
A Picard type theorem for holomorphic curves∗

A. Eremenko†

Let Pm be complex projective space of dimension m, π : Cm+1\{0} → Pm

the standard projection and M ⊂ Pm a closed subset (with respect to the
usual topology of a real manifold of dimension 2m). A hypersurface in Pm

is the projection of the set of zeros of a non-constant homogeneous form in
m+ 1 variables. Let n be a positive integer. Consider a set of hypersurfaces
{Hj}2n+1

j=1 with the property

M ∩
⋂
j∈I

Hj

 = ∅ for every I ⊂ {1, . . . , 2n+ 1}, |I| = n+ 1. (1)

This means that no more than n of the restrictions of our hypersurfaces to
M may have non-empty intersection.

Theorem 1. Every holomorphic map f : C→M\
(⋃2n+1

j=1 Hj

)
is constant.

Using an argument based on Brody’s reparametrization lemma [7, Theo-
rem 3.6] we obtain from Theorem 1

Corollary 1. Let M ⊂ Pm be a projective variety, and suppose a collection
of hypersurfaces {Hj}2n+1

j=1 satisfies (1). Then M\
(⋃2n+1

j=1 Hj

)
is complete

hyperbolic and hyperbolically imbedded to M .

Remark. Neither the dimension of M nor the dimension of the ambient
projective space are important in this formulation. Only the intersection
pattern (1) is relevant.
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Corollary 2. The complement of 2n + 1 hypersurfaces in projective space,
such that any n+ 1 of them have empty intersection, is complete hyperbolic
and hyperbolically imbedded.

The assumptions of Corollary 1 can be satisfied only if n ≥ m. Form = n and
assuming in addition normal intersections of hypersurfaces Corollary 2 was
proved in [1]. In the special case when the hypersurfaces are hyperplanes,
Corollary 2 can be deduced from a result of Zaidenberg [11] (see also [6,
(3.10.16)]).

The method of the proof used here first appeared in [3]. It also provides a
new proof of the classical Picard theorem [8, 9] as well as its generalizations
to quasiregular maps in Rn [2, 8, 4]. One of the purposes of this paper is to
explain the idea in its simplest form, not obscured by technical details as in
[3].

Proof of Theorem 1. Let P1, . . . , P2n+1 be the forms in m + 1 variables
defining the hyperplanes, dj = degPj. We consider a homogeneous repre-
sentation F = (f0 : . . . : fm) of the curve f, where fj are entire functions
without common zeros. The function

u = log ‖F‖ =
1

2
log(|f0|2 + . . .+ |fm|2)

is subharmonic, and the functions

uj = d−1
j log |Pj ◦ F | = d−1

j log |Pj(f0, . . . , fm)|, j = 1, . . . 2n+ 1,

are harmonic in C.
Let I ⊂ {1, . . . , 2n+1}, |I| = n+1. The set K = {z ∈ π−1M : ‖z‖ = 1}

is compact, so for some positive constants C1 and C2 we have

C1 ≤ max
j∈I
|Pj(z)|1/dj ≤ C2 for z ∈ K.

This follows from the assumption (1). Using homogeneity we conclude that

C2‖F (z)‖ ≤ max
j∈I
|Pj ◦ F (z)|1/dj ≤ C2‖F (z)‖, z ∈ C,

so
max
j∈I

uj = u+O(1), |I| = n+ 1. (2)

2



In particular
max

1≤j≤2n+1
uj = u+O(1). (3)

We use the notation D(a, r) = {z ∈ C : |z − a| < r}. Let us denote by
µ = (2π)−1∆u the Riesz measure of u.1

Suppose that f is not constant. Then at least one of the harmonic func-
tions uj is not constant, assume without loss of generality that u1 6= const.
Then

B(r, u1) := max
|z|=r

u1(z) ≥ cr for r > r0,

where c > 0. Now (3) implies B(r, u) ≥ c1r for r > r0 with some c1 > 0 and
using Jensen’s formula we have

c1r ≤ B(r, u) ≤ 3

2π

∫ π

−π
u(2reiθ) dθ ≤

∫ 2r

0
µ(D(0, t))

dt

t
+ u(0).

In particular, µ(C) =∞.

Lemma. Let µ be a Borel measure in C, µ(C) = ∞. Then there exist
sequences ak ∈ C, ak →∞ and rk > 0 such that

Mk = µ(D(ak, rk))→∞ (4)

and
µ(D(ak, 2rk)) ≤ 200µ(D(ak, rk)). (5)

This Lemma is due to S. Rickman [10]. A proof is included in the end of this
paper for completeness.

Applying the Lemma to the Riesz measure µ of the function u, we obtain
two sequences ak and rk, such that (4) and (5) are satisfied. Consider the
functions defined in D(0, 2):

uk(z) =
1

Mk

(u(ak + rkz)− ũ(ak + rkz))

and

uj,k(z) =
1

Mk

(uj(ak + rkz)− ũ(ak + rkz)), 1 ≤ j ≤ 2n+ 1,

1It coincides with the pull back of the Fubini–Study (1, 1) form. Notice the formula
T (r, f) =

∫ r
0 µ(D(0, t))dt/t.
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where ũ is the smallest harmonic majorant of u in the disc D(ak, 2rk). The
functions uk are Green’s potentials, that is

uk(z) = −
∫
D(0,2)

G(z, .) dµk,

where G(z, .) is the Green function of D(0, 2) with pole at the point z and
µk is the Riesz measure of uk.

It follows from (5) that µk(D(0, 2)) ≤ 200 so, after selecting a subse-
quence, we may assume that uk → v, where v is a subharmonic function, not
identically equal to −∞. Convergence holds in L1

loc(D(0, 2), dxdy), and the
Riesz measures converge weakly, see [5, Theorem 4.1.9]. In particular v is
not harmonic because the Riesz measure of D(0, 1) is at least 1.

All functions uj,k are harmonic and bounded from above in view of (3) so,
after selecting a subsequence, we may assume that uj,k → vj , each vj being
harmonic or identically equal to −∞ in D(0, 2). From (2) and (4) follows

max
j∈I

vj = v, |I| = n+ 1. (6)

Thus v is continuous. For every I ⊂ {1, . . . , 2n+ 1} of cardinality n+ 1 we
consider the set EI = {z ∈ D(0, 2) : v(z) = vj(z), j ∈ I}. From (6) it follows
that the union of these sets coincides with D(0, 2). Thus at least one set
EI0 has positive area. By the uniqueness theorem for harmonic functions all
functions vj for j ∈ I0 are equal. Applying (6) to I0 we conclude that v is
harmonic. This is a contradiction which proves the theorem.

Proof of the Lemma. We take a number R > 0, so that µ(D(0, R/4)) > 0
and denote δ(z) = (R− |z|)/4. Then we find a ∈ D(0, R) such that

µ(D(a, δ(a)) >
1

2
sup

z∈D(0,R)
µ(D(z, δ(z))). (7)

We set r = δ(a). Then the disc D(a, 2r) can be covered by at most 100 discs
of the form D(z, δ(z)), so by (7)

µ(D(a, 2r)) ≤ 200µ(D(a, r)).

Putting z = 0 in (7) we get

µ(D(a, r)) ≥ 1

2
µ(D(0, R/4)).
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Now we take any sequence Rk → ∞ and construct the discs D(rk, ak) as
above.

The author thanks László Lempert, Min Ru and Yum-Tong Siu for helpful
comments.
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