 and α1 = 0, α2 = π, this coincides with
condition (1)). Then, his extension of Krein’s theorem states the following:

Suppose that f is an entire function such that 1/f is represented by an
absolutely convergent series of simple fractions with poles very close to a
finite union of rays D(α1 . . . αN).

Then f has a finite order of growth satisfying (2) and has a bounded type
in each of the angles complementary to D(α1 . . . αN).

We note that the fact that f has a bounded type in each of the complemen-
tary angles yields regularity of growth and zero distribution similar to the
ones which are possessed by entire functions of the Cartwright class, see [25,
Sections VI.2, VI.3].

Ostrovskii’s strengthening of Edrei’s theorem is also quite natural:

Suppose that a, b are distinct values in C, and that D(α1 . . . αN) is a
finite union of rays. Let f be an entire function with a- and b-points lying
very close to D(α1 . . . αN).

Then f has a finite order of growth satisfying (2) and has a bounded type
in each of the complementary angles.
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Both results have meromorphic counterparts also proven by Ostrovskii,
see [25, Section VI.2] and [64] for the case of meromorphic functions in the
unit disk. For the reader acquainted with basic notions of the Nevanlinna
theory, we mention that if the function f is meromorphic, then the same
conclusion holds if a- and b- points lie very close to D(α1 . . . αN), a, b ∈ C̄,
a 6= b, and a value c ∈ C̄, c 6= a, b, is Nevanlinna deficient. The proofs are
based on a version of Nevanlinna theory for meromorphic functions in an
angle.

Edrei and Fuchs [20] considered meromorphic functions with all but finitely
many a- and b-points (a 6= b ∈ C) lying on N disjoint rectifiable curves
Cj = {z = reiαj(r), r0 ≤ r <∞}, where α1(r) < . . . < αN(r) < α1(r) + 2π =
αN+1(r). They assumed that, for some B > 0, the length of the portion of
each curve lying in any annulus {r1 ≤ |z| ≤ r2} is bounded by B(r2 − r1).
They showed that if f has relatively few poles (more precisely they assumed
that ∞ is a Nevanlinna deficient value of f), then f has a finite order of
growth, which does not exceed

max
1≤j≤N

lim
r→∞

9πB2

αj+1(r)− αj(r)
.

If the curves are radial lines emanating from the origin, then B = 1, and
their bound is 9 times worse than the optimal one (2).

The interested reader will find other results (including Ostrovskii’s ones)
on the value-distribution of meromorphic functions in [25, Chapter VI] as
well as in the survey [24, § 10].

Concluding this section, it is worth noting that the Goldberg–Ostrovskii
treatise [25], written in the late 1960s, remains one of the primary sources
in one-dimensional Nevanlinna theory. Its English translation includes a
brief survey of results obtained after 1970. A less direct but still important
impact of Ostrovskii on value-distribution theory may be found in works of
Petrenko, who completed his Ph.D. thesis under Ostrovskii’s supervision.
Many of Petrenko’s findings were summarized in his books [68, 69].

2. Conjectures of Pólya and Wiman

The class of all real polynomials with all zeros real is closed under differ-
entiation. A simple proof of this statement uses Rolle’s theorem and degree
counting. The second part of the argument, degree counting, breaks down
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when one tries to extend this result to entire functions. The entire function
zez

2
has only real zeros while the derivative (1 + 2z2)ez

2
has two non-real

zeros. This justifies the definition of the Laguerre–Pólya class of entire func-
tions: f ∈ LP if f is a limit (uniform on compact subsets of the plane) of real
polynomials with all zeros real. It immediately follows that this class is closed
under differentiation. Laguerre and Pólya obtained a remarkable parametric
description of this class: f ∈ LP if and only if f(z) = e−az

2
g(z), where a ≥ 0

and g is a real entire function (i.e. having real Taylor coefficients) of genus
one with real zeros. That is,

f(z) = zme−az
2+bz+c

∏
k

(
1− z

zk

)
ez/zk ,

where b, c and zk are real,
∑

k |zk|−2 <∞, and a ≥ 0. This class plays a cen-
tral role in the “algebraic theory of entire functions” launched by Laguerre,
Pólya, and Schur, and has a variety of applications.

In 1914, Pólya [71] stated the following conjecture:

P1. Suppose f is a real entire function with all derivatives having only real
zeros. Then f ∈ LP.

In [71] (a more detailed exposition appeared in [72]) Pólya proved this for
real entire functions of the form f = PeQ, where P and Q are polynomials.
In [72] Pólya gave a stronger version of this conjecture which includes non-
real functions:

P2. Suppose f is an entire function with all derivatives having only real
zeros. Then either f has the form

f(z) = ceaz or f(z) = c(eibz − eid),

with complex c and a, and real b and d, or f ∈ LP.

In [6, 7] Ålander claimed the proofs of Conjectures P1 and P2 for entire
functions of finite order. Subsequent researchers expressed doubts about the
justification of certain steps in his proofs, see [27, p. 228].

According to Ålander [4], Wiman conjectured a stronger version of Con-
jecture P1 in his Uppsala lectures of 1911:

W1. Suppose f is a real entire function with f and f ′′ having only real zeros.
Then f ∈ LP.
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Furthermore, according to Ålander, Wiman also gave a quantitative ver-
sion of this conjecture for entire functions of finite order of growth. To
state it we define the class V2p consisting of all entire functions of the form
f(z) = e−az

2p+2
g(z), where a ≥ 0, and g is a real entire function of genus

not exceeding 2p + 1 having only real zeros. Then, we set W0 = V0, and
W2p = V2p\V2p−2, so that LP = W0, and the set of all entire functions of
finite order with only real zeros is a disjoint union of classes W2p for all
p ≥ 0.

