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Abstract

This is an exposition of some results on classification of spheri-
cal polygons with prescribed interior angles and prescribed images of
vertices under a conformal map onto the unit disk.
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This paper contains an exposition of the results from [5], [6] and [7].
A polygon is a surface homeomorphic to the closed disk, with several

marked points on the boundary called corners, equipped with a Riemannian
metric of constant curvature K, such that the sides (arcs between the corners)
are geodesic, and the metric has conical singularities at the corners.

A conical singularity is a point near which the length element of the
metric is

ds =
2α|z|α−1|dz|
1 +K|z|2

,

where z is a local conformal coordinate. The number 2πα > 0 is the angle at
the conical singularity. The interior angle of our polygon is πα radians. We
prefer to measure angles in half-turns, so in what follows, “integer angle”
will mean that α is an integer. These angles can be arbitrarily large. Every
polygon can be mapped conformally onto the unit disk. We consider the
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problem of classification up to isometry of polygons with prescribed angles
and prescribed corners.

By prescribed corners we mean that the images of the corners on the
unit circle under the conformal map of the polygon onto the unit disk are
prescribed.

The problem becomes simpler if we consider marked polygons: the cor-
ners are marked as a0, a1 . . . , an−1 in the order of positive orientation of the
boundary, and two polygons are considered equal if there exists an isometry
between them which sends aj to a′j, 0 ≤ j ≤ n− 1. We consider only marked
polygons.

Flat polygons, K = 0. The angles must satisfy the condition∑
αj = n− 2.

For any given angles and prescribed corners, there exists a polygon, which is
unique up to scaling.

Proof: Christoffel–Schwarz formula.

Hyperbolic polygons, K < 0. The angles must satisfy∑
αj < n− 2.

For any given angles and prescribed corners, there exists a unique polygon
(E. Picard [15, 16, 17, 18], M. Heins [10], M. Troyanov [20]).

We study spherical polygons, assuming K = 1. The necessary condition
on the angles, ∑

αj > n− 2,

follows from the Gauss–Bonnet formula. If the angles are sufficiently small,
0 < αj < 1, then we have the necessary and sufficient condition

0 <
∑

(αj − 1) + 2 < 2 minαj,

proved by M. Troyanov [20], and uniqueness for this case was proved by
F. Luo and G. Tian [12]).

Spherical triangles were classified by F. Klein [11], A. Eremenko [2], S. Fu-
jimori, Y. Kawakami, M. Kokubu, W. Rossman, M. Umehara and K. Yamada
[8].
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If all αj are not integers, the necessary and sufficient condition for the
existence of a spherical triangle is

cos2 πα0 + cos2 πα1 + cos2 πα2 + 2 cosπα0 cos πα1 cos πα2 < 1,

and the triangle is unique.
If α0 is an integer but α1 and α2 are not, then the necessary and sufficient

condition is that either α1 +α2 or α1−α2 is an integer m < α0, with m and
α0 of opposite parity.

The triangle with an integer corner is not unique: there is a 1-parametric
family when only one angle is integer, and a 2-parametric family when all
angles are integer.

Polygons with only one non-integer angle do not exist.
Developing map. A surface D of constant curvature 1 is locally isometric
to the standard sphere S. This isometry is conformal, has an analytic con-
tinuation to the whole polygon, and is called the developing map f : D → S
[2], [1].

We say that spherical polygons are equivalent if their developing maps dif-
fer by a post-composition with an element of PSL(2,C) acting as fractional-
linear transformations of the sphere.

Let us choose the upper half-plane H as the conformal model of our
polygon, with n corners a0, . . . , an−1, and choose an−1 = ∞. Accordingly,
we sometimes denote αn−1 as α∞. The other corners are real points. Then
f : H → S is a meromorphic function mapping the sides into great circles.
By the Symmetry Principle, f has an analytic continuation to a multi-valued
function in C\{a0, . . . , an−1} whose monodromy is a subgroup of PSU(2) ∼
SO(3) (acting by isometries of the sphere).

