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Abstract. Let A be a transcendental entire function of finite order. We show that if
the differential equation w′′ +Aw = 0 has two linearly independent solutions with only
real zeros, then the order of A must be an odd integer or one half of an odd integer.
Moreover, A has completely regular growth in the sense of Levin and Pfluger. These
results follow from a more general geometric theorem, which classifies symmetric local
homeomorphisms from the plane to the sphere for which all zeros and poles lie on the
real axis, and which have only finitely many singularities over finite non-zero values.

1. Introduction and results

For any entire function A, all solutions of the differential equation

(1.1) w′′ + Aw = 0

are entire. We consider the question when this equation has two linearly independent
solutions which have only real zeros. For a polynomial A this is possible only when A
is constant [26, Theorem 3]. On the other hand, there are transcendental coefficients A
for which this happens. However, we will show that if A has finite order, then this is
possible only in special cases. In particular, the order must be an odd integer or one
half of an odd integer.

We begin by making some general remarks on the equation (1.1), all of which can
be found in [31]. Let w1 and w2 be two linearly independent solutions. Then their
Wronskian determinant

W = W (w1, w2) = w1w
′
2 − w′1w2

is constant. A pair of solutions (w1, w2) is called normalized if W = 1.
The ratio of two linearly independent solutions F = w2/w1 satisfies the Schwarz

equation

(1.2)
F ′′′

F ′
− 3

2

(
F ′′

F ′

)2

= 2A.

The function F is meromorphic in C and locally univalent. All meromorphic locally
univalent meromorphic functions arise in this way. A normalized pair can be recovered
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from F by the formulae

w2
1 =

1

F ′
, w2

2 =
F 2

F ′
.

The product E = w1w2 of a normalized pair of solutions of (1.1) has the property

(1.3) E(z) = 0⇒ E ′(z) ∈ {±1}.
Every entire function satisfying (1.3) is the product of a normalized pair of solutions
of (1.1), with A given by

(1.4) 4A = −2
E ′′

E
+

(
E ′

E

)2

− 1

E2
.

Conversely, every entire function E satisfying (1.4) for some entire function A satis-
fies (1.3). The functions E and F are related by the formula

(1.5) E =
F

F ′
.

Note that zeros of E correspond to zeros and poles of F .
We conclude that studying zeros of linearly independent solutions of (1.1) is essentially

equivalent to investigating the zeros of functions satisfying (1.3), or the zeros and poles of
locally univalent functions. The relation between the coefficient A in (1.1), the function
E satisfying (1.3) and the locally univalent function F is given by (1.2), (1.4) and (1.5).

Functions satisfying (1.3) play an important role in the work of Steven Bank and Ilpo
Laine [1, 2], and they are now called Bank-Laine functions, or BL functions for short.
Since this work, there has been a substantial interest in BL functions of finite order.
We refer to the surveys [24] and [32] which cover the literature before 2008, and to the
introductions of the recent papers [7, 8, 36, 37]. In particular, much attention has been
paid to the exponent of convergence λ(E) and the order ρ(E) of a BL function E; see
[31, p. 7] for the definitions.

When A is transcendental, all solutions w of (1.1) have infinite order. However, it is
possible that the product E of two solutions has finite order. For example, when

A = p′′ − (p′)2 − e4p

with a polynomial p, we have a normalized pair of solutions

w1,2(z) =
1√
2

exp

(
−p(z)∓

∫ z

0

e2p(t) dt

)
.

The order of the corresponding BL function E = w1w2 = exp(−2p) is the degree of p
and hence an integer.

For some time it had been conjectured that all BL functions of finite order correspond-
ing to a transcendental coefficient A are elementary and that their orders are positive
integers. Non-elementary examples were constructed for the first time by Langley in [33],
and later in [13, 34]. The order of a transcendental BL function is at least 1; see [50],
[48, Corollary 1] and [51, Theorem 1]. On the other hand, examples of BL functions of
any order in [1,∞) were constructed in [7, 8].

In the recent papers [36] and [37], Jim Langley started to investigate real BL functions
E of finite order for which all zeros are real. So in this case the associated differential
equation (1.1) has two linearly independent solutions with only real zeros. As already
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mentioned, for a polynomial A this is possible only when A is constant [26, Theorem 3].
In fact, if A has degree n, then the exponent of convergence of the non-real zeros of the
product of two linearly independent solutions is equal to (n+ 2)/2 [23, Theorem 1]. So
it is surprising that there exist non-elementary BL functions of finite order with only
real zeros.

