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THE VALUE DISTRIBUTION OF MEROMORPHIC
FUNCTIONS AND MEROMORPHIC CURVES
FROM THE POINT OF VIEW OF POTENTIAL THEORY

A, E. EREMENKO AND M. L. SODIN

Dedicated 1o Anatolii Asirovich Gol’ dberg on his sixtieth birthday

ABSTRACT. This paper presents a new method for proving R. Nevanlinna’s second
fundamental theorem. This method reduces the problem to a proposition in poten-
tial theory. Ti also lets us establish some generalizations and analogs of the second
fundamental theorem. In particular, we prove analogs for mappings f: C — P" and
nonlinear divisors without any nondegeneracy conditions (B. Shiffman’s conjecture).

§l. INTRODUCTION

Let f: C —» C = P! be a meromorphic function. We represent it in the form
o/ fi , where fi are entire functions with no zero points in common. The study of
the distribution of the g-points of f is equivalent to the study of the zeros of linear
combinations of the form f; —af;. In order to include the case a = oo, we need
to consider more general combinations of the form a%f, + a' f; . Let there be given
asetof g > 3 vectors a; = (a?, a}), and let a; and a; be linearly independent
when j# k. We set

v = (log|fol) v (log | f1])

(here and subsequently, the symbols vV and A denote upper and lower envelopes)
and
v=loglapfo+apfil, 1<k<gq.

The functions v and v, are subharmonic in C. It is easily verified that
(1.1) v =v; Vo + 0(1), zZ =00,

for all j # k. By a theorem of H. Cartan ([1], Chapter I, formula (4.8)), the
Nevanlinna characteristic 7(r, f) can be represented in the form

2n
(1.2) T, f) = %[0 v(re'®) de .

If we denote by N(r, a;) the Nevanlinna function of the number of zeros of the
entire function af fy + a} fi, we have, by Jensen’s formula,

2n
(1.3) N(r,ak):%/ we(re’®)de + O(1), r— 0.
0
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We want to prove Nevanlinna’s second fundamental theorem in the form

q
(1.4) (@ =T, £YSD N, @) +o(T(r, ) |

k=1
(the symbol || at the right of the formula means that it is valid as r — oc except for
a set E of finite logarithmic measure, i.¢., fpdlogt < oco). By (1.2) and (1.3), this
is the same as

n q n
j (Z vi(re’®) — (g — 2)11(:‘8”9)) de > 0(1)/ v(re'ydo. |
i k=1 9

In fact, we shall establish a stronger proposition, namely that under condition (!.1)
the function

q
S o - (g 2w
k=1

is “almost subharmonic”. This result will be obtained from the following “nonasymp-
totic” proposition: if #,,...,1#,, # are subharmonic in a domain @ C C and
u=u; Vu forevery j#k, the function

g
w="> u—(q-2)u
k=1
is subharmonic in .

The transition from the asymptotic formulation to a nonasymptotic problem in
potential theory is based on the compactness of certain families of subharmonic
functions ([2], [3]; also see [4], Volume II, Chapter 16). In the authors’ previous
papers [5] and [6], this approach was applied to the solution of various problems in
value distribution; however, there, as in [2] and [3], we considered only functions of
finite lower order. Our method uses the analytic nature of the functions f; and f;
only to obtain the subharmonicity of v and v, and is consequently convenient for
various generalizations.

We turn to the precise statements of the results.

Let f: C — P" be a meromorphic curve. We describe it in homogeneous coordi-

nates f = (fs, fi,..., fn) so that the entire functions f; do not vanish simultanc-
ously. We consider the subharmonic function
n
v=\/log|f;l.
j=0

We call the Riesz measure ¢ of v the Cartan measure of f. We set Z(zg,r) =

{z:|z—zol < r}, D(r)=2(0,r),and A(r) = A(r, ) = u(Z(r)) . The Nevanlinna
characteristic T'(r) = T(r, f) is defined by

2n r
T(r,f)déf%fo vire)do = [ A grvoy,  rooo.

Let Q be a homogeneous polynomial (form} in n+ | variables. We consider the
entire function Qo f = Q(fo, ..., fn). Let n(r, Q) = n(r, @, f) be the set of
zeros of Qo f in the disk Z(r), counting multiplicities, and set

2r
N, Q)= N, @, f) = 5 [ lo8lQ o fire)ide

=frn(t;Q)dt+O(l)’ r— 00,

fo
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Let o be a function that increases to +oo on [0, co). We consider a field M,
consisting of meromorphic functions a(z},
T(r,a)=0{(a(r), F— 00,

Let K, C My[xg, ..., X»] be the space of homogeneous forms in n+ 1 variables
over M, . If Q€ K, , we denote by (z) the form over C obtained by substituting
numbers z € C for the coefficients of the form . A finite system S C X, 1is said

to be admissible if, for every n+ 1 forms @y, ..., Quy1 €8, and some z € C, the
system of equations

Qk(Z)('LUU,...,U}n)ZO, ISka'l'i'l,
has only the trivial solution wg = --- = w, = 0 in C**!_ If this condition is satisfied

for one z € C, it is also satisfied for all z except for those belonging to a certain
discrete set (see §6).
For a meromorphic curve /= (fy, ..., f) and a form @ € K, , we set

(Qof)(2)=Q(2)(fo(2), .., u(2)).

This is a meromorphic function in C. We write

1 2n )
N(r, @)= N, Q. /)= 57 [ loglQ o fire)]do.
Theorem 3. Let f: C — P" be a meromorphic curve,

T(r, f)
1. =_* Vs
Qis ..., Qg € K, an admissible system of forms, d, = degQy, and g > 2n. If
O.cf#0, 1<k <q, wecan carry oul the integration of the second fundamental
theorem (1.6).

7> 1,

If n=1 and d; = 1, the conclusion of Theorem 3 becomes a result close to R.
Nevanlinna’s conjecture, recently proved by Osgood [14] and Steinmetz [15). In the
theorem of Osgood and Steinmetz, instead of (1.9} it is required only that

a(ry=o0(T(r, f)), r— oo,

and that the exceptional set in (1.6) has finite measure.

In the important case when o(r) = logr (i.e., K, is the space of homogeneous
forms over the field of rational functions), Theorem 3 is not applicable to curves with
a slowly increasing characteristic. Nevertheless, we have the following theorem.

Theoremd. Let f: C — P* be a “transcendental” meromorphic curve, i.e., T(r, ) #
Ollogr), r — occ. If Q..., Qq is an admissible system of forms in Ky, d =
deg Q. g >2n,and Qrof 20, 1 <k <gq, the integration of the second funda-
mental theorem (1.6) can be carried out for r - oo, r ¢ E, where E is a certain set
with the property

— 1

lim ——————

r—oo Y (loglogr) EN[1,r]
Jor an arbitrary function w such that w(x)/x tends to +oc as x — +oo.

dlogt =10,

It is easily proved (see the beginning of §5) that the condition T'(r, f) = O(logr)
implies the existence of a representation f = (fo, ..., fy) in which all the f; are
polynomials. Such curves are said to be rational. The following proposition of Picard
type follows directly from Theorem 4.
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if Qo f#0. Thesystem Q,,..., O, of forms, ¢ > 2n, is said to be admissible if
no set of n+ | forms in this system has common zeros in C**+!\{0}.