Such a function must be a ratio of two linearly independent solutions of
the Fuchsian differential equation

w′′ +
n−2∑
k=0

1− αk
z − ak

w′ +
P (z)∏n−2

k=0(z − ak)
w = 0,

where P is a real polynomial of degree n − 3 whose top coefficient can be
expressed in terms of the αj. The remaining n − 3 coefficients of P are
called the accessory parameters. The monodromy group of this equation
must be conjugate to a subgroup of PSU(2). In the opposite direction, if a
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Fuchsian differential equation with real singularities and real coefficients has
the monodromy group conjugate to a subgroup of PSU(2), then the ratio of
two linearly independent solutions restricted to H is a developing map of a
spherical polygon.

Thus classification of spherical polygons with given angles and corners is
equivalent to the following problem:

For a Fuchsian equation with given real parameters aj, αj, to find the
real values of accessory parameters for which the monodromy group of that
equation is conjugate to a subgroup of PSU(2). These values of accessory
parameters are in bijective correspondence with the equivalence classes of
spherical polygons.

Spherical polygons with all integer angles. In this case, the developing
map is a real rational function with real critical points. The multiplicities
of the critical points are αj − 1. Such functions have been studied in great
detail (A. Eremenko and A. Gabrielov [3], I. Scherbak [21], A. Eremenko,
A. Gabrielov, M. Shapiro, F. Vainshtein [4].)

The necessary and sufficient condition on the angles is
∑

(αj−1) = 2d−2,
where d = deg f is an integer, and αj ≤ d for all j. For given angles, there
exist exactly K(α0 − 1, . . . , αn−1 − 1) of the equivalence classes of polygons,
where K is the Kostka number: it is the number of ways to fill in a table
with two rows of length d− 1 with α0− 1 zeros, α1− 1 ones, etc., so that the
entries are non-decreasing in the rows and increasing in the columns.

Polygons with two non-integer angles. Let α0 and αn−1 be non-integer,
while the rest of the angles αj are integer. We do not assume here that the
order α0, . . . , αn−1 corresponds to the positive orientation.

Assuming a0 = 0 and an−1 = ∞ we conclude that the developing map
has the form

f(z) = zα
P (z)

Q(z)
,

where α ∈ (0, 1) and P, Q are real polynomials without common factors. For
this case, a necessary and sufficient condition on the angles is the following

Theorem 1. Let σ := α1 + . . .+ αn−2 − n+ 2.
a) If σ+[α0]+ [αn−1] is even, then α0−αn−1 is an integer of the same parity
as σ, and |α0 − αn−1| ≤ σ.
b) If σ+ [α0] + [αn−1] is odd, then α0 +αn−1 is an integer of the same parity
as σ, and α0 + αn−1 ≤ σ.
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Finding all polygons with prescribed angles is equivalent in this case to
solving the equation

z(P ′Q− PQ′) + αPQ = R

with respect to real polynomials P and Q of degrees p and q, respectively,
where R is a given real polynomial of degree p+ q. The map

Wα : (P,Q) 7→ z(P ′Q− PQ′) + αPQ

is finite and its degree equals equals(
p+ q

p

)
(it is a linear projection of a Veronese variety), and one can show that when
all roots of R are non-negative, all solutions (P,Q) ∈ W−1

α (R) are real.

Enumeration of polygons with two adjacent non-integer angles. An
important special case is when a0 and an−1 are adjacent corners of the poly-
gon, 2α0 and 2αn−1 are odd integers, while all other αj are integers. Equiv-
alence classes of such polygons are in bijective correspondence with odd real
rational functions with all critical points real, given by

f(z) = g(
√
z),

where f is the developing map of our polygon and g is a rational function as
above. By a deformation argument, this gives the following

Theorem 2. If the angles satisfy the necessary and sufficient condition given
above, and the corners a0 = 0 and an−1 = ∞ are adjacent, then there are
exactly

E(2α0 − 1, α1 − 1, . . . , αn−2 − 1, 2αn−1 − 1)

equivalence classes of polygons, where E(m0, . . . ,mn−1) is the number of
chord diagrams in H, symmetric with respect to z 7→ −z, with the vertices
0 = a0 < a1 < . . . < an−2 < an−1 = ∞ and −a1, . . . ,−an−2, and mj chords
ending at each vertex aj.

If a0 and an−1 are not adjacent, E gives an upper bound on the number
of equivalence classes of polygons.