W2. For f ∈ W2p, f
′′ has at least 2p non-real zeros.

In other words, if f is a real entire functions with only real zeros and f ′′

has at most 2p non-real zeros, then f ∈ V2p. In particular, for p = 0, this
coincides with Conjecture W1 for a special case of entire functions of finite
order. In [4], Ålander [4] proved Conjecture W2 for functions of genera 2 and
3, and in his later paper [5] for functions of genera not exceeding 5.

To see the difficulty of these conjectures, consider the case f = eQ with
a real polynomial Q and let P = Q′. Conjecture W1 yields that for every
real polynomial P of degree n > 1, P 2 + P ′ has non-real zeros. Moreover, if
degP = n, then the genus of f equals n+ 1 and f ∈ W2p, where p is the least
integer greater or equal to n/2. Then, by Conjecture W2, the polynomial
P 2 +P ′ of degree 2n should have at least 2p non-real zeros. This is known for
polynomials P having only real zeros, see Pólya–Szegő [77, Chapter 5, 182],
but a general, even a non-quantitative, question remained open for about 60
years. But more on that later.

In the paper [74] Pólya was concerned with “a very bold argument” by
which Fourier tried to prove that all zeros of the Bessel function J0 are real
and positive. Fourier applied a rule proven only for polynomials, to a tran-
scendental entire function, while Cauchy and Poisson expressed doubts about
Fourier’s reasoning. In [74] Pólya proved a theorem which justifies Fourier’s
argument and stated hypothetical theorems which would allow one to broadly
apply Fourier’s algebraic argument. We will refer to these two hypothetical
theorems, which we will state shortly, as the Fourier–Pólya conjectures.

Let f be a real entire function. We assume for simplicity that neither f
nor any of its derivatives f ′, f ′′, . . . has multiple zeros. We say that a point
ξ ∈ R is de Gua-critical if, for some n ∈ N,

f (n)(ξ) = 0, f (n−1)(ξ)f (n+1)(ξ) > 0 .
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Counting de Gua-critical points, we take them into account as many times as
this occurs for different values of n. That is, we count all positive minima and
negative maxima of f and all its derivatives. The de Gua rule (1741) states
that the number of complex conjugate pairs of zeros of a real polynomial
equals the number of its de Gua-critical points. This rule is not difficult to
justify using, for instance, the idea of the Budan-Fourier rule, while Fourier
applied it to a real transcendental function, justifying this by the fact that
this function is a limit of real polynomials.

FP1. A real entire function of genus 0 has just as many de Gua critical
points as pairs of non-real zeros.

To state the second conjecture, we extend the Laguerre-Pólya class allowing
the functions to have finitely many non-real zeros, and denote by LP∗ the
class of entire functions of the form f = pg, where p is a real polynomial,
and g ∈ LP.

FP2. An entire function of class LP∗ has just as many de Gua critical points
as pairs of non-real zeros.

In the same paper Pólya shows that the second conjecture is equivalent to
another one, to which we refer as to a PW conjecture, since, according to
Ålander [8], Wiman stated it to him in 1916.

PW. If f ∈ LP∗, then its derivatives from a certain one onward, have no
non-real zeros at all (that is, belong to LP).

Special cases of this conjecture were proven by Ålander [8], Pólya [74, 75],
and Wiman [86, 87], so it was established for entire functions of order at most
4/3, and for entire functions of the form f(z) = e−αz

2
g(z), where α ≥ 0 and

g has genus 0.
In an enthralling survey [76], Pólya briefly returned to this circle of prob-

lems and stated yet another conjecture, which concludes this list:

P3. If the order of a real entire function f(z) is greater than 2, and f(z) has
only a finite number of non-real zeros, then the number of non-real zeros of
f (n) tends to infinity as n→∞.

All these conjectures were completely settled much later, the most dif-
ficult ones only in the 21st Century, through the combined efforts of many
mathematicians. The first substantial progress was made in the paper [50]
by Levin and Ostrovskii. Most of the subsequent work on the conjectures
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built upon this paper, where Levin and Ostrovskii introduced several crucial
ideas to the subject. The first one was the connection between the loga-
rithmic derivatives of entire functions with all zeros real and the class of
meromorphic functions with positive real part in the upper half-plane.

Levin-Ostrovskii representation: Let f be a real entire function with all
zeros real. Then

f ′

f
= Pg,

where P is real entire and g is a real meromorphic function with non-negative
imaginary part in the upper half-plane. If f is of finite order, then P is a
polynomial.

This lemma gives a control of the behavior of f ′/f since g has nice prop-
erties. One obtains especially good control for functions of finite order, in
which case the representation can be made more precise [28, 10].

Then, following Edrei [19], Levin and Ostrovski consider the function
F = f/f ′ and argued as follows. Suppose that ff ′′ has no zeros in the upper
half-plane. Then F omits 0 and F ′ omits 1 in the upper half-plane. Indeed,

F ′ − 1 =
f ′2 − ff ′′

(f ′)2
− 1 = − ff ′′

(f ′)2
.

This observation immediately points at Hayman’s generalization of Picard’s
theorem [26, § 3.3]:

If a meromorphic function in the plane omits one finite value and its
derivative omits a non-zero value, then this function is constant.

Applied to the function F = f/f ′, Hayman’s theorem yields that if ff ′′ has
no zeros in C, then f is the exponential function eAz+B. There is a general
philosophy, usually called Bloch’s Principle, that if a condition imposed on
a function meromorphic in the plane implies that this function is constant,
then the same condition imposed on a function in an arbitrary domain must
imply some universal estimate of this function.