Theorem 1. Let f: C — P" be a meromorphic curve, and let Qy, ..., Oy be an
admissible system of homogeneous forms of degree di. > 1. If the entire functions
Qi o f are not identically 0 for 1 <k < gq, we have

(1.5) (¢ —2m)A(r, i, Q)+ olAlr, ), ||

d
(1.6) (g - 2m)7T(r, di'N(r, QY +o(T(r, /). |

q
Ny
k=1

q
<y,
k=1

We note that N(r, Q") = mN(r, Q) and the number (degQ)~!N(r, Q) is in-
variant under the transformation Q — @™ . Consequently we shall suppose from
now on that all the @, have the same degree d.

The relation (1.6) proves a conjecture made by Shiffman [7]. Special cases of this
conjecture, under much stronger restrictions on S, were proved in [7]-[9]. If d =1,
(1.6) is a weak form of a conjecture of Cartan [10]. This conjecture was recently
established in full generality by Nochka [11}. We note that (1.6) follows from (1.5).
This elementary fact (Lemma 9) has apparently not been noticed previously.

Following Shiffman, we set

5(Q:f)=1—rli’_'g)m, d=degQ.

The following deficiency relation is a consequence of (1.6): let S be an admissible
system of forms, f: C — P" a meromorphic curve, and Qo fZ 0 forall Q€ S.
Then

(1.7) S 6(Q, f)<2n.

Qes

The deficiency relation (1.7) strengthens a theorem of Picard type that was proved
in [12] (also see [13]).

We now present the “nonasymptotic” theorem on subharmonic functions from
which Theorem 1 follows.

We denote by I, the collection of the subsets of {1, 2, ..., ¢} of cardinality k,
0<k<g.
Theorem 2. Let Q be a domainin C, and u, uy, ..., Uy, functions subharmonic in
Q, where ¢ > 2n and n € N. If, for some I € I,,,\, we have
(1.8) U= \/ Uy,
kel
the function

q
r
w & e — (g —2mu = N\ > uy +nu
k=1 fel, kel

is subharmonic in Q.
Our method of proof for Theorem 1 lets us also consider forms { whose coeth-

cients are not constants, but meromorphic functions whose characteristics grow more
slowly than T'(r, ).



THE VALUE DISTRIBUTION OF MEROMORPHIC FUNCTIONS i13

Corollary. Let Q,, ..., Qany1 be an admissible system of forms with polynomial co-
efficients. If the meromorphic curve f: C — P" has the property that each entire
function Oy o f, 1 <k < 2n-+ 1, has finitely many zeros, it follows that [ is a
rational curve.

Our outline is as follows. In §2 we prove the nonasymptotic Theorem 2, on which
everything clse depends. Theorem 2’ in §3 is the “stable” form of Theorem 2. In
§4, we have a special partition of unity, of the same type as the continuous partition
of Dieudonné and Whitney (see [4], Vol. 1, §1.4), that is needed for the proofs of
Theorems 1, 3, and 4. Theorem ! is proved in §5, and Theorems 3 and 4 in §6.

The authors thank V. S. Azarin, A. A. Gol'dberg, A. F. Grishin, A. U. Rashkovskii,
S. Yu. Favorov, A. E. Fryntov, and the participants in B. Ya. Levin’s seminar for
helpful discussions of this research.

§2. THE NONASYMPTOTIC THEOREM

To begin with, we show that it is enough to prove Theorem 2 for continuous
functions u# and u,. The authors owe this remark to V. S. Azarin. For a subhar-
monic function v, we set v%(z) = max{w(&):|z —&| < €}. It is easily seen that
vE(z) — w(z), decreasing monotonically, as & — 0. If v is subharmonic in a do-
main €, the function v® is subharmonic in the domain Q* = {z:dist(z, Q) > ¢}.
Let us show that v¢ is continuous. If |z, — z2| < &, and we set z' = }{z, + 23), we
obtain

[0¥(21) — v¥(22)] < V7P (2") —v*P(2)

= max v{z' +& — max v(z' +¢&),
1€]=e+26 ( é) &|=e—28 ( é)

but maxg|-, v(z’+&) is a convex function of logp and consequently is continuous.
It follows from the hypotheses of Theorem 2 that

ut = (\/“k):\/ui

kel kel
in Q¢, for every 7 € I,,,. If Theorem 2 holds for continuous functions, we find

that the function
W «f /\ Zui + nut
rel, kel
is subharmonic in Qf. In addition, w, — w , decreasing monotonically, as ¢ — 0.
Consequently w is subharmonic.
Therefore we may suppose that # and w; are continuous. For each set [ C
{1,2,..., g} we define the open set

Dy =int{z:u(z) <u(z), kel;u(zy=u(z), k ¢ I}.

The sets Z; are pairwise disjoint. If 2} # @, we have card] < n. This follows
from (1.8). To clarify the idea of the proof of Theorem 2, let us suppose that the
sets Z; are bounded by finitely many Jordan curves. For every pair I, J € I, with
card(7U J)=m < 2n, we set

Uy g = Z w, + (2n—mu.
kefug

This is a subharmonic function.
We have w = u; ; in @y UZ, . Consequently, if a point z € Q has a neighbor-
hood V that intersects at most two sets &, it foflows that w is subharmonicin V.
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It is easily seen {see Lemma 3 below) that there are only finitely many exceptional
points. Since w is continuous, the removal of a finite set leaves w subharmonic in
Q.

The general case requires a more elaborate analysis. The concepts and thcorems
that we shall need from potential theory can be found in [16]-[18].

Let & be a bounded domain in C, and let G(zg, z) be its Green function. For
each given zg € & the function z — G(zp, z) can be continued to a subharmonic
function in C\{zg} with the property that G(zp, z) =0, z ¢ % . The continuation
is unigue. We have the representation

2.1) Gz, z) = —log|z —zO|+/Clog|z—cf|w(zO, de),

where w(zp, df) is harmonic measure on 4% with respect to z; and the domain

A point g € % is said to be accessible from & if thereis a curve y: [0, 1] - C
such that y{f) € & for 0 <t < 1 and y(1) = a. The set of points that are accessible
from £ is a Borel set [19].

Lemma 1. Ler E be the set of points of C that are inaccessible from & . Then
w(zg, E)=0 forevery zo€ 9.

This is a known proposition (see [20], [21]). The most intuitive proof is the one
obtained by using Kakutani’s theorem on the interpretation of the harmonic measure
w(zy, E) as the probability that a Brownian motion, starting from zg, leaves & for
the first time through the set £ {22].

The term “quasi-everywhere” means “everywhere except for a set of capacity 0.

A function v defined quasi-everywhere in  is called d-subharmonic if it can
be represented as the difference of two functions that are subharmonic in . The
Riesz charge of v is the difference of the Riesz measures, Two d-subharmonic
functions are considered to be equal if they coincide quasi-everywhere. The class
of d-subharmonic functions is closed under taking upper and lower envelopes of
finite families. In fact, it is enough to show that the operation v — v+ preserves
d-subharmonicity. Butif v =v; —v;, wehave v™ = (v — ) =u, VU, — ;.

Let ©Q, bean open set, Q, C Q. We say that v* is obtained from v by sweeping
out charges from Q; if v*(z) =v(z) for z € Q\£2;, and v*|q, is a solution of the
{generalized) Dirichlet problem in €, with the boundary conditions v(z), z € Q.
The sweeping operator preserves subharmonicity, and therefore J-subharmonicity
[18].

Lemma 2. Let v be a continuous d-subharmonic function in Q = Y{R), E =
{z € Q, v(z) =0}, and E* C E a set of points that are inaccessible from Q\E.
Then the restriction of the Riesz charge v of the function v to E* equals 0.
Proof. First we reduce the problem to the case when v is continuous and dJ-subhar-
monic in Z(R’) with R* > R and v(z})=0, |z]|=R. Let 0 < R < R; < R; < R,

= min{v(z):|z] £ R}, and M = max{v(z):|z| = R3}. We choose 4 > 0 so
large that

Alog{R|/Ry)) <m, Alog(R3/Ry) > M.
Now we define a number B by the equality Alog(R3/R2) = Blog(R/R;). We set
max{v(z), Alog|z/R2|}. |z| < Ry,
”‘(z)‘{alog|R/z|, Ry < |z <oo.