One can express E in terms of the Kostka numbers.
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Proposition. Let m0 and mn−1 be even. Then

E(m0,m1, . . . ,mn−2,mn−1) = K(r,m1, . . . ,mn−2, s),

where positive integers r and s satisfy

r + s > m1 + . . .+mn−2, (1)

and can be defined as follows:
If µ := (m0 + mn−1)/2 + m1 + . . . + mn−2 is even, then r = m0/2 + k, s =
mn−1/2 + k, where k is large enough, so that (1) is satisfied.
If µ is odd, then r = (m0 + mn−1)/2 + k + 1, s = k, and k is large enough,
so that (1) is satisfied.

Spherical polygons with 3 non-integer angles. In this case, the images
of the sides under the developing map are contained in three circles. The
intersection of these three circles may consist of two points, and this case is
called exceptional. In the exceptional case, the three circles are equivalent to
three lines intersecting at one finite point.

Theorem. Let Q be a circular polygon with non-integer angles θ, θ′ and θ′′

and the rest of the angles integers. Suppose that the images of the sides under
the developing map are not tangent to each other. Then Q is equivalent to a
spherical polygon if and only if it is either exceptional or

cos2 πθ + cos2 πθ′ + cos2 πθ′′ + 2(−1)σ cosπθ cos πθ′ cosπθ′′ < 1,

where
σ =

∑
j:αj∈Z

(αj − 1).

Spherical quadrilaterals. Heun’s equation. In the case n = 4 the
Fuchsian equation for the developing map is the Heun’s equation

w′′ +

(
1− α0

z
+

1− α1

z − 1
+

1− α2

z − a

)
w′ +

Az − λ
z(z − 1)(z − a)

w = 0,

where A can be expressed in terms of αj, and λ is the accessory parameter.
We can place three singularities at arbitrary points, so we choose a0 =

0, a1 = 1, a2 = a, a3 =∞.
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The condition that the monodromy belongs to PSU(2) is equivalent to
an equation of the form F (a, λ) = 0. This equation is algebraic if at least
one angle is integer.

Theorem 2 in the case of quadrilaterals with two integer and two non-
integer angles specializes to the following

Theorem 3. The number of classes of quadrilaterals with two integer and
two non-integer angles is at most

min{α1, α2, k + 1},

where

k + 1 =

{
(α1 + α2 − |α0 − α3|)/2 in case a)
(α1 + α2 − α0 − α3)/2 in case b).

If a > 0 we have equality.

Here cases a) (when α0 − α3 is integer) and b) (when α0 + α3 is integer)
are as in Theorem 1. Condition a > 0 means that the corners a1 and a2 with
integer angles are adjacent.

Quadrilaterals with non-adjacent integer angles. Let δ = max(0, α1 +
α2 − [α0]− [α3])/2.

Theorem 4. The number of equivalence classes of quadrilaterals with non-
adjacent corners a1 and a2, with integer angles α1 and α2, is at least

min{α1, α2, k + 1} − 2

[
1

2
min {α1, α2, δ}

]
, (2)

where k is the same as in Theorem 3.

Notice that in case b) of Theorems 1 and 3, the lower bound (2) becomes
0 when min{α1, α2, k + 1} is even and 1 if min{α1, α2, k + 1} is odd.

Quadrilaterals with three non-integer corners. Let α0 be the integer
angle, and α1, α2, α3 non-integer angles. In the exceptional case, the condi-
tion

cos π
α1 + α2 + θ3

2
cosπ

−α1 + α2 + α3

2
cos π

α1 − α2 + α3

2
cos π

α1 + α2 − α3

2
= 0

must be satisfied, and for all sets of angles satisfying this condition, there is
only a finite set of possible moduli a for which quadrilaterals exist.
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Theorem. The number of quadrilaterals with integer α0 and non-integer
α1, α2, α2 and prescribed modulus a is at most α0 − 1 and at least

α0 − 2

[
min

(
α0

2
,
1 + [α2]

2
,
δ

2

)]
,

where δ = max(0, 1 + [α2] + α0 − [α2]− [α3])/2.
The upper estimate is exact, and we conjecture that the lower estimate

is exact as well.