Hayman’s proof relies on Nevanlinna theory, and to apply it to a function
in a half-plane required an appropriate generalization of Nevanlinna theory.
Versions of Nevanlinna characteristics adapted for functions in a half-plane
were introduced by Nevanlinna, and by Levin and Tsuji. The formulation
with Levin–Tsuji characteristics is especially suitable, since for them a full
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analogue of the main technical tool of Nevanlinna theory (the Lemma on the
logarithmic derivative) holds. Using both Nevanlinna characteristics for a
half-plane and Levin–Tsuji characteristics, Levin and Ostrovskii proved the
following:

If f is a real entire function such that ff ′′ has only real zeros, then

log logM(r, f) = O(r log r). (3)

Here M(r, f) = max{|f(z)| : |z| ≤ r}. A weaker estimate of the same
type under the stronger condition that ff ′f ′′ has only real zeros was earlier
obtained by Edrei [19, Theorem 3]. It is worth mentioning that Levin and
Ostrovskii proved (3) requiring that zeros of f are real while zeros of f ′′

satisfy Blaschke’s condition (1) in the upper and lower half-planes. Shen [79]
proved that (3) holds provided that f is real, and zeros of f and f ′′ satisfy (1).

Below we list the main milestones on the subsequent way to the complete
proof of the conjectures of Pólya and Wiman.

In 1971 Hellerstein and Yang [30] extended the Levin–Ostrovskii theorem to
higher derivatives, that is, if ff (k) has only real zeros for some k ≥ 2, then
(3) holds.

In 1977, Hellerstein and Williamson [27, 28] proved that if ff ′f ′′ has only
real zeros then f ∈ LP . This proves Pólya’s conjecture P1, even in a stronger
version, and yields that the Laguerre-Pólya class LP is the only class of real
entire functions closed under differentiation, but this result is still weaker
than Wiman’s conjecture W1. One down, six to go!

In the same work they also gave a detailed proof of Pólya’s conjecture P2
for entire functions of finite order [27, Theorem 2]. Their proof essentially
followed Ålander’s very sketchy outline [7].

In 1983, Hellerstein, Shen, and Williamson [29] proved P2 in full generality,
describing entire functions f with ff ′f ′′ having real zeros only. In addition
to two families of non-real entire functions with real zeros of all derivatives,
they singled out two families of non-real entire function of infinite order with
ff ′f ′′ having only real zeros:

f(z) = C exp
[
ei(az+b)

]
, f(z) = C exp

[
K(i(az + b)− ei(az+b))

]
,

where C is a complex constant, a and b are real numbers, and −∞ < K ≤
1/4. For the functions of these two families, f ′′′ must have non-real zeros.
This work significantly used the ideas of Levin and Ostrovskii.
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In 1987, Craven, Czordas, and Smith [16] proved a result which is only slightly
weaker than the Pólya–Wiman conjecture PW: if f is of order less than 2 and
has finitely many non-real zeros, then all sufficiently high derivatives belong
to LP (actually, in [76] Pólya formulated Conjecture PW in this weaker form).
Then, in [17], they extended this result to entire functions of order 2 and
minimal type.

In 1990, Kim [36] completed their result and settled the Pólya–Wiman con-
jecture PW (and therefore, also the second Fourier–Pólya conjecture FP2,
which is equivalent to PW).

In 2000, Ki and Kim [37] settled the first Fourier–Pólya conjecture FP1 and
gave a simpler proof of the Pólya–Wiman conjecture PW.

In 1989, Sheil-Small [78] proved the second Wiman’s conjecture W2, and
therefore the first Wiman conjecture for entire functions of finite order. As
a special case, this result resolves a long-standing puzzle: if P is a real
polynomial of degree n > 1, then P 2 + P ′ should have at least p complex
conjugate pairs of zeros, where p is the least integer bigger than or equal to
n/2. For the first Wiman’s conjecture W1, a gap between finite order and
(3) remained.

In 2003, this gap was closed by Bergweiler, Eremenko, and Langley. They
proved in [9] that, for functions of infinite order with all zeros real, f ′′ has
infinitely many non-real zeros, thus completing the proof of Wiman’s con-
jecture W1. This work makes a substantial use of the ideas of Levin and
Ostrovski [50] and Sheil-Small [78].

Pólya’s conjecture P3 turned out to be most difficult. We mention two
partial results.

In 2002, Edwards and Hellerstein [15] generalized Sheil-Small’s theorem.
They introduced the class W∗2p consisting of entire functions f = pg, were
g ∈ W2p, and p is a real polynomial, and showed that

If f ∈ W∗2p, then any derivative f (k), k ≥ 2, has at least 2p non-real zeros.

In 1993, Bergweiler and Fuchs [12] proved the following:

If f is a zero free real entire function of infinite order, then f ′′ has in-
finitely many non-real zeros.

In 2005, Langley [47] complemented the result of [9] and proved that
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For any real entire function f of infinite order with all zeros real, any
derivative f (k), k ≥ 3 has infinitely many non-real zeros.

This is probably the most difficult result in the area, building on the
technique developed in [9].

In 2006, the final step in the proof of Pólya’s conjecture P3 was made in [10]:

For a real entire function of finite order which does not belong to LP∗,
the number of non-real zeros of f (k) tends to infinity as k →∞.

By combining the aforementioned results, one arrives to the following
neat statement:

For an arbitrary real entire function f one of the following possibilities
hold: either zeros of f (k) are all real for sufficiently large k, or the number
of non-real zeros of f (k) tends to infinity as k →∞.

Thus the paper [50] had a lasting influence on the subsequent research
which eventually led to a complete proof of conjectures of Pólya and Wiman.
Levin and Ostrovskii did not prove these conjectures themselves but they
showed the correct path towards the proofs, which was followed by many
mathematicians who eventually completed the project. Other results related
to this range of questions can be found in [25, Section VI.5].