Evidently #, is continuous and d-subharmonic in C, v(z) =0 for |z| = R, and
v1(z) =v(z) in Z(R}).
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We also suppose that v is d-subharmonic in Z(R’), R’ > R, and v(z) =0 for
|z| = R.

We now show that the proof can be reduced to the case when Q\E is a domain.
Let {&;} denote the collection of connected components of Q\E. We set

e ={ g IS

, Z ¢ 9;,' .
It is evident that the functions v; are continuous in Z(R’'). In addition, v; is a
d-subharmonic function, since it was obtained by applying the sweeping process from
O\Z; to v. Wehave v = 3 v; and v = 3 v;, where v; is the Riesz charge of

v; . It is enough to show that v;{g. = 0.

Consequently, we need to prove the lemma in the case when & = Q\E is a
domain, and v(z) =0 on 82 . Let us show that in this case v is a Green potential,

2.2) v(z) = —fgc;(zu, 2)dvs,,

where G is the Green function of &,
In fact, v = v, —v2 , where the v; are subharmonic functions, and v| = v, outside
9. Let h; be the best harmonic majorant of v; in & ; then

hi(z) = 6_'121?69 infw(¢),

where the infimum is taken over the class of functions w(¢) that are superharmonic
in & and have the property that
lim w(¢) > vi{z), zedZ, i=1,2.
{—z,5e9

These classes are the same for v; and v, ; therefore A = h; = #, and consequently
v,=h+II;, i=1,2,in &, where I} is a Green potential, i.e., ¥ =¥ — V2 =
I, — I, which is equivalent to (2.2).

We notice that the representation (2.2) is valid throughout C. If we substitute
(2.1) into (2.2), we obtain

v(z)=/ log|zo—z|d1/20—/ duzoflog|z~§|w(zo,d§).
i & T
We define the charge x by

(2.3) o) = [ w(zo, X)dve,
@
for an arbitrary Borel set X  C. By the generalized Fubini theorem ([23], [16]),
(2.4) v(z):/ log|zO—z[du20+flog|z—§|dxg.
2 c

It follows from (2.4) that the Riesz charge of v, restricted to Q\& , is k. It follows
from (2.3) and Lemma 1 that x(E*) = 0, and we obtain the conclusion of the lemma.

Lemma 3. Let 2, D,, and D be pairwise disjoint open subsets of C. Then the
set of points that are accessible simultaneously from 2,2, and 25 is at most
countably infinite.

Proof. First let @, 2,, and 23 be domains. Let us show that three different
points z;, z2, z3 cannot simultaneously be accessible from all three domains. In
the contrary case we could find points w; € &;, i =1, 2, 3, covered by arcs I'y; c
<; that join w; to z;, 1 <i,j < 3. These arcs can be chosen to be pairwise



116 A. E. EREMENKO AND M. L. SODIN

disjoint. Then the points w; and z;, together with the arcs I';;, form a graph K3 3
which, as is well known, cannot be embedded in the plane [24]. This contradiction
establishes our conclusion for the case of domains. In the general case, if z is
accessible from 2, 25, and &4, it is accessible from some connected component
Py, 1 £i<3. Forany triple of components, the set of such points z is finite;
therefore the set of points accessible from &, 25, and 25 is at most countable.
This completes the proof of Lemma 3.

For a d-subharmonic function v, we denote its Riesz charge by u[v]. For any
charge p we have the Jordan decomposition, u = u*t — u~, where gt and u— are
measures. The upper (lower) envelope of two charges ¢ and v is defined by

Vv =(u-v)t+v, pAv=p—(u-v)*.

This definition can be extended by induction to any finite family of charges. There
is a natural order relation on the set of charges: u > v if u(X) > v{(X) for every

Borel set X . Then "
liil
Vo (ALm)

is the supremum (infimum) of the finite family {g;} in terms of this order.

Lemmad. Letf vy, ..., v, becontinuous §-subharmonic functions in the domain Q.

Then .
M [/\j=1 'Uj] 2 /\15i<jSm ulv; Ayl

Proof. By the local nature of the lemma, it is enough to consider only the case when
Q is a disk.

First let m = 3. We set
wi:/\#r_uj, G ={z € Q:vi(z) < w,(z)}, i=1,2,3.

It is evident that the 2; are pairwise disjoint open sets. If E; = Q\Z;, we have

v = vi=w; onk;.
/\15153 ! ' !

Let E; C E; be the set of points that are not accessible from ;. By Lemma 2,
applied to v — w;, we have

3
(2.5) ,u[/\j_l'vj] =ulw;] onE, 1<i<3.

In addition, it follows from Lemma 3 that
E}UEJUE; =Q\X,
where X is at most countable. For every continuous d-subharmonic function v, we
have u[v]{(X) = 0. Hence, for m = 3, the conclusion of the lemma follows from
2.5).
( V\)/e now prove the lemma by induction for an arbitrary m > 3. (The following
procedure was suggested by A. Yu. Rashkovskii.) By Lemma 4 with m = 3, we have
Blor A Avg] = pl(vi A AUy 2) AU 1 A Uy]
Zu{vi A AVp—2) AUp_]
Ap[(Vy A s Avy_2) AUm] A p[vm—y A U]
= #[Ul AN A'Urnfl]
Ap[vp A Avy_a AUl A p[Uy_1 AUp],
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the last expression is not less than A, ., #[v; A v;], by the inductive hypothesis.
This completes the proof of the lemma.

Remark 1. We notice the following corollary of Lemma 4. Let v, ..., vy be func-
tions that are continuous and d-subharmonic in Q and have the property that all
the functions v;; = v; A v; are subharmonic. Then the function A,_;., v is also
subharmonic in Q. The following questions naturally arise: T

1. Is Lemma 4 valid for all J-subharmonic functions (without the continuity
hypothesis)?

2. Is Lemma 4 valid for #-subharmonic functions in the space B™, m > 37 This
question also arises for Theorem 2.

Lemma § (A, F. Grishin [25]}, If v > 0 is d-subharmonic in Q and v{z) =0 on
some Borel set X, the restriction to X of the Riesz charge of v is a nonnegative
measure.

Proof of Theorem 2 As we noticed at the beginning of §2, it is enough to prove
Theorem 2 for continuous functions,

We proceed by induction on #. If # =0, ¢ € N, the theorem is evidently valid.
Let us suppose that the theorem is valid for » = N — | with any g > 2r. Let us
proveitfor n=N, g > 2n.

Let £ € Q be a point for which u;(&) < u() for at least one index j. Without
loss of generality, we may suppose that u,(&) < u(£). By continuity, this inequality
is valid in some neighborhocod ¥V < Q of £. In this neighborhood we have

g—1
(2.6) w=uq+u+{2uk—(q—1—2(N—1))u}.
k=1
The functions u, uy, ..., ug—; satisfy hypothesis (1.8) of Theorem 2 with »n =
N — 1. Therefore, by the inductive hypothesis, the expression in braces in (2.6) is a
subharmonic function. Consequently w is subharmonic in V.
Nowlet X = {z e Q:u(z) =u(z) = = uz(z)}. Let us show that the restriction
of the Riesz charge of w to X is a nonnegative measure. (Here we do not need to
use the inductive hypothesis.) For any J € Iy we set

u1=2uk+Nu.
kel
Forany I, J € Iy we have
u;Au;EEuk+Zukd=°ru” inQ
kel keJ

and

urAuy=ujr=2Nu onlX,
If we apply Lemma 5 to X and to u; Auy — uyy, we find that pfu; Auylly is a
nonnegative measure. Since

w=A u
Iel, >

it follows from Lemma 4 that u[w]|y > 0.
This completes the proof.