Algebraic method. In the case of quadrilaterals with one or two inte-
ger angles, our problem is equivalent to counting real solutions of an alge-
braic equation F (a, λ) = 0, expressing the fact that the Heun’s equation has
PSU(2) monodromy. Degree of this polynomial with respect to λ gives the
upper bound on the number of equivalence classes of quadrilaterals. The
polynomial F is the spectral determinant of an eigenvalue problem for a cer-
tain finite Jacobi matrix. To see this, we re-write the Heun’s equation as an
eigenvalue problem

z(z − 1)(z − a)

(
w′′ +

(
1− α0

z
+

1− α2

z − 1
+

1− α2

z − a

)
w′
)

+ Azw = λw.

The operator in the left-hand side can be represented by a Jacobi matrix
acting on the sequence of the Taylor coefficients of w.

In the cases we consider, the problem can be reduced to the existence of
a finite-dimensional eigenvector.

There is a natural quadratic form with respect to which the Jacobi matrix
is symmetric [9]. This quadratic form is positive definite in the case when the
corners with integer angles are adjacent, [14]. In the case when they are not
adjacent we use Pontryagin’s theorem [19] on the matrices symmetric with
respect to an indefinite form [13]. This method seems to work only in the
cases when the eigenvalue problem is finite-dimensional, that is the equation
F (a, λ) = 0 is algebraic.

Geometric method. The developing map is a local homeomorphism, ex-
cept at the corners, of a closed disk D to the standard sphere S. The sides are
mapped to great circles. These great circles define a partition (cell decom-
position) of the sphere. Taking the f -preimage of this partition, and adding
vertices corresponding to the integer corners, we obtain a cell decomposition
of D which is called a net. Two nets are considered equivalent if they can be
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mapped to each other by an orientation-preserving homeomorphism of the
disk, respecting labeling of the corners.

It is easy to see that a net, together with the partition of the sphere by
the great circles, define the polygon us to an isometry. So the problems of
existence of polygons are reduced in principle to classification and counting
the nets, which is a combinatorial problem.

a

b

a

a
b

b

Fig. 1. Partition of the Riemann sphere by two great circles.

9



R 21

a
a

a b ab b

R 22

a b ba ab

a b

ba aa

a a

a

a a

a a

0

0 1

1

2

23

3

R 12

a
a aba bba b

a a

a0 1

23

R 11

a
a aba ba

a a

a0 1

23

Fig. 2. Nets with two adjacent integer corners.
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Fig. 3. Chain of nets with two opposite integer corners.
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a) b)

Fig. 4. Partition of the Riemann sphere by four great circles (two views).
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Fig. 5. Nets with four non-integer corners.
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Our strategy is the following. First we classify all possible nets with given
angles. Then we construct certain curves in the space of quadrilaterals with
given angles, by moving the images of integer corners along the circles of the
partition of the sphere S, and keeping the net fixed.

In the “good case” when the corners with integer angles are adjacent, we
can show that the conformal modulus of the quadrilateral tends to 0 and ∞
on the ends of the curve. This proves the existence of a quadrilateral with
prescribed angles and prescribed modulus. In the “difficult case” when the
corners with integer angles are not adjacent, to construct the curves on which
the modulus changes from 0 to ∞, one needs sometimes to paste together
several curves with fixed nets.

The method is applicable, in principle, to all cases, no matter whether the
accessory parameter problem is algebraic or not, but the computations be-
come more complicated as the partition of the sphere by great circles contains
more circles.

In the following pictures we choose the upper half-plane conformal model
with corners 0, 1, a,∞, integer angles α1 and α2 at 0 and 1, non-integer angles
α0 and α3 at a and ∞, and plot the algebraic function λ(a) which is defined
by the condition that the monodromy of the Heun’s equation is unitary. The
values 0 < a < 1 correspond to quadrilaterals with opposite integer corners.
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Fig. 6. α1 = 6, α2 = 4, α0 = α3 = 65/32

14



a

l

Fig. 7. α1 = 6, α2 = 4, α0 = α3 = 255/128
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Fig. 8. α1 = 6, α2 = 4, α0 = α3 = 5/4
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Fig. 9. α1 = α2 = 3, α0 = α3 =
√

2

17



l

a

Fig. 10. α1 = α2 = 3, α0 = α3 = 15/8
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Fig. 11. α1 = α2 = 3, α0 = α3 = 63/32
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