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Abstract

We consider linear systems with inner state of dimension n, with
m inputs and p outputs, such that n = mp, min{m,p} = 2 and
max{m,p} is even. We show that for each (m,n, p) satisfying these
conditions, there is a non-empty open subset U of such systems, where
the real pole placement map is not surjective. It follows that for
systems in U , there exist open sets of pole configurations which cannot
be assigned by any real output feedback.

1. Introduction

Let F be one of the fields C (complex numbers) or R (real numbers).
For fixed positive integers m,n, p, we consider matrices A,B,C and K with
entries in F, of sizes n× n, n×m, p× n and m× p, respectively. The space
Polyn of monic polynomials of degree n with coefficients in F is identified
with Fn, using coefficients as coordinates. For fixed A,B and C with entries
in F, the pole placement map χ = χA,B,C is defined as

χ : MatF(m× p)→ Polyn ' Fn, χ(K) = φK ,

where
φK(s) = det(sI −A−BKC). (1)
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It will be called real or complex pole placement map, depending on F.
Our primary interest is in the real pole placement map. We briefly explain

how it arises in control theory. (A general reference for this theory is [2], and
a survey of the pole placement problem is [4]). A linear system with static
output feedback is described by a system of equations

ẋ = Ax+Bu

y = Cx

u = Ky.

Here the state x, the input u and the output y are functions of a real variable
t (time), with values in Rn, Rm, and Rp, respectively, the dot denotes the
derivative with respect to t, and A,B,C,K are real matrices of sizes specified
above. The matrix K is usually called a gain matrix, or a compensator.
Eliminating u and y gives

ẋ = (A+BKC)x,

thus φK is the characteristic polynomial of the system. The pole placement
problem is:

Given real A,B,C and a set of points {s1, . . . , sn} ⊂ C, symmetric with
respect to the real axis, find real K, so that the zeros of φK are exactly
s1, . . . , sn.

This amounts to finding real solutions of n algebraic equations with mp
unknowns, the entries of K. For any dimensions m,n, p, there are systems
(A,B,C), such that the map χA,B,C is not surjective (for example, if B = 0).
So we consider generic systems (A,B,C). We say that for given m,n, p, the
(real or complex) pole placement map is generically surjective if there exists
an open dense set V in the space MatF(n×n)×MatF(n×m)×MatF(p×n),
such that for (A,B,C) ∈ V , the map χA,B,C is surjective.

All topological terms in this paper refer to the usual topology.
We recall the known results on generic surjectivity. The case min{m, p} =

1 is completely understood (see, for example, [4, 8]). From consideration of
dimensions follows that mp ≥ n is a necessary condition of generic surjec-
tivity, complex or real. If mp > n, then the real pole placement map is
generically surjective [12, 7]. So from now on we restrict our attention to the
case n = mp.
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Theorem A [3] For n = mp, the complex pole placement map is generically
surjective. Moreover, it is a finite map of degree

d(m, p) =
1!2! . . . (p− 1)! (mp)!

m!(m+ 1)! . . . (m+ p− 1)!
.

The numbers d(m, p) occur as the solution of the following problem of enu-
merative geometry: how many m-subspaces intersect mp given p-subspaces
in Cm+p in general position? The answer d(m, p) was obtained by Schubert
in 1886 (see, for example, [6]).

One can deduce from Theorem A that the real pole placement map is
generically surjective if d(m, p) is odd. This number is odd if and only if
one of the following conditions is satisfied [1]: a) min{m, p} = 1, or b)
min{m, p} = 2 and max{m, p}+ 1 is an integral power of 2.

If n = mp, the real pole placement map was known not to be generically
surjective in the following two cases: a) m = p = 2 [13], and b) min{m, p} =
2, max{m, p} = 4. For the case b), a rigorous computer assisted proof was
given in [8]. It disproved an earlier conjecture, that a) is the only case when
n = mp and the real pole placement map is not generically surjective.

In this paper we show that infinitely many more cases exist.

Theorem 1 If n = mp, min{m, p} = 2, and max{m, p} is even, then the
real pole placement map is not generically surjective.

Our proof of Theorem 1 gives explicitly a system (A,B,C), and a point
w ∈ Polyn, such that for any (A′, B′, C ′) close to (A,B,C), the real pole
placement map χA,B,C omits a neighborhood of w.

In Section 2, we derive Theorem 1 from a fact about rational functions,
Proposition 1, which is proved in Section 3. The proof uses a recent result
on rational functions from [5], and we outline its proof in Section 4.

2. A class of linear systems

We begin with a well-known transformation of the expression (1). We
factorize the rational matrix-function C(sI − A)−1B, as

C(sI − A)−1B = D(s)−1N(s), detD(s) = det(sI − A), (2)

where D and N are polynomial matrix-functions of sizes p × p and p ×m,
respectively. For the possibility of such factorization we refer to [2, Assertion
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22.6]. Using (2), and the identity det(I −PQ) = det(I −QP ), which is true
for all rectangular matrices of appropriate dimensions, we write

φK(s) = det(sI − A− BKC) = det(sI − A) det(I − (sI −A)−1BKC)

= det(sI − A) det(I − C(sI − A)−1BK)

= detD(s) det(I −D(s)−1N(s)K) = det(D(s)−N(s)K).