The machinery of Levin–Tsuji characteristics has found additional appli-
cations in the theory of meromorphic functions, see, for example, Bergweiler–
Eremenko [11]. Matsaev, Ostrovskii, and Sodin [59, 60] used Levin–Tsuji
characteristics for estimates of logarithmic determinants and the Hilbert
transform. Khabibullin [38] applied them to find conditions for existence
of certain subharmonic minorants.

We conclude this part with a question closely related to the Pólya and
Wiman problems, raised by Levin and Ostrovskii in [50] and apparently still
open. Let P be the class of entire functions of the form f(z) = e−αz

2
g(z),

where α ≥ 0, and g is an entire function of genus 1, having no zeros in the
upper half-plane H. By Obreshkov’s theorem [48, Theorem VIII.4], P coin-
cides with the locally uniform closure of H-polynomials, that is, polynomials
having no zeros in H, so many properties of H-polynomials persist for func-
tions of class P. In particular, it is also closed under differentiation, similarly
to the Laguerre–Pólya class LP. Levin and Ostrovskii stated the following
conjecture:
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LO. Suppose f and all its derivatives have no zeros in the upper half-plane.
Then either f ∈ P, or f coincides with one of the exceptional non-real func-
tions in Pólya’s conjecture P2.

We should note that presumably due to an oversight, Levin and Ostrovskii
did not mention these exceptional functions when asking this question.

3. Comb functions

Consider the class F of real entire functions with real ±1-points. The
functions of this class appear as Hill discriminants/Lyapunov functions of
the second order periodic linear ODE. In this capacity, they appear already
in Lyapunov’s work [53]. Then this class was identified by Krein [46] in
connection with the spectral theory of Krein’s strings. He also pointed out
connections with other problems of analysis (functional Pell’s equation, peri-
odic continued fractions). This class also arises in Chebyshev-type extremal
problems.

Recall that, by Edrei’s theorem, the functions of class F have finite expo-
nential type. However, in applications, this non-trivial result is usually not
used; the needed growth estimates follow from the specifics of the question
under consideration.

Parametrization of class F. In [57], Marchenko and Ostrovskii discov-
ered a remarkable parametrization of class F by conformal mappings of the
upper half-plane on a comb domain, allowing them to find sets of free pa-
rameters that describe the spectrum of Hill operators, and periodic and anti-
periodic inverse spectral problems for the Sturm-Liouville operators. Since
then, the Marchenko–Ostrovskii parametrization has became indispensable
in several areas of analysis.

Theorem 1. Class F consists of all entire functions represented in the form

u(z) = cos θ(z), (4)

where θ is a conformal mapping of the upper half-plane onto a comb domain
of the form

C = {z : Im z > 0, p < Re z < q }\
⋃

p<k<q

[kπ, kπ + ihk], with some hk ≥ 0,

(5)
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where −∞ ≤ p < q ≤ +∞, θ(∞) = ∞, and θ is extended to the lower
half-plane by symmetry, θ(z) = θ(z̄).

In the case −∞ < p < q < +∞, the set Λ of ±1-points of the function u
is finite, and u is a polynomial of degree q − p. If only one of the numbers p
and q is infinite, then the set Λ is bounded from one direction, either above or
below. Let, for instance, min Λ > −∞, and set µ = min Λ. Then the function
u((z − µ)2) has real ±1-points, and therefore, has a finite exponential type.
So, in this case, u has order 1/2 and finite type.

The idea of the proof of Theorem 1 is elegant and not very difficult.
Consider the case when the set Λ is unbounded both from below and from
above. By Edrei’s theorem, the functions u±1 belong to the Laguerre-Pólya
class. Hence, by the Laguerre theorem, u′ has only real zeros, which interlace
both with +1- and with −1-points of u. So we can enumerate solutions to
the equations u2 = 1 and u′ = 0 so that

. . . < ak ≤ ck ≤ bk < ak+1 ≤ ck+1 ≤ bk+1 < . . . ,

where u(ak) = u(bk) = (−1)k, and u′(ck) = 0. Consider the meromorphic
function

[(arccosu)′]2 =
(u′)2

1− u2
.

Its zeros and poles coincide with the ones of the convergent infinite product∏
k

(1− z/ck)2

(1− z/ak)(1− z/bk)
.

Applying growth considerations, it is not difficult to see that

(u′(z))2

1− u(z)2
= C

∏
k

(1− z/ck)2

(1− z/ak)(1− z/bk)
,

with some C > 0, whence

(arccosu(z))′ = D
∏
k

1− z/ck√
(1− z/ak)(1− z/bk)

,

with D > 0, and an appropriate choice of the branches of the square roots.
By the Schwarz–Christoffel theorem, the functions

θn(z) =

∫ z

0

∏
|k|≤n

(1− ζ/ck)√
(1− ζ/ak)(1− ζ/bk)

dζ
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are conformal maps of the upper half-plane onto comb domains, and their
n → ∞ limit θ is also univalent in the upper-half plane and maps it onto a
comb domain.

Spectrum of Hill’s operator. Consider Hill’s equation

Ly = −y′′ + q(x)y = λy (6)

with a real periodic potential q ∈ L2(0, π), q(x) = q(x + π). The main
problem is to determine stability intervals that consist of values of λ for which
all solutions to (6) are uniformly bounded on the real axis. It is known that
the closure of the union of stability intervals coincides with the spectrum of
Hill’s operator L acting in L2(R) (see, for instance, Glazman [23, Section 56]
or Lukić [52, Section 11.16]), so, in the spectral theory language, the problem
is to describe the spectra of Hill’s operators.

Let us start with a brief reminder of a fragment of Floquet’s classical
theory. Let c(x, λ) and s(x, λ) be the fundamental solutions to (6) with
initial conditions

s(0, λ) = c′(0, λ) = 0, c(0, λ) = s′(0, λ) = 1.