Supplement. After this paper had been prepared for publication, B. Fuglede kindly
informed the authors that the methods of fine potential theory ([27], [28]) make it
possible to eliminate the hypothesis of the continuity of » in Lemma 2. However,
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the idea of the preceding proof remains valid. It also eliminates the requirement of
the continuity of vy, ..., ¥y in Lemma 4,

§3. THE “STABLE” VERSION OF THEOREM 2
Let [l = foq,l¥wldx dy. We denote by B(L) the sct of continuous functions
w such that 0 < w < 1, supp(y) C Z(!), and |grady| < L.

Theorem 2. Let L, M >0 and g, n € N, g > 2n. Then for every 6 > 0 there isa
number o = a(8, L, M, q, n) > 0 with the following property. If U is subharmonic,
and Uy, ..., U, are S-subharmonic in F(2) with the Riesz charges v > 0 and
Vs ..., Vq, together with

(V‘l‘if’k) @) <M,

k=1

VU -U

kel

(3.1) <a VI€ I,

g
Sy (@) <a,
k=1
the charge & = ¥.1_, vk — (g — 2n)v satisfies

/r//drc > -6 YyeB(L).

Proaf. Suppose that the theorem is false. Then there are a number J > 0, a sequence
(Ui, Ul,...,U]), j €N, of vectors with the properties (3.1) and

V- v
ker

q . —_—
(3.3) S @) -0,  j-oreo,

k=1

(32) _’05 j—)OO, IeIﬂ+l)

and a sequence of functions w/ € B(L), for which
(3.4) fwfdxfg—d, jeN.

The class B(L) is equicontinuous and therefore, by passing to a subsequence if
necessary, we may assume that y/ =3 ¢, 0<w <1, w € C(Z(1)). Then, by (3.1),

we have
\/wdxj—fwfdxf

as j — oo, and it follows from (3.4) that

(3.5) fwdﬂs—wl iz .

If we use (3.1) and (3.3), and choose, if necessary, a subsequence, we may suppose
that, as j — co,

< |k/|(Z (1)) max |y — /| — 0,
2

v >0, v,f—»vfzo,

3.6 ) 4
(3:6) fcf—rx():ny—(q—Zn)uO.
k=1
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The convergence is supposed to be in the weak topology of the charge space dual to
the space C(Z(1)). It follows from (3.5) and (3.6) that

(3.7) /y/drco < -d/3.

Let G * A be the Green potential of the charge A in the disk Z(1). The weak
convergence of measures implies the convergence of potentials in L, , and hence it
follows from (3.6) that

Grvi— G0, G*:ﬁj—»G*vS,
Gxx! = Gxx® in L (Z(1)).
We rewrite (3.2} in the form

(3.8)

(3.9) Vi -u)

kel

-0, J—oo, Tel,,.

I‘)et . . . . .
Ul -U =H -Gx(v] —v),

where H,{ is harmonic in & (1}. It follows from (3.8) and (3.9) that

V H

kel

{3.10) < const, JjeN, Iel,,,

and consequently the harmonic functions ch' are uniformly bounded above on com-
pact subsets of Z(1). If we select a subsequence, we may suppose that H;Ci — H; as
j — oo, uniformly on compact sets, and that some of the functions H, can be iden-
tically —oo. Let us suppose that Hy, # —co for 1 <k < ¢ <¢ and H, = -0 for
g’ <k <g. It follows from (3.10) that g - g’ < n. Letusset "' =n—-(g—¢') > 0.
Then ¢' — 2n’ > 0. Let us show that the subharmonic functions # = —G % % and
U, = H, — (G 1/19 , I £k < ¢, satisfy the hypotheses of Theorem 2 with g and »
replaced by ¢’ and #’. In fact,

(3.11) UL - U)) = (g ~u)| >0, j—oo, 1<k<q.

We observe that the mapping (wy , w;) — w, vV w, is continuous in L; . Hence it
fottows from (3.9) and (3.11) that

V (i — )

kel .

forevery I ¢ Ly, n{l,2,....q'}. If we apply Theorem 2 to the functions
u, Uy, ..., Uy, we obtain

=0, ie,u=\u,
kel

ql
Y- —20'w 20,
k=1

and consequently

g q
kK0=>"1)(g-2n0° = > vl (¢’ - 20O
k=1 k=1

g
+ 3 g - 20) — (g - 20O,

k=q"+1
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The expression in braces is nonnegative:
g —-2n—g+2n=¢ -2n+2¢-2¢' —q+2n=g-q >0.
Therefore x > 0, contrary to (3.7). This completes the proof of the theorem.

§4. A PARTITION OF UNITY

We use a construction, originated by Whitney and Dieudonné (see [4], §1.4), for
a continuous partition of unity.

We use ¢ and ¢; to denote absolute constants; the notation s = / means that
there are positive constants ¢, and ¢; such that ¢;7t < s < cf.

Up to the end of this section we fix the numbers » > 0 and A, 0 <A < r/2,
#' =r+ A. For each point z € & (r') we set

(4.1) . fec.

r—|z|’

Then, in the terminology of [4], §1.4, |-|. stands for a slowly varying metric on
Z(r'); specifically, z € ('), |z — z1]; < 1 implies that z, € Z(¥') and
{4.2) 31€: < Klz, £ 20€1z, §eC
(see [4], p. 29).
Lemma 6. There is a finite set of points z; € Z(r'), | < j < p, with the following
properties:

1) p<crfA;

2) the disks 2 = {z:|z — zj|;; < 1} dzef.,.@(zj, pj) are contained in Z(r');

3) every point z € D(r') belongs to at most ¢, disks &,

4) if; for some m € N, we have D;NZ(r' —2""'A) # @, then p; 2 c22A;

5) there are nonnegative functions ¢; € Cg°(<;) such that

(4.3) Zqoj = |
on D (r), and the functions wi(z) = yi(p;z + z;) € C°(Z(1)) satisfy
(4.4) |grad y;(z)| < c3.

Proof. By Theorem 1.4.10 of [4], there is a sequence of z; € & (+') such that the
disks @; = Z(z;, pj) ={z:|z—z;|;; < 1} form a covering of (') of multiplicity
not exceeding an absolute constant ¢;. In addition, by the same theorem we can
choose nonnegative functions ¢; € Cg°(Z;) that satisfy (4.3) on Z(r’) and have
the property that

|grad ¢,;(z)| < e3|1]z; = p; .

We retain only the indices j for which &, N & (r) # @. Then (4.3) is, as before,
satisfied on @ (r). For some m € N, let &, nF(r' — 2" 'A) # @. Then, if we
choose a point z € Z; N (r' — 2" 'A), we obtain

4 — -
|zj| _ (rf_zm—lA) S |Z— zjl S r_zi_z—’l,
|z;] < r—2m2A,
from which )
pi=50 _2|Zj| >2"7%A,
and property 4} is established.
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We now estimate the number p of the indices for which @;NZ (' — 2" 'A) # .
Consider the annulus
Ky={z:F=2"A<|z|<r =2""1A},
m=1,2,...,1, [ = [log,(r'/A)] + 1
let Jy = {j: P NKy # @}. We estimate card(J,) by comparing areas. If j €
J,, , it follows from property 4) that p; > ¢;2™A, and consequently area(Z;) >
€,22MA2 . On the other hand, area(K,,) < c22"Ar. Therefore card(J,) < cr/2"A,
and consequently

! oo

¥ _ r

p< Zl card(J,) < cx Z. g-m _ T
m= m=

This completes the proof of the lemma.
We choose a finite nonnegative measure g on Z(r') (in what follows, x4 will be
the Cartan measure of the curve ), and set

(4.5) 4; = fff’f dit.