This can be rewritten as

φK(s) = det

(
[D(s), N(s)]

[
I

−K

])
. (3)

To prove Theorem 1, we set p = 2. This does not restrict generality in view of
the symmetry of our problem with respect to the interchange of m and p, see,
for example, [10, Theorem 3.3]. We consider a system (A,B,C) represented
by

[D(s), N(s)] =

[
sm+1 sm . . . s 1

(m + 1)sm msm−1 . . . 1 0

]
. (4)

The matrices A,B,C can be recovered from [D,N ], by [2, Theorem 22.18].
Let K = (ki,j). Introducing polynomials

f1,K(s) = sm+1 − k1,1s
m−1 − . . .− km,1 and

f2,K(s) = sm − k1,2s
m−1 − . . .− km,2,

we can write (3) as

φK = f1,Kf
′
2,K − f ′1,Kf2,K = W (f1,K , f2,K). (5)

If we consider the rational function fK = f2,K/f1,K , and suppose the Wron-
skian determinant W (f1,K , f2,K) has no multiple zeros, then deg fK = m+ 1,
and zeros of W (f1,K , f2,K) coincide with the critical points of fK . The map
K 7→ fK sends matrices from MatC(m×2) to rational functions of degree at
most m+ 1, satisfying

fK(z) = z + O(z−1), z →∞. (6)

To real matrices correspond real functions.
To prove Theorem 1, we first refer to the following general result [8,

Theorem 3.1]:
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Suppose that n = mp. If there exists a real system (A,B,C) and a real
polynomial φ ∈ Polyn such that χ−1

A,B,C(φ) consists of d(m, p) distinct complex
points, none of them real, then the real pole placement map is not generically
surjective.

So, to prove Theorem 1, it is enough to find a system (A,B,C), and a
point w ∈ Poly2m such that the full preimage χ−1(w) of this point under the
complex pole placement map χ = χA,B,C consists of the maximal possible
number d(m, 2) points, and none of these points is real.

Thus Theorem 1 is a corollary to the following

Proposition 1 Let m be even, S a circle orthogonal to the real line, {s1, . . . , s2m}
a subset of S, symmetric with respect to the real line, and s2m ∈ R. Then
there exist exactly d(m, 2) rational functions of degree m+1, having {s1, . . . , s2m}
as their critical set, satisfying (6), and none of these functions is real.

3. Proof of Proposition 1

Two rational functions f and g are called equivalent if f = ` ◦ g, where
` is a fractional-linear transformation. Equivalent rational functions have
the same critical points. Two rational functions normalized as in (6) are
equivalent if and only if they are equal. Proposition 1 will be deduced from
the following result [5].

Proposition 2 Given 2m points on a circle S in the Riemann sphere, there
are d(m, 2) pairwise non-equivalent rational functions of degree m+1, having
these critical points, and mapping S into itself.

Proof of Proposition 1. By Proposition 2, there are d(m, 2) normalized
rational functions of degree m+ 1, having the critical set {s1, . . . , s2m}, and
mapping S into some circles. It is clear that for each of these functions, all
critical points are simple. It remains to prove that none of these functions
is real. Suppose the contrary, and let f be a real rational function of degree
m+ 1 having {s1, . . . , s2m} as its critical set, and f(S) is a circle. Then f(S)
is symmetric with respect to R, and thus γ = f−1(f(S)) is also symmetric
with respect to R. The set γ is a one dimensional real analytic variety in the
plane C, and it is smooth everywhere, except at the points s1, . . . , s2m on
the circle S. Removing these points s1, . . . , s2m from γ leaves disjoint open
analytic arcs, whose closures are called the edges of γ. Exactly 4 edges meet
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at every sj , two of them are arcs of S, and the other two are not. Let D
be the closed disc bounded by S. Then γ ∩D consists of S and of m edges
whose interiors belong to the open disc D, bounded by S. These m edges
are called chords. Chords are disjoint, and each of them contains two points
of the set s1, . . . , s2m as its endpoints.

Consider the chord γ0 with one endpoint at s2m ∈ S ∩R. This chord has
to be symmetric with respect to R, because no other chord can contain s2m.

It follows that γ0 = D ∩ R. Then the intersection D
+

of D with the open
upper half-plane contains m − 1 of the points sj, which is an odd number.
But this is a contradiction, because these m−1 points are connected pairwise

by disjoint chords in D
+

. This proves Proposition 1.

4. Rational functions whose critical points belong to a circle

If one replaces the circle S by the real line, (which is a circle in the
Riemann sphere), Proposition 2, and Theorem A with p = 2 imply: Every
rational function whose critical points are real is equivalent to a real rational
function. This means something opposite to Theorem 1, namely: the pole
placement problem for a system (4), with real points {s1, . . . , s2m} always
has d(m, 2) real solutions. This is a special case of the B. and M. Shapiro
conjecture, proved in [5]. A comprehensive discussion of this conjecture,
including numerical evidence, is contained in [10]. We also mention that
F. Sottile [9] used systems similar to (4) with arbitrary (m, p) to show that,
for any (m, p) and n = mp, all d(m, p) solutions of a pole placement problem
can be real.