Then c and s are entire functions of λ. For large complex λ, they are close to
cos(x

√
λ) and sin(x

√
λ)/
√
λ, respectively. In particular, both of them have

order 1/2, mean type, see, for instance, Levitan–Sargsjan [51, Chapter 1, §2].
For an arbitrary solution y to (6), we have

y(x) = y(0)c(x, λ) + y′(0)s(x, λ),

whence (
y(π)
y′(π)

)
= T (λ)

(
y(0)
y′(0)

)
, (7)

where

T (λ) =

(
c(π, λ) s(π, λ)
c′(π, λ) s′(π, λ)

)
is the monodromy matrix of Hill’s equation. Thus, the problem of deter-
mining stability intervals boils down to finding the eigenvalues of the matrix
T (λ), which we denote by ρ1, ρ2.
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The determinant of T (λ) identically equals 1 (since it is the Wronskian
of the functions c and s, and equation (6) contains no term with y′). So
ρ1 · ρ2 = 1, and

ρ1 + ρ2 = traceT (λ) = c(π, λ) + s′(π, λ).

We consider 1/2 of this trace, which is called the Lyapunov function (or the
Hill discriminant),

u(λ) = (c(π, λ) + s′(π, λ))/2.

This is a real entire function of order 1/2, mean type. The key observation,
known already to Lyapunov [53], is that all ±1-points of u are real. Indeed,
if u(λ) = 1, then, ρ1 = ρ2 = 1, and, by (7), Hill’s equation has a periodic
solution, that is, λ belongs to the spectrum of the periodic boundary values
problem for Hill’s operator. Similarly, if u(λ) = −1, then ρ1 = ρ2 = −1,
and λ belongs to the spectrum of the anti-periodic boundary values problem.
Both boundary values problems are self-adjoint, so, in both cases, λ must
be real. We also note that, u(λ) → +∞ as λ → −∞; this follows from an
asymptotic analysis of solutions c and s, see, for instance, [51, Ch. I, §2]. So
the set of ±1-points of u is bounded from below.

Then, by a straightforward inspection, the stability set contains intervals
of the real axis, where |u| < 1, in which case, ρ1 6= ρ2, and both are uni-
modular, while the instability set contains intervals where |u| > 1, in which
case ρ1 6= ρ2, and both are real. At the points λ, where u(λ) = ±1, we
have ρ1 = ρ2, and the answer depends on whether the derivative du/dλ van-
ishes at this point or not. If du/dλ 6= 0, then λ belongs to the instability
set. If du/dλ = 0 (i.e., two neighbouring stability intervals stick together),
then λ belongs to the stability set. All this was known by the end of the
19th century, in particular, to Lyapunov. The absent piece was a parametric
description of Lyapunov functions corresponding to Hill equations.

Representation of the Lyapunov function in the form (4) combined with
accurate estimates of the solutions c and s allowed Marchenko and Ostrovskii
to use the well-developed theory of distortion under conformal maps and
to obtain complete characterization of Lyapunov’s functions, and hence a
characterization of the spectra, of Hill’s operators with real potentials q in the
Sobolev space W̃ n

2 [0, π] of π-periodic functions, which consists of functions v
on [0, π] satisfying

n∑
k=0

∫ π

0

|v(k)(x)|2 dx <∞
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and continued π-periodically on R.

Theorem 2. If a real potential q belongs to W̃ n
2 [0, π] with n ≥ 0, then the

Lyapunov function u has the form (4) with p > −∞, θ(x(1 + i)) ∼ π
√
x,

x→ +∞, and
∞∑

k=p+1

(kn+1hk)
2 <∞. (8)

Conversely, for every conformal map θ of the upper half-plane onto a comb
domain that satisfies these conditions, the function u, as defined in (4), is

the Lyapunov function of Hill’s operator with real potential in W̃ n
2 [0, π].

Theorem 2 has several remarkable consequences in spectral theory, see [55,
§4, Chapter 3]. Probably, the most outstanding one is the identification of
the moduli space of Hill’s operators with potentials in the Sobolev space
(that is, independent spectral data, which allow one to uniquely recover the
potential) with the following set of data:

(i) a comb domain C with slits satisfying (8);

(ii) a marked point on each slit (if a slit degenerates, i.e., hk = 0, then the
point πk is marked);

(iii) a sign attached to each marked point, not lying on the base of the slit.

Let us sketch the main idea behind this identification, see [57] and [55,
Chapter 3 §4] for the details (cf. Stankevich [83]). Suppose that we know
the comb-domain C, that is, the Lyapunov function u of Hill’s equation (6).
Zero sets of the functions s and s′ are eigenvalues of Hill’s operator with
boundary conditions y(0) = y(π) = 0, and y′(0) = 1, y(π) = 0. Classical
methods of the inverse spectral theory recover the potential q by these two
spectra. Suppose that we know zeros of s. At these points, by unimodularity
of the matrix T , c(λ)s′(λ) = 1, and therefore, |u(λ)| = |c(λ) + s′(λ)|/2 ≥ 1.
Thus, zeros of s lie on the slits of C, and each slit contains exactly one zero
of s. The θ-images of zeros of s are the marked points from item (ii).

Since s is an entire function of order 1/2, we can recover s up to a mul-
tiplicative constant as an infinite product of genus zero. The constant can
be found from the asymptotics s(λ) ∼ sin(π

√
λ)/
√
λ, λ → −∞. Consider

the function v = (c− s′)/2. Having v, we recover s′ = (u+ v)/2, and hence,
zeros of s′. Thus, the problem boils down to recovery of v.