Our first result says that instead of assuming that E has finite order, it is enough to
assume that A has finite order. Note that we always have ρ(A) ≤ ρ(E) by (1.4).

Theorem 1.1. Let A and E be entire functions satisfying (1.4). If E has only real
zeros, then ρ(E) <∞ if and only if ρ(A) <∞.

Theorem 1.2 below shows that, under the hypotheses of Theorem 1.1, we actually
have ρ(A) = ρ(E).

Theorem 1.1 says that studying entire coefficients A of finite order for which the
differential equation (1.1) has two linearly independent solutions with only real zeros is
equivalent to studying BL functions of finite order with real zeros.

A meromorphic function f is called real if it maps R into R∪{∞}. This is equivalent

to f(z) = f(z) for all z ∈ C. Functions (not necessarily analytic) which satisfy this last
equality will be called symmetric. For other objects, like subsets of the plane, the word
symmetric will mean invariant under complex conjugation.

We say that an infinite real sequence without finite accumulation points is one-sided
if it is bounded from above or below, and two-sided otherwise.

The results of Langley [36, 37] on BL functions with real zeros can be summarized as
follows. Recall that λ(E) denotes the exponent of convergence of the zeros of E.

Theorem A. Let E be a real Bank-Laine function of finite order with only real zeros
and let A be given by (1.4).

(a) If the zeros of E form an infinite one-sided sequence, then λ(E) ≥ 3/2. Moreover,
if λ(E) = 3/2, then ρ(E) = ρ(A) = 3/2.

(b) If the zeros of E form an infinite two-sided sequence, then either A is constant, or
A is transcendental and λ(E) ≥ 3. Moreover, if λ(E) = 3, then ρ(E) = ρ(A) = 3.

Langley’s proofs actually yield a more general result, stated as Theorem B below. He
also constructed examples for which we have equality in the estimates of λ(E) in (a)
and (b). Of course, if A is constant, then the possible forms of E can be determined
explicitly.

We will strengthen Theorem A as follows.

Theorem 1.2. Let E and A be as in Theorem A.

(a) If the zeros of E form an infinite one-sided sequence, then there exists n ∈ N
with n ≥ 2 such that λ(E) = ρ(E) = ρ(A) = n− 1/2.

(b) If the zeros of E form an infinite two-sided sequence and A is non-constant, then
there exists n ∈ N with n ≥ 2 such that λ(E) = ρ(E) = ρ(A) = 2n− 1.

Remark 1.1. For an arbitrary real BL function E with only real zeros, not necessarily
of finite order, there are no restrictions on the exponent of convergence of E. Indeed, a
result of Shen [49] says that any set without finite accumulation points is the zero set of
a BL function.
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Theorem 1.2 will be a corollary of a more general result, stated as Theorem 1.3 below.
However, we will also give a direct proof of Theorem 1.2 in section 3. This proof is
analytic in nature, while the proof of the more general Theorem 1.3 is geometric. The
proofs of Theorems 1.2 and 1.3 are independent of each other.

To state Theorem 1.3 and Theorem B, we introduce some terminology. All surfaces
in this paper are oriented and have countable base. A continuous map of surfaces
F : X → Y is called topologically holomorphic if for every point p ∈ X there are local
coordinates at p and at F (p) in which F has the form z 7→ zn, where n is a positive
integer. According to Stöılow [54], all open discrete maps are topologically holomorphic.

The points where n ≥ 2 are called critical points; their images are called critical
values. The critical values correspond to the algebraic singularities of the inverse F−1.
The function F is a local homeomorphism if and only if there are no critical points.

The transcendental singularities of the inverse are defined as follows; cf. [5]. (There it is
assumed that F is meromorphic, but the definition extends to topologically holomorphic
functions without change.) Let a ∈ C. Suppose that D 7→ U(D) associates to every
topological disk containing a a connected component U(D) of F−1(D), in such a way
that U(D1) ⊂ U(D2) when D1 ⊂ D2. (Note that D 7→ U(D) is determined by its values
on any base of neighborhoods of a.) If

⋂
D U(D) = ∅, then we say that D 7→ U(D) is a

transcendental singularity of F−1 over a. In this case, the sets U(D) are called tracts of
F over a; any set containing such a tract is called a neighborhood of this singularity.