Lemma 7. In the notation introduced above, the following propositions are valid.
Y Let K>0 and Jy ={j:1<j<p, aj<K}. Then

Z g < cKr
;< Ce—
j€eJx A
2) Let v be a nonnegative measure on Z(r'y, and J, g = {j:1 < j £ p,
v(Z;) > Baj}. Then
Z a; < —1'/(9 (r)).
J'eJu B
Proof. By properties 1)-3) of the partition of (4.3), we have
c C
>4 < 3 @) < gr @),
jGJu.ﬂ jeJu,_ﬂ

> a; <cKcard(Jg) < cKp = c%.

JEJk
This completes the proof of the lemma.

§5. PROOF OF THEOREM 1
Let
i
v =\/log|fjl,

i=0
let u be the Ricsz measure of v (Cartan measure of the curve (), and let A(r, f) =

#(TT)) . Then
n
T(r,f)—/ A(’tf)dz zlnf v(rei®) do.

Let {Qx}{_, bean admissible system of homogeneous polynomials of degree d. We
set vy = lOngk(ﬂ), ..., f)] and denote by p; the Riesz measureof v, 1 <k <g,

n(r, Q1) = (@), ,
N, 00 = [ M2 a

t
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Since the system S = {Q} is admissible, it follows that, for every 7 € I,,,,,

& VIj}ldS \/le(,ﬁ]: !ﬁ!)l SCZ\/I.mda

j=0 kel Jl=0
where 0 < ¢; < ¢3 < 0o are constants that depend only on S. Therefore

V'uk—d“u

kel

(3.1) <e(S), Tel.

We first consider the “trivial” case when f is a rational curve of degree L, i.e.,
lim,_ o A(r, )= L. In this case

T(r, fY= Llogr+ 0O(1), r—oo.

Let us show that we can choose a representation f = (fy, ..., f,), in which the f;,
0 <j <n, are polynomials, and maxo<;<,deg f; = L.
In fact, let = (fy,..., fx) be any representation of the curve f,

=\loglfil, L=upC)<oo.
j=0

Then # = v + H, where H is harmonic and

v(z)=f log|z—dj|d,u¢+f log
@(1) {1E1=1}

Let g=H+ iH , where H is the harmonic conjugate of /, and f; = fje‘g . Then

V4
1-= .
é‘d‘”’f

\/10g|ﬁ|=v.

j=0

In addition, when r — oo

1 2 o 1 2n 0 B
ﬂ/o log |, (re )|d05§/0 v(re®)df = Llogr + 0(1),

and therefore f; are polynomials of degree at most L. Evidently, maxg<;<, deg f;
=L.

It follows from (5.1) that among the polynomials Qu(f, ..., f»), 1 <k <gq, at
most n have degree less than 4L . Let the degrees of the polynomials O:(f,..., fx),
v s @o—n(fo, ..., fu) beequal to dL. Then, in the first place, for r > ry we have

q—n

don(r, Q)= Y a(r, Q) =d(g - n)L

k=1 k=1

and, in the second place,
dlg-—-n)T(r, f)=4d(qg—n)Llogr+ O(1)

g—n q
=Y N, Q)+O() <3S N(r, Q)+ O(1),  r—oo,
k=1 k=1

as required.
We now turn to the fundamental case when A(r, f) —» oo as r — 0.
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Let us show that (5.1) implies the unintegrated second fundamental theorem,

q
(5.2) (g —2n)dA(r, )< n(r, Q) +o(A(r, 1)), |

=1

and then, using the elementary Lemma 9, we integrate (5.2).
We specify numbers 1 > | and ¢ > 0. Weset A(r) = A(r, f), ¥ =r+A, where
A = A(r) is defined by

(5.3) A =r/log" A(r).
We say that r is unexceptional if
(5.4) A(ry < (1 +&)A(r).

Lemma 8. When r runs through the unexceptional values, the corresponding r' runs
through R\E , where E is a set of finite logarithmic measure.

Proof. We use the following theorem of Borel and Nevanlinna ([1], Chapter I1I,
Theorem 1.2). Let # and g be continuous functions that increase unboundedly on
[fo, 00}, and let [* g(x)dx < occ. Then

A(t+gh(n) < h() +1,

outside a set of pairwise disjoint intervals with finite total length. If we set A(7) =
H(e"), r=¢', and use the inequality

exp(t + g(h(1)) = e (1 + g(h(1))),

we obtain
H(r+rgHn) <H@H+1. |

We now take g(x)=x"",and H(r) = log" A(r), where 7 = /7 > 1. We obtain

.
(5.5) A (r + M) <(L+e)An). |

We now take 7’ = y(r). The function y(r) is not necessarily monotonic.

Let I’ ={r}, r}}, r{ < ry, be an interval whose y-preimage consists of excluded
values. One of the connected components of the preimage y~'(/’) is an interval
I=[n,r], n <r:,suchthat y(r;)=r;, i=1,2. We have

log A(r1)

log A(r2)

!
dlogt = logr—leog—r—2+nlog
I rl rl

< log:—? =f1dlogt.

This completes the proof of the lemma.

We continue the proof of Theorem 1. Recall that we are considering subharmonic
functions v, v;, ..., v, with Riesz measures u, fiy, ..., g, and (5.1) satisfied.
The numbers # > 1 and ¢ > 0 are fixed. We consider an unexceptional value r.
To this there correspond ' and A that satisfy (5.3) and (5.4). By applying Lemma
6, we obtain finite sequences of points z; € Z(r'), numbers p; > 0, and compactly
supported functions ¢;, 1 < j < p, that satisfy hypotheses 1}-5) of Lemma 6. By
1) and (5.3), we have

(5.6) p<c— <clogh A(r).

B~
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Let J ={l,..., p} and denote by J* C J the set of indices j for which

(5.7) 0= [ojduz aniog 4y, t=rt>n,
(5.8) (u + Zuk) (Z)) < %af :
k=1

We now apply Lemma 7 with = 1/¢, K = A(r)/log" A(r), and v = u + RN
We find that for the exceptional indices J\J*

(5.9) S a<Ce (A(r', £+ Zuk(.@(r'»)

JeJ\T* k=1

for r>ny.