The next step is to expand the meromorphic function v/s into a series
of simple fractions. Such an expansion yields that v can be recovered by
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knowledge of it at zeros of s. Using again that cs′ = 1 at zeros of s, we
see that u2 − v2 = 1 therein, and therefore, v(λ) = [sgn v(λ)]

√
u2(λ)− 1,

provided that s(λ) = 0. Thus, knowing signs of v(λ) at zeros of s, we can
recover the values of v at these points, and then v itself.

The Marchenko–Ostrovskii theory generated a very large body of litera-
ture which is impossible to survey here. So we mention only a few develop-
ments stemming from [57].

Related spectral problems. Korotyaev [40] extended Theorem 2 to a
wider class of potentials, real distributions of the form {q = v′ : v ∈ L2(0, π)}
continued with period π on R.

Tkachenko [82] obtained a parametrization of spectra of Hill’s operators
whose potential q is not necessarily real, so these operators are not self-
adjoint. In this case comb representation is not available, and one has to
work directly with the Riemann surface of u−1 spread over the plane.

Already in 1953 Krein [46] studied spectral properties of solutions to the
integral equation

y′(x) + λ

∫ x

0

y(t) dM(t) = const,

with a non-decreasing function M , M(x+ 1)−M(x) = const. This equation
describes the amplitude y(x) of small vibrations of a string with periodic
distribution of mass. Krein stated that an entire function u normalized by
u(0) = 1 is Lyapunov’s function for a periodic string equation if and only it
has only non-negative ±1-points. Actually, Krein imposed an extra condition
that u is represented by convergent Hadamard product of genus zero with
positive zeros, but in view of Edrei’s theorem, this condition is redundant.
Combining Krein’s theorem with Theorem 1, one gets a description of spectra
of periodic Krein’s string.

Mikhailova [62] used the Marchenko–Ostrovskii map to parameterise mon-
odromy matrices of two-dimensional canonical systems with a periodic Hamil-
tonian, and gave a constructive procedure of recovery of the monodromy
matrix.

Finite-band potentials and their closure. It is a natural hope to ex-
tend the Marchenko–Ostrovskii theory from periodic potentials to more gen-
eral classes of functions invariant with respect to action of the real axis by
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translations. Usual suspects are almost-periodic and, more generally, ran-
dom ergodic potentials. There are only a few classes of such potentials for
which this dream has been fully realized.

Given a real potential q, we denote by L the Schrödinger self-adjoint
operator

L = − d2

dx2
+ q

acting in L2(R). By σ(L) we denote its spectrum.
First, we consider the class of finite-band potentials which we define

shortly. A concise introduction to their theory can be found in Moser lec-
tures [63]. See also Akhiezer [2] and Dubrovin, Matveev, and Novikov [18,
Chapter 2]. An interesting discussion of the history is in the article by
Matveev [61]. These potentials have a finite-band spectrum

σ(L) = [λ0, λ1] ∪ [λ2, λ3] ∪ . . . [λ2N ,∞), λ0 < λ1 < λ2 < . . . < λ2N , (9)

and are singled out by a resolvent condition. The resolvent R(λ) = (L−λ)−1.
is an integral operator with the kernel G(x, y, λ) called Green’s function of
L. Its diagonal G(x, x, λ) belongs to the Nevanlinna class N of functions f ,
analytic in {Imλ 6= 0}, and satisfying f(λ̄) = f(λ), and Im f(λ)/Imλ > 0.

The potential with spectrum (9) is called finite-band if its Green func-
tion G(x, x, λ) takes purely imaginary limiting values on the interiors of the
bands. Then it is not difficult to show that G(x, x, λ) can be continued to
a meromorphic function of λ on the hyperelliptic Riemann surface X of the
function [ ∏

0≤j≤2N

(λ− λj)
]1/2

.

A remarkable consequence is that, for finite-band potentials, the direct and
inverse problems of spectral theory can be explicitly solved by classical meth-
ods of the theory of Riemann surfaces. The full set of spectral data of
finite-band potentials is realized as divisor on X, which consists of N points
chosen so that each closed gap [λ2j−1, λ2j] has a point lying over it. The
potential q is recovered using theta-functions (or hyperelliptic integrals),
and is quasi-periodic (recall that a function f is called quasi-periodic if
f(x) = F (x, . . . , x), with a continuous function F (x1, . . . , xn) that is periodic
in x1, . . . , xn. Quasi-periodic functions are uniformly almost-periodic).

Alternatively, one can define the spectral data using comb-domains. In
this case, a function θ maps the upper half-plane onto a quater-plane with N
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slits having arbitrary bases. Then, as in the Marchenko–Ostrovskii theory,
the complete set of spectral invariants of the operator L is given by location
and lengths of slits, collection of N points on these slits, and collection of
signs attached to each point unless the point lies on the base of a slit.

If the bases of the slits lie in a subset of an arithmetic progression, then
the finite-band potential is periodic and we arrive at a special case of the
Marchenko–Ostrovskii theory with Lyapunov function u having finitely many
simple ±1-points, the rest of them having multiplicity two. Using The-
orem 2, Marchenko and Ostrovskii showed that such finite-band periodic
potentials are dense in the W̃ n

2 [0, π]-metric in the space of all real periodic
potentials [58], [55, Theorem 3.4.3].

Comb domains also occur for some classes of almost-periodic potentials
with Cantor-type spectrum when the bases of the slits are everywhere dense,
see Pastur and Tkachenko [66], and Sodin and Yuditskii [81] (the latter work
contained a gap, which was fixed in Gesztesy and Yuditskii [32]). In these
works, the authors obtained a complete description of independent spectral
data needed for the recovery of the potential.