If there exists D such that F (z) 6= a for all z ∈ U(D) (resp. such that F : U(D) →
D\{a} is a universal covering map), then the singularity, and the tract U(D), are called
direct (resp. logarithmic). We note that there can be more than one transcendental
singularity over the same point. The number of transcendental (or direct or logarithmic)
singularities over a point a is just the number of different choices D 7→ U(D). For
example, the inverse of F (z) = exp exp z has infinitely many logarithmic singularities
over both 0 and ∞, one logarithmic singularity over 1, and no other singularities.

We also note that F−1 has a transcendental singularity over a if and only if a is an
asymptotic value of F . This means that there exists a curve γ tending to ∞ such that
F (z) → a as z → ∞, z ∈ γ. Each neighborhood U(D) then contains a “tail” of this
curve γ.

Langley’s paper in fact contains the following generalization of Theorem A.

Theorem B. Let E be a real Bank-Laine function of finite order with only real zeros
and let A and F be as in (1.4) and (1.5).

If A is non-constant, then the inverse F−1 has infinitely many logarithmic singularities
over 0 and ∞, but the number m of singularities over points in C∗ := C \ {0} is finite.
Moreover, we have the following:

(a) If the zeros of E form an infinite one-sided sequence, then A is non-constant,
m ≥ 2 and λ(E) ≥ m− 1/2.

(b) If the zeros of E form an infinite two-sided sequence and A is non-constant, then
m ≥ 4 and λ(E) ≥ m− 1.

We will see that we actually have equality in these estimates of λ(E).
To state Theorem 1.3, we also recall that an entire function f of order ρ has completely

regular growth in the sense of Levin and Pfluger if there exists a 2π-periodic function
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hf : R→ R, not vanishing identically, such that

log |f(reiθ)| = hf (θ)r
ρ + o(rρ)

as r →∞, for reiθ outside a union of disks {z : |z − aj| < rj} such that

(1.6)
∑
|aj |≤r

rj = o(r)

as r →∞. The function hf is called the indicator of f .
Our main result is the following theorem.

Theorem 1.3. Let F : C→ C be a symmetric local homeomorphism with all zeros and
poles real. Suppose that the number m of singularities of F−1 over points in C∗ is finite,
but that F−1 has infinitely many singularities over 0 or ∞.

Then there exists a symmetric homeomorphism φ : C → C such that F0 = F ◦ φ is a
meromorphic function, so that E = F0/F

′
0 is entire and has the following properties:

(i) If F has only finitely many zeros and poles, then m ≥ 1 and ρ(E) = m.
(ii) If the zeros and poles of F form an infinite one-sided sequence, then m ≥ 2 and

λ(E) = ρ(E) = m− 1/2.
(iii) If the zeros and poles of F form an infinite two-sided sequence, then m is even,

m ≥ 4 and λ(E) = ρ(E) = m− 1.
(iv) The functions E and A in (1.4) have the same order ρ = ρ(E), and they are of

completely regular growth in the sense of Levin–Pfluger.
For |θ| ≤ π, the indicator of E is given in case (i) by hE(θ) = c cos ρθ with

c ∈ R \ {0} while in case (ii) we have hE(θ) = c sin(ρ|θ|) with c > 0 if the zeros
are positive and hE(θ) = c sin(ρ|θ − π|) with c > 0 if the zeros are negative. In
case (iii), hE is given by the (now coinciding) formulae of case (ii). In all cases
we have

(1.7) hA = 2 max{−hE, 0}.
with some c > 0.

(v) All values of m indicated in (i)− (iii) can actually occur.

Remark 1.2. All assumptions of Theorem 1.3 are of purely topological nature. So Theo-
rem 1.3 contains a parabolic type criterion for a class of surfaces spread over the sphere.
It can be compared with the theorem of Nevanlinna [45] describing the conformal type
and asymptotic behavior of a locally univalent function F whose inverse has only finitely
many singularities. In particular, Nevanlinna showed that a meromorphic function F
with this property has finite order.

Suppose that F−1 has only finitely many singularities over 0 and ∞, but that F
otherwise satisfies the hypotheses of Theorem 1.3. Then F−1 has only finitely many
singularities, so belongs to the class considered by Nevanlinna. A result of Hellerstein,
Shen and Williamson [26, Theorem 2] says that if all zeros and poles of a real meromor-
phic function F of this class are real, then F is a linear-fractional transformation or of
the form F (z) = A tan(az + b) +B with real constants a, b, A,B.