We transfer v and v, from the disk &; = “(z;, p;) to the standard disk (1)
after normalizing them on a;. That is, for j € J* we consider the following func-
tions, which are subharmonic in 2 (2):

i
U,ﬁ=a—j't)k(pjz+2j), 1<k<g,
;o d
U= ~w(pjz + z;).
a;
Let us show that these functions satisfy the hypotheses of Theorem 2' for r >,
where r; depends on S and A(r).
In fact, (3.1), with M = 1/¢, follows from (5.8). By (4.4), the functions wi(z) =
pi{pjz + z;) belong to B(L), where L is an absolute constant, and by (5.1) and
(5.7) we have

Vul-v/ < £ max V v —dv Sﬁ
k a; - a;
kel 7 2€D) ey s
< ) og ar, Sy ale, L Ve, g n), ko
Alr, f)
Consequently, by Theorem 2' we have
(5.10) /wja’xf2—s, jeJ*,

where x/ is the Riesz charge of the function

q . .
ZUF{ —(g-2mU/,
k=1

or, after the substitutions z — (z — z;)/p,; and a; = [ ¢, du,

q
d(q—zn)f(ﬂjd#SZf@jdﬂk +€/¢jdﬂ,
k=1

J€J*. Summingon j, 1 <j < p, and using (5.9) and (4.5), we obtain

g g
a’(q—Zn)]CDd,uS Zf®duk+£f¢du+cs (A(r’)+z;zk(9(r’))) ,
k=1 k=1
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where

¢=Z§ﬂj.

s
=1

If we use the facts that ®(z) =1 in Z(r) and ®(z) = 0 outside Z (') by Lemma
6, we obtain

£ q
d(g —2mA(r) <3 m (D)) + ce (A(r’) +3 #k(-@(r’))) -
k=1

k=1

Applying (5.4), we obtain

q
(5.11) d(q —2mA(r') < (1+ce) Y m (D).
k=1

This inequality is satisfied outside a set of values # of finite logarithmic measure
(by Lemma 8).

Now let ¢; — 0, and let £; be the set on which (5.11) is not satisfied with ¢ = ¢;.
We choose r; so that

(5.12) / dlogt <27/, << .
Ejﬁ[r_,-,oo)

Consider the function &(r) = ¢; for r; < r < rjp1. Then (5.11) is satisfied with
g = g(r) outside the set

o0
UE;nlrs rsmaHUI0, 1,
j=1

which, by (5.12), has finite logarithmic measure.

Consequently (5.2), or equivalently (1.5), is established.

To deduce (1.6) from (1.5), we use the following lemma. Looking ahead to the
proofs of Theorems 3 and 4, we state it in a form more general than we need just to
deduce (1.6} from (1.5). For aset e C R, we set e(x) =en[0, x] and e(p, x) =
enp, x].

Lemma 9, Let ¢ ¢ R, be a measurable set and € > 0. Then there exists a set
e* C Ry such that for every s >0 we have

(5.13) le*(s)] < gle(s)l,

and, for any nonnegative nondecreasing function a(x) and all numbers r € R \e*,
p < r, we have

(5.14) f( )a(x)dx<sf a{x)dx.
elp,r

lp.7]
Proof (S. Yu, Favorov). Let us set

e* ={re R, :3x = x(r) < r such that |e(x, r)l > &(r — x)}.

We show that (5.13) is satisfied. The set e*(s) is “independent” of e\e(s), since
when r < s we have e(x, r) = e(s)n[x, r]. Consider the covering

e*(syc |J (x(n), 2r—x(r).

reet(s)
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The length of the intervals in this covering is bounded:

2r — x(r) —x(r) = 2(r — x(r)) < 2|e£s)| .

Therefore we can choose a subcovering whose multiplicity is at most two ([1], Chapter
VI, proof of Theorem 3.2). Let r, be the centers of the intervals in this subcovering.
We have

€6 < 23700~ X)) < 5 3 lelx(ra), )l < Fle)l.

We now prove (5.14), Let A(x) = |e(x, r})| for a given r € R, \e*. Then A{x) <
g(r—x) and

€ f[p,r]a(x)dx - /e(p’r}a(x)dx - fp’a(x)d(,t(x) —&(r — x))
= —/ (AMx) —e(r — x))da(x) — a(p){A(p) — &(r — p))
P

= fr(E(f —x) —Ax))da(x) + a(p)e(r - p) = A(p)) 2 0,
P

as required. This completes the proof of the lemma.

In Lemma 9, we take p =0, a(x) = A{expx),and e={x € (0, ) :expx € F},
where E is an exceptional set of finite logarithmic length in the unintegrated second
fundamental theorem (5.2}, Then e is a set of finite length; the set ¢* constructed
in Lemma 9 also has finite length; and E* = {r € [1, oco):logr € e*} is a set of finite
logarithmic length. Then by (5.14)

(5.15) /E()@dtssflr@dtsts’r(r,f), r¢ E*.

If we divide (5.2) by r and integrate, using (5.15), we obtain

q
d(g—2m)T(r, £) <D N, Q) +eT(r, £). ||

k=1

It remains only to replace the number ¢ > 0 by a function g(r) — 0 in the same
way as in the proof of (5.2). This completes the proof of the theorem.

§6. THE CASE OF VARIABLE COEFFICIENTS

Let us recall some definitions. Iet ¢ be a function that increases to +oc on
[0, o0), and AL, a field of meromorphic functions a(z) such that
T(r,a) = O(a(r)), r— .
Let B, be a set of continuous functions 4:C — RU {+oo}, such that

fzn |h(re’®)| dO = O(a(r)), r—co.
0

If g € M,,wehave log|g| € B, . Forafield K we denote by K[xp, ..., x,] thering
of polynomials in # + 1 variables over K. For a polynomial F € M,[xg, ..., X»]
we denote by F(z) € C[xg, ..., Xx] the polynomial over € obtained by substituting
a specific value z € C into the coefficients of ¥ . In addition, for any polynomial
F e Ms[xy, ..., x,] of degree d we have

(6.1) [F(2)(w, ..., wy)| < H(2)|wi?, logH € B,,
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where w = (wg, ..., w,) € C"! and |w|| = maxog;<q W]

Let § = {Q}i_,, g > 2n,be asystem of homogeneous forms in M,[xo, ..., Xu],
of degree 4. A system S is said to be admissible if for every set I € I,,; there is
a z € C such that the system of equations

(6.2) Qu(z)(w)=0, kel,
has only the trivial solution w =0 in ¢!,
We specify I € I,,, and consider homogeneous forms Qu(z) € Clxo, .-- , Xu],

k € I, in the system S. We need the concept of the resultant of a system of n+ 1
forms in n + 1 variables (see, for example, [26], Chapter XI). The resultant R;(z)
is an integral-valued polynomial in the coefficients of the forms Q. (z), k € I,
such that the condition R;(z) = 0 is necessary and sufficient for the existence of a
nontrivial solution w € C"*!, w # 0, for the system (6.2); the existence of such a
polynomial is established in [26], Chapter XI. From the definition of the resultant
and the properties of the Nevanlinna characteristic {[1], Chapter I) it follows that
R; € M, . Consequently the admissibility of S means that R;(z) £ 0 for every set
I € I,y ; consequently, if S is admissible, for all z except for a discrete set the
system (6.2) of equations has no nontrivial solutions.

It is proved in [26], Chapter XI, that there is a number s € N such that, for all
j, 0<j < n, the identity

(6.3) xIRi(z) = byj(z)xa, ..., Xa)Qi(2)(X0, ..., Xn)
kel
is satisfied, where the b;,;(z) € C[xo, ..., X,] are polynomials whose coefficients

are integral-valued polynomials in the coefficients of Q,, k € 7. Therefore by; €
MU[xO’ rrr xﬂ]'
Let w € C*!, |lw| = 1. From (6.1) and (6.3) we obtain

[wil"|R{2)] < ) lbij(2)(wa, ..., wa)l [Qk(2M(wo, ... , wa)|
ket

< H(z) Y |Q(z)(Wo, .., wa)l
kef
< H(Z)rgngk(Z)(wo, e Wyl logHeB,, 0<j<n.

If we sum the resulting inequalities over j, 0 < j < #n, and use the inequality

]
dolwilfze,  Jwll=t,
Jj=0
we obtain
[Ri(2)| < cH(2) max |Q(2)(w. ..., wn)l.

Since R; € M, , we then obtain, for ||w| =1,
(6.4) Hl(Z)STélﬂQk(z)(wo,--- s Wa)l, logH, € B, .