Almost-periodic and random ergodic potentials. For general almost
periodic and random ergodic potentials the classical Floquet theory ceases to
work, and the Lyapunov function u does not exist. Johnson and Moser [33]
found an extension of the Floquet theory for almost-periodic potentials, and
Kotani [41, 42, 43] extended it to random ergodic potentials defined as fol-
lows. Let R (regarded as an additive group) act on a probability space
(Ω,F ,P) by measure preserving transformations Tx, x ∈ R, let the action
be ergodic, and let q : Ω→ R be a random variable with a finite second mo-
ment. Then one considers Hill’s operators, whose potentials are the random
functions x 7→ q(Tx ω).

We will briefly explain the approach developed by Johnson–Moser and
Kotani. If the potential q is either uniformly almost periodic, or, more gen-
erally, random ergodic potential q, then the Green’s function x 7→ G(x, x;λ),
as well as its inverse x 7→ 1/G(x, x;λ), are also almost-periodic/random er-
godic. Set

w(λ)
def
= −1

2
lim

b−a→∞

1

b− a

∫ b

a

dx

G(x, x;λ)
. (10)

In the random case the limit exists almost surely, and, by ergodicity, coincides
with −1

2
E
[
G−1(x, x;λ)

]
. The function w is holomorphic in {Imλ 6= 0} and
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satisfies

w,
dw

dλ
, −iw ∈ N,

where N is the Nevanlinna class introduced above. This yields that w is
univalent in the upper half-plane, and the image w(C+) lies in the second
quadrant. Generally speaking, w(C+) is not a comb domain, but still, if
λ ∈ w(C+), then, for any τ > 0, λ− τ ∈ ω(C+), as well.

To describe the boundary of the image w(C+), one needs to know the
boundary values of w on the real axis. They are equal to −γ + iπk, where
γ is the Lyapunov exponent, and k is the integrated density of states. The
Lyapunov exponent γ(λ) measures the exponential growth of solutions

γ(λ) = lim
x→±∞

1

|x|
log ‖T (x, λ)‖, (11)

where T is the fundamental matrix,

T (x, λ) =

(
c(x, λ) s(x, λ)
s′(x, λ) c′(x, λ)

)
.

The integrated density of states is defined as

k(λ) = lim
b−a→∞

ν(a, b;λ)

b− a
,

where ν(a, b;λ) is the number of the eigenvalues of the Dirichlet eigenvalue
problem on the interval [a, b], which are less or equal to λ. If the potential q
is periodic with period π, then w = iθ where θ is the Marchenko–Ostrovskii
conformal map. In the case of random Jacobi matrices, the conformal map
ew was thoroughly studied by Hur and Remling [31].

The Lyapunov exponent and integrated density of states contain impor-
tant spectral information about Schrödinger operators with almost-periodic
and random ergodic potentials, see the Pastur–Figotin treatise [67, Chap-
ter V]. For instance, the spectrum of L coincides with the closed support
of the measure dk, while the support of the absolutely continuous spectrum
of L coincides with the essential closure of the set {γ = 0} with respect to
the Lebesgue measure (that is, with the set of points x ∈ R such that any
neighbourhood of x has an intersection of positive Lebesgue measure with
{γ = 0}). It is worth mentioning that γ is a non-negative subharmonic func-
tion in C with the Riesz measure dk, and that dw/dλ is the Hilbert transform
of dk.
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Chebyhsev-type extremal problems. Comb functions of the form (4),
both polynomial and transcendental, naturally appear as extremal functions
in various Chebyshev-type problems. They were introduced by Akhizer and
Levin in [3]. Using comb functions, Akhiezer and Levin obtained far reaching
generalizations of Bernstein’s inequality for entire functions of exponential
type. Note that Akhiezer and Levin considered a more general class of comb
domains, for which bases of the slit do not have to be a subset of an arithmetic
progression. In that case, the functions of the form (4) are analytic in the
plane with cuts along θ−1R. These functions also play an important role in
Levin’s theory of subharmonic majorants [49].

Employing comb functions, Eremenko [21] found the upper envelopeM(x),
x ∈ R, of absolute values of entire functions f of a given exponential type,
such that

|f(x)| ≤

{
A, x < 0;

B, x ≥ 0.

Note that, for complex values z, the exact value of the majorant M(z) is not
known (Hayman’s question).

A rather general result connecting Chebyshev-type extremal problems
for entire functions with comb domains can be found in the Sodin–Yuditskii
survey paper [80, Theorem 7.5].

Pell’s equation. Chebyshev and his pupils reduced many polynomial ex-
tremal problems to polynomial analogues of Pell’s equation,

X2 + TY 2 = 1, (12)

see [80]. Krein [46] found a relation between entire functions, which appear
in the spectral theory of Krein’s string, and Pell’s equation for entire func-
tions. Akhiezer [1] demonstrated an approach to construction of finite-band
potentials via functional Pell’s equations. So it is not too surprising that
comb polynomials and entire functions are related to Pell’s equation in en-
tire functions. This relation was clarified by Marchenko and Ostrovskii in [57,
Theorem 6.1].

Denote by C the class of real entire functions of Cartwright class (defined
in the beginning of Section 1) with real zeros.

Theorem 3. Let T ∈ C, and T (0) > 0. Then Pell’s equation (12) has a
solution X, Y ∈ C iff and only if there exists an entire function Φ ∈ C and a
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constant b such that the function

θ(z) =

∫ z

0

Φ(ζ)√
T (ζ)

dζ + b

maps conformally the upper half plane onto a comb domain C.
Furthermore, a general form of solutions X, Y ∈ C is

X(z) = cos θ(z), Y (z) =
sin θ(z)√
T (z)

,

where θ maps the upper half-plane onto a comb domain C.

In the polynomial case, the solvability of Pell’s equation is equivalent
to existence of a special factorization 1 = (X + i

√
TY )(X − i

√
TY ) of the

function identically equal to 1 on the hyperelliptic Riemann surface of
√
T . In

the transcendental case, we arrive at the same factorization on a hyperelliptic
Riemann surface of infinite genus.