Now we explain the ideas behind the proof of Proposition 2. Without loss
of generality, we may assume that S = T = {s : |s| = 1}, the unit circle. The
word “symmetry” in what follows always refers to the symmetry with respect
to T. Let R be the class of all rational functions f of degree m+ 1 ≥ 3, such
that f(T) ⊂ T, f(1) = 1, f ′(1) = 0, all critical points of f are simple and
belong to T. We first describe a convenient parametrization of a subclass
of properly normalized functions in R. As in the proof of Proposition 1 in
Section 3, we consider a net, γ(f) = f−1(T). It coincides with the 1-skeleton
of a cell decomposition of C, whose 2-dimensional cells are components of
f−1(C\T), and 0-dimensional cells (vertices) are the critical points of f . It
is easy to see that this cell decomposition has the following properties:
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N1 γ is symmetric with respect to T and contains T,
N2 all 2m vertices belong to T and have order 4,
N3 the point 1 ∈ T is a vertex.

Such cellular decompositions are uniquely determined by their 1-skeletons.
Two nets γ1 and γ2 are called equivalent if there exists an orientation-preserving
symmetric homeomorphism h : C → C, fixing the point 1, and such that
h(γ1) = γ2. We label each edge e of our net γ(f) by a positive number p(e),
the length of the arc f(e) ⊂ T. Then∑

e∈∂G
p(e) = 2π for every 2-dimensional cell G. (7)

A labeled net is a 1-skeleton of a cell decomposition of C satisfying N1-
N3, equipped with a non-negative symmetric function p on the set of edges,
satisfying (7). If p is strictly positive, we call the labeling non-degenerate.
Using the Uniformization Theorem (for the sphere) we prove: To each labeled
net corresponds a rational function fγ,p, such that for non-degenerate p we
have γ ∼ f−1

γ,p(T), and p(e) = lengthf(e), for every edge e of γ.
This result gives a parametrization of a properly normalized subclass of R by
pairs ([γ], p), where [γ] is a class of equivalent nets, and p a non-degenerate
labeling. This parametrization has an advantage that it separates topological
information about f , described by the class [γ], from continuous parameters
p, in such a way that the space of continuous parameters is topologically
trivial. Indeed, the space of all non-degenerate labelings of a fixed net is a
convex polytope Lγ , described by equations (7), the symmetry conditions,
and the condition p > 0. The set of all labelings of γ is the closure Lγ of Lγ .
For a fixed net γ and every p ∈ Lγ we take the critical set of fγ,p, which, in
the case of non-degenerate p, is a sequence of 2m distinct points on the unit
circle, containing the point 1. We denote the space of all such sequences by
Σγ . It can be identified with an open convex polytope of the same dimension
as Lγ. Thus for every γ we have a map Φγ : Lγ → Σγ. We want to show
that it is surjective, using a “continuity method,” going back to Poincaré and
Koebe. First we extend Φγ to a continuous map of the closed polytopes

Φγ : Lγ → Σγ.

The proof of continuity of the extended map uses classical function theory:
Picard’s and Montel’s theorems. The surjectivity of Φγ follows from careful
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analysis of its boundary behavior. The purpose of this analysis is to show
that full preimages of the closed faces of Σγ are topologically trivial, that
is they have the same homology groups as a one-point space. In particular
these preimages are non-empty and connected. As the preimages of the
closed faces can be rather complicated, this is done in several steps. First
we describe the preimages of open faces, which are much simpler because
they are convex. Then we consider chains A1, A2, . . . , Ak of open faces of Σ,
such that A1 ⊃ A2 ⊃ . . . ⊃ Ak 6= ∅, and show that, for each such chain, the
closures of preimages of open faces have non-empty intersection:

Φ−1
γ (A1) ∩ . . . ∩ Φ−1

γ (Ak) 6= ∅.

This is enough to deduce that the preimages of closed faces are topologically
trivial. Once this is established, we use the following fact.

Lemma 1 Let Φ : L→ Σ be a continuous map of closed convex polytopes of
the same dimension. If the preimage of every closed face of Σ is (non-empty
and) topologically trivial, then Φ is surjective.

Thus for every class of nets γ and every critical set in Σγ we have a
rational function f ∈ R, having this critical set, and γ ∼ f−1(T). As for
equivalent functions f1 and f2 we have γ(f1) = γ(f2), there are at least as
many equivalence classes of functions in R, sharing a given critical set, as
the number of classes of nets. So the proof of Proposition 4 is completed by
simple combinatorics:

Lemma 2 The number of classes of nets on 2m vertices is d(m, 2), the d-th
Catalan number.

For this we refer to [11, Exercise 6.19 n].
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