If we use the homogeneity of the forms Qp and the inequalities (6.1} and (6.4),
we finally obtain

Hi(2)|lw]¥ < max|Qu(z)(wp, ..., wa)| < Ha(z)|w]l?,
(6.5) kel
w e C"IN{0}, logH; € B,, T€1,,,.
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Proof of Theorem 3.For a meromorphic curve f that has the representation f =

(fo,..., fr) in homogeneous coordinates, we set

v=\/log|f;l,

j=0
Ur(z) = log |Qk(2)(fo(2), ..., ful2))], 1<k<gq, g>2n,
where the forms O € M,[xg, ..., x,] with
T(r, f)
=2 1
ol og 7(r, /)7

form an admissible system §. As before, u denotes the Riesz measure of the
subharmonic function v then A(r) = A(r, f) = u{F(r).

If we substitute the coordinates of f in (6.5), we obtain an analog of (3.2): for
every set I € I,,; we have

(6.6) h(z) = €B,.

\/vk—dv

kel

We specify numbers ¢ > 0 and n, 1 < 5 < t. We apply Lemma 8 of §5 and
select unexceptional values r and »' such that

(6.7) r=r+ r+A,

r
log" A(r)
{6.8) A(ry < (1 +&)A(r),

and E, is the set of exceptional values ' for which (6.8) is not satisfied; its loga-

rithmic length is finite. Applying Lemma 6 from §4, we construct a partition of unity
corresponding to the selected values of r and A, and let

aj:f(t’jdﬂ,

where the ¢; form the partition of unity in &'(r).

As in §5, we transfer the d-subharmonic functions v,, 1 < k < g, and the
subharmonic function v, from the disk &; = Z(z;, p;) to Z(1), normalizing
these functions by a;. We let

; 1 - d
Ullz) = 2. Uklpiz +2;), Ulz) = vlpjz +25).
j

J
As in the proof of Theorem 1, we need to select a set of indices J*CJ={1,2,...,p}

so that when j € J* the functions u;'; and U’/ satisfy the hypotheses of Theorem 2
and

(6.9) S a; <ed(r).

JeEINI

The main technical difficulty is in estimating the numbers

Vui-uv
kel

lwll = f/ wldxdy.
9(1}

Ie[n+ls .}'EJ*:

or,j=

where, as before,
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We set
p
2 (N=> g
r=1

From the definition of a7 ;, and (6.6), we obtain

P
) CZ”I"Z-/f hix+iy)dxdy, heB,.
=1 Pi e

I

Let us set
Kn=2( - 2" ' AND(Y - 2"8),  1<m<[—1+ [mgz %] .

Then by properties 2)-4) of Lemma 6, we obtain

! 1
Z(r)gcz Z p—}/fgjh(x+iy)a’xdy

m=1 j:@NKn#£&

! 1 2w pr'=201A )
(6.10) SCZ_—ZMAZ/(, / h(te®)tdtdo

m=1 -2mA

i
a(r2?Ar  a{r')r T(r'Ylog" A(r)
<ed oAt SR S TiogTon

m=1

For a given « > 0, we set

(6.11) Jay={jeJ ar,; <a}.
Then, by (6.10), we have the following estimate:

(6.12) S oa= ¥ U< S < S g AC).

JENJ(a) JENS (@) .

If A(r) increases slowly, the characteristic 7'(r) cannot be estimated above by A(r});
consequently, generally speaking, we cannot deduce the required inequality {6.9)
from (6.12). Therefore we consider separately the values of r for which T(r) is
not bounded above by A4(r); for these values we directly prove the integrated second
fundamental theorem.

We set

Fy = {r':T(r") < AQr)log" A )N\Eq,
Fp={r":T(r') > A(r') log" A(r")},

where E; is the excepiional set from Lemma 8, on which (6.8) is not satisfied, and

= (T — ?1)/2 .

We consider two cases.

Case 1. re F. A

Let / denote the Riesz measure of the function U/ and ué the Riesz charges of
U,{ . To apply Theorem 2, we need to select the values of j € J for which U] hasa
“nearly nonnegative” Riesz charge; more precisely, we need to estimate the numbers

YW@ €.

k=1
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We denote by n(r, §) the total number of poles {counting multiplicity) of the
coefficients of the forms @y, 1 <k <g,

N(r,s):fr——n([t’s)dt.

o

From the hypotheses of our Theorem 3 and Nevanlinna’s first fundamental theorem,
it follows that

N(r,S)=0(a(r))=O(%), P 00,

Let us consider the set
E ={r:n(r,S)= N, S)log" N(r, S)}.
We have

n(t, S) dN(t, S)
dlogt <
e O8NS o N(r, S)Ieg N(T, S) e N(, S)log" N(t, 8) =%

so that the set E, has finite logarithmic length. However, if r € F}\E;, we have
(', S) < N@#, S)log" N(r', S)
ST log"™ " T(r) < A(r'Ylog™" A(r').
If we now use properties 2) and 3) of the partition in Lemma 6, and (6.13), we obtain
? 7 1 J _
IE z;aj (a—j kZ ﬂi{(DJ))
j= =1

(6.14) /=1

dlogi =

(6.13)

g
ey w (D) <en(r', ) < cA(r)log™ A(r').
k=1

We denote by J* ¢ J={1,2,..., p} the set of indices j for which we have

q
— 1
(6.15) (# + Zﬂk) (Z)) < a5,
k=1
(6.16) ar,; < log " A(r'),
(6.17) by <log™ "2 A(r").

Let Ji, J, J5 be the respective sets of indices for which (6.15)-(6.17) are not
satisfied. By Lemma 7 (conclusion 2)} and properties 2} and 3) of the partition in
Lemma 6,

g 7 q
(6.18) doaj<ey, (u + Zﬂk) () < ce (A(r') + Zuk(-@'(r’))) -
JEJ JEJ k=1 k=1
In addition, if we use (6.11) and (6.12), « = log™"/? A('), and the monotonicity of
w(T)=Tlog™* T, we obtain
! ¥ !
Zaj Sclog]'/ZA(rI)A(r)l:)g 1‘?(?‘)
(6.19) =} log™ A(r")
< cA(r) log " A(r).

log" A(r)
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Finally, by (6.14) and the definition of J3 we obtain
(6.20) Y= Z 4bi log”/? A(r') Y " ajb; < cA(¥)log ™" A(r) .

JES JES J jeJs
Combining (6.18)-(6.20), we obtain

q
62 3 [edu= 3 a<e (A(r’)+2uk(9(r'>)), F € F\E;.

JENJT* Je\J*

If je J*, we can apply Theorem 2' to the functions U/ and Uf For ' > rl and
reFr \E1 its hypotheses are satisfied by (6.15)-(6.17). We ﬁnd that, for ' > r,
re F\E;, and je€ J*, we have

(6.22) ]{Z w}d(éyk#d(q—%)u) 2—8] (Z goj) du.