Entire functions of Krein’s class. In [65], Ostrovskii found a paramet-
ric description of Krein’s class K (we defined it in the very beginning of Sec-
tion 1). Note that, since functions from Krein’s class belong to the Cartwright
class and are real, they have representation

f(z) = Cz` lim
R→∞

∏
Λ∩[−R,R]

(
1− z

λ

)
,

where ` = 0 or 1 and Λ is the zero set of f . Hence, functions from Krein’s
class are defined by their zeros up to a constant factor and, for description
of the class K, it suffices to describe the sets E ⊂ R that are zero sets of
functions from K.

Let us say that a sequence E of real numbers λk, −∞ ≤ p < k < q ≤ ∞
satisfies an R-condition if there is a function θ as in Theorem 1, for which
λk ∈ [ak, bk] where [ak, bk] is the θ-preimage of the k-th “tooth” [πk, πk+ihk].

Theorem 4. A set E coincides with the zero set of some function of class
K if and only if it satisfies the R-condition.

The importance of this theorem lies in the fact that, as shown by Krein
in [45], functions from class K describe the entries of entire Nevanlinna ma-
trices. A unimodular entire matrix-function(

A(z) B(z)
C(z) D(z)

)
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is called a Nevanlinna matrix if its entries are real entire functions, and, for
all real values t, the function

z 7→ A(z)t+B(z)

C(z)t+D(z)

has positive imaginary part in the upper half-plane. These matrices play a
fundamental role in the description of solutions of many problems in anal-
ysis, which include the Hamburger moment problem, the spectral theory of
Schrödinger-type linear differential equations, Krein’s problem on continua-
tion of positive definite functions from an interval, and de Branges theory.
The monodromy matrices T , which we dealt with above, are also Nevanlinna
matrices.

In the same paper [65], Ostrovskii showed that F ( K (recall that the
class F consists of real entire functions with real ±1-points), and that every
function of the Krein’s class can be represented as a sum of two comb func-
tions from F. The latter result was improved by Katznelson [35]. He showed
that every real entire function f of Cartwright class can be represented as a
sum of two comb-entire functions: f = u1 + u2, u1, u2 ∈ F. Moreover, the
exponential types of the functions u1, u2 coincide with that of f .

Vinberg combs. Pólya functions. Another useful comb representation
of entire functions was introduced by Vinberg [84]. Given −∞ ≤ p < q ≤
+∞, let (ck)p<k<q be a sequence of real numbers. Consider the region

V = {z : {πp < Im z < πq}
∖ ⋃
p<k<q

{
iπk + t : −∞ < t < log |ck|

}
. (13)

Such regions are called Vinberg’s combs. Let θ be a conformal map of the
upper half-plane onto a Vinberg’s comb normalized by lim

y→+∞
θ(iy) = +∞.

Then by the Symmetry Principle the function

f = exp θ (14)

extends to an entire function. This entire function is real on the real line,
has critical values ±ck, and possibly one asymptotic value 0.

Theorem 5. The class of functions (14) coincides with the Laguarre–Pólya
class.
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As a corollary Vinberg obtains a parametrization of the Laguerre-Pólya
class by sequences of critical values. Comb functions of Marchenko and
Ostrovskii correspond to the subset with |ck| ≥ 1, and for them we have
both representations (4) and (14). Using his comb representation, Vinberg
obtained a simple purely topological proof of the results of MacLane [54] on
real entire functions with real critical points. See the survey [22] for details
and examples.

In [14, Chapter I], de Branges noticed that the theory of entire functions of
the Laguerre-Pólya class can be built starting with the following observation:
if p is a polynomial without zeros in the upper half-plane, then, for any x ∈ R,
the function y 7→ |p(x+ iy)| increases with y, which, in turn, yields that p′/p
has negative imaginary part in the upper half-plane.

We take this property as a starting point and say that a function f
analytic in the upper half-plane C+ belongs to the Pólya class P if the function
y 7→ |f(x+ iy)| does not decrease, as y increases. Clearly, LP ( P ( P (the
class P was introduced in the very end of Section 2). In a sense, these classes
are not too far from each other. If f ∈ P, then the “mirror continuation” of
log |f | defined as

v(z) =


log |f(z)|, Im z > 0,

log |f(x+ i0)|, x ∈ R,
log |f(z̄)|, Im z < 0,

is subharmonic in C. Informally speaking, v belongs to a subharmonic coun-
terpart of the Laguerre–Pólya class LP.

The functions of Pólya class were independently introduced and studied
by Kargaev and Korotyaev [34] and Weitz [85]. One of their results was a
parametrization of class P by conformal maps onto domains Ω such that if
ζ ∈ Ω, then, for any t > 0, ζ + t ∈ Ω.

Theorem 6. f ∈ P if and only if log f is a conformal map from the upper
half plane onto a domain Ω such that limy→+∞Re log f(iy) = +∞.

The key step in proving Theorem 6 is the following observation: f ∈ P if
and only if either Im f ′/f < 0 in the upper half-plane, or f(z) = eaz+b with
a ∈ R.

Theorem 6 contains as a special case Vinberg’s Theorem 5. It also con-
tains the results of Levin [49]. In connection with his theory of subharmonic
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majorants, Levin considered the case when P lies in the right half-plane. We
also note that if w is a function introduced by Johnson–Moser and Kotani
and defined in (10), then w = − log f , with f ∈ P.

Acknolwedgments. We are grateful to Jim Langley, Sasha Sodin, and
Peter Yuditskii, who read a draft of this paper and provided many comments
that we have taken into account.
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[4] M. Ålander, Sur le déplacement de zéros des fonctions entièr par leur
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