JEJ* JeJ*
If we combine {6.21) and (6.22), as in §5, we obtain

q
(6.23) d{g - 2m)A(r') < (1 +ce) > mdZ (1)), re F\E|.
k=1
Case 2. re F,. Then
T(r) = T(r/2) = f AW 41 < Ay 1082 < T(r)log 2/ log’ A(r) = o(T(r)),
ie.,
(6.24) T(r/2) ~T(r), ref;, r—oo.
Let us show that
q
(6.25) d(g —m)T(r/2) <> N(r/2, Qr) + o(T(r))

k=1
when r — oo, r € Fy. (By (6.24), this is stronger than (1.6).) Let (6.25) not be
satisfied. Then there is a sequence r; — oo, r; € F2, such that
q

(6.26) dlg —m)T(rj[2) > Z (rif2, Q) +eT(r;), e>0,
k=
We consider the subharmonic functlon
H
v=\/log|/}}
j=0

with Riesz measure g and d-subharmonic functions

vi(z) = log|Qk(z, fo(2), ..., ful2))l

with charges u; . By the first fundamental theorem, we have

(6.27) (kz: u;:) (_Oz (%r)) = O(T(r)), r— oo,
(6.28) (g u;) (9 (%r)) = o(T(r)), r-— o0,

(6.29} W@ (r)) = A(r) = o(T(r)), r—oo, re k.
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Let H, be the least harmonic majorant of v in & (%r). We set

Pi(z) = d(T(rj))" (v(r;2) — Hy (1;2)),
Pi(z) = (T(r) \(we(rjz) — Hy(rj2)),  z€2(3).

Then the P/ are Green potentials that form a compact family. By (6.6}, we have

(6.30) fo i

Iel, j—oo,forevery r, 0<r<1.

If we argue as in the proof of Theorem 2’, and use (6.27)-(6.29), we can select a
subsequence of indices j so that P/ — u and P! — uy . Tt follows from (6.29) that
u=>0.

The functions #; are subharmonic or else identically —oo. By formula (6.30),
we have

\/ Pl(re'®) — Pi(re®)| d6 — 0,
kel

V=0, T€ly, in@(3).

kel
This means that the functions u; , except, perhaps, for # of them, are identically 0.
For definiteness, let y; =ty =+ = ty_, = 0. Then

n fa—n ] 1 .
f (ZP;;'—(G—n)PJ) (ie“’) a6 -0, jooo,
0 \k=1

and consequently
(6.31) f (Z v (rje®/2) —d{q - n)v(rje*f’/z)) de = o(T(r;)), i oo,
0 k=1
Now we obtain from (6.31), taking account of the definitions of 7'(r) and N({r, Qx),

g—n
d(g—m)T(r;/2) < > N(rj/2, Q) +o(T(r))
k=1

g
<Y ON/2, Q)+ o(T(r)), T oo,
k=1

which contradicts (6.26). Therefore (6.25) is proved; if we take account of (6.24), it
leads to

q

(6.32) dig-2mT(r) <> N(r, Q) +o(T(r), r—o0, rck.
k=1

To complete the proof, it remains only to deduce (1.6) from (6.23) and (6.32).

Lemma 10. Let F;UFR UE = [1, 00}, let A(t) tend monotonically to oo, and let
n(t) < A(t). Let us suppose that

/dlogt< 00,
E
nity < eA(t), te Fp,

f@dt<£f #d:, rekF,,
1 1
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Then there is a set E* with the properties
(6.33) f dlogt < oo,
E-

f@drgzef @d:, ré B
1 1

Proof. We apply Lemma 9 with ¢ = {x € (0, c0):expx € E}. Let e* be the
exceptional set constructed in Lemma 9, and E* = {r € [1, co):logr € e*}. The set
e, and therefore e*, have finite length; consequently (6.33) is satisfied.

Let Re FI\E*,andset p(r)=sup{pec Fr:p<r}. If {pekr: p<r}=9,we
set p(r) = 1. We have, by Lemma 9 and the definitions of F; and F;,

r n(t) oir)
f —dt:/ n(t)dlogt+/ n(r)dlogt+f n{t)ydlogt
11 I Finp(r),r]

En(p(r), 7]

plr} r r
<& A(t)dlogt + ¢ A(t)dlogr+a/ A(t) dlogt
1 P olr)

52£f @dr.
1

This completes the proof of the lemma,
If we take, in this lemma,

n(r) = d(g — 2n)A(r) - Zq: (D (1))
and apply (6.23) and (6.32), we obtain .
d(g —2n)T(r) < Zq:N(f, Qi) +2eT(r). |l
;1

k
From this, inequality (1.6) follows by the standard method used in the proof of
Theorem 1.

Remark 2. In the second case considered in Theorem 3, we have proved, in fact, a
stronger conclusion than was required. Let us state this.

On some unbounded set F let
(6.34) Ay = o(T(r), reF, r—oo.

(This implies (6.24).) Let us choose a function o{r) = o(T(r)), r — oo, and consider
an admissible system of forms of degree d: Q, € My[xp,...,x,), 1 <k <gq,
qg>n. Then

d(q—n)T(r)qu:N(f,Qk)+0(T(f)), reF, r—oo,
k=1

and, in particular,

q
Zé(ka f)Sn
k=1

Remark 3. An analysis of the preceding proof shows that if
Alr, f)

6.35 lim —=% >0,
(6.35) I T, 1)
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then under the hypotheses of Theorem 3 the unintegrated inequality (1.5) is valid.
In fact, {(6.35) makes it possible not to consider two cases separately, but to repeat
the analysis of the first case, using (1.5).

For the proof of Theorem 4, we require an additional lemma on monotonic func-

tions.
We recall that E{r) = EnNn[0,r], ECR,.

Lemma 11. Let w{x) have the property that

(6.36) w(x}/x 1 +00, X — +oo.

We consider the set

(6.37) G={r>e:T(r)<log’r}.

Then there is a set E C G for which

{6.38) A(r) = o(T(¥)), r—oo, re G\E,
lim __ dp =0.

oo W(loglogr) Jewy P

Proof. Let EX ={re G:A(r) > xT(r)}, & > 0. By (6.37), we have

!
f a’logpslf Mafpslf dlog T(p)
Ex{f) ) K J:

(6.39)

K Jeey PT(P
< log T'(t) < 2]oglogt.
- K K

Therefore, for a sequence x; — 0, j — oo, we can find a sequence {; — oo of
numbers for which

f dlogp < 27/ yw(loglogt), >t
Ex (1)

Let us set

E=| J(EYN[y, i) Ule, 41,

o

1

i
and show that this set is the one required.

In fact, if
r€lty, Ll N(G\E) = [t;, tj 1] N (G\E™),
we have
(6.40) A(r) e, T(r),
(6.41) : dlogp <277,

y(loglogt) Jg

The estimates (6.38) and {6.39) follow from (6.40) and (6.41). This completes the
proof of the lemma.

Proof of Theorem 4. Let
G1={rze:T(r)2log2r}, ng{rze:T(r)<log2r}.
The coefficients of the forms (@ are rational functions, and their characteristics are

Ologr)y = O(\/T(r)), rely, r—oo.
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Therefore when r € (¢; we may repeat the reasoning in the proof of Theorem 3.
Let
Fi={reG:T(r) < A(r)log A(r)}\(Ep U E}),

where Ey and E; are the exceptional sets of finite logarithmic length constructed
for the proof of Theorem 3. Then the unintegrated inequality (1.5) is satisfied on
Fy, and so is the integrated inequality (1.6) on G\ Fj.
Using Lemma 11, we extract from G, a subset E, with properties (6.38) and
(6.39). Then, by Remark 2, the integrated incquality (1.6) is satisfied on G \E;.
We set FqU E| U E,; then (6.39) is satisfied for this exceptional set. Let

F=(G\FIUEUE))U(G:/E,),

q
q(r} = d(gq — 2n)A(r) = > (S (r) < (g — 2n) dA(r).
k=1

We have [e, 00) = F{UFH UE, and

n(f)sﬁA(f‘), rEFl,

/mdtgef Mdl, re F,
e ! e 1

Hence, as in the proof of Theorem 3, we conclude with the help of Lemma ¢ that
(1.6) is satisfied for r ¢ E*, where the exceptional set E*, like E, satisfies (6.39).
Thus Theorem 4 is established.
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