The reality of zeros and poles of F is an essential assumption here and in Theorem 1.3:
The results of [8] show in particular that there exist locally univalent meromorphic
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functions F whose inverses have only one singularity over C∗, where the order of E =
F/F ′ can take any preassigned value in (1,∞].

Remark 1.3. Theorem 1.3 is stronger than Theorem 1.2 for several reasons. First, The-
orem 1.3 does not require the a priori assumption that E has finite order, but only
the assumption that F−1 has finitely many singularities over points in C∗. Second, we
obtain a more precise description of the asymptotics of the functions E and A, namely
that these functions are of completely regular growth. In particular, the functions are
of normal type of the given order, a conclusion that does not follow from our analytic
proof of Theorem 1.2; see Remark 3.3 below. Our proof of Theorem 1.3 will in fact give
additional insights in the structure of these functions. Finally, the geometric approach
also allows us to construct examples showing that all indicated values of m may actually
occur. Note that Langley’s Theorem A gives such examples for m = 2 in case (ii) and
for m = 4 in case (iii). Some of the underlying ideas of the construction of our examples
for general m are similar to his, but the details are quite different. It is plausible that
Langley’s methods could also be modified to yield examples for arbitrary m.

Remark 1.4. The case of arbitrary (not necessarily real) BL functions E of finite order
with all zeros real can be reduced to the case of real BL functions by the following
remark of Langley [36, p. 228]: Write E = ΠeP+iQ, where Π is a canonical product with
real zeros, and P and Q are real polynomials. Then condition (1.3) implies that at every
zero z of E we have Π′(z)eP (z)+iQ(z) = ±1. Since Π′(z) and P (z) are real, we conclude
that Q(z) ∈ πZ for every zero z of E. So ΠeP is a real BL function with all zeros real.
Furthermore, if E is real, then A is also real by (1.4), and F in (1.5) can be chosen real.
Thus it suffices to consider only real functions F , E and A.

Remark 1.5. The Speiser class S is defined as the set of all meromorphic functions
F : C→ C for which there exists a finite subset A of C such that F : C\F−1(A)→ C\A
is an (unramified) covering. It plays an important role in value distribution theory [22]
and holomorphic dynamics [4, 20, 52].

Langley’s Theorem B says in particular that if E is a BL function of finite order, then
the associated locally univalent function F is in S.

Theorem 1.3 gives a description of real locally univalent functions F of class S with
only real zeros and poles, for which the inverses have finitely many logarithmic singular-
ities over values in C∗, and infinitely many logarithmic singularities over each 0 and ∞.
Since class S is much studied, this is of independent interest.

Remark 1.6. Our proof of Theorem 1.3 uses topological arguments, quasiconformal sur-
gery and the Teichmüller–Wittich–Belinskii theorem. These methods are frequently
used to construct examples of meromorphic functions. In this paper, we also use this
technique to prove a positive result.

We have discussed the equation (1.1) under the hypothesis that there are two solutions
with only real zeros. Our final result addresses the case that there are three solutions
with this property.

Theorem 1.4. Let A be an entire function and suppose that (1.1) has three pairwise
linearly independent solutions which have only real zeros. Then A is constant.
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Remark 1.7. Our starting point was [26, Theorem 3] which says that if A is a polyno-
mial and if (1.1) has a basis of solutions with only real zeros, then A is constant. An
extension of this result to linear differential equations of higher order has been given by
Brüggemann [12, Theorem 5] and Steinmetz [53, Corollary 2]. It would be of interest to
which extent our results generalize to equations of higher order.

This paper is organized as follows. Theorem 1.1 is proved in section 2. In section 3,
we give a purely analytic proof of Theorem 1.2. The proof of Theorem 1.3 given in
the subsequent sections is independent of this. In section 4 we collect the necessary
prerequisites on the pasting-and-gluing techniques and line complexes, to make this
paper self-contained. A reader familiar with this technique may pass to section 5, where
we construct examples (Part (v) of Theorem 1.3) and outline the proof of all other parts.
These parts are then proved in sections 6–8. Theorem 1.4 is proved in section 9.

Acknowledgment. We thank Jim Langley for helpful comments.

2. Proof of Theorem 1.1

We use the standard notation of Nevanlinna theory as given in [22] or [46]. The
following result is due to Miles [43].

Lemma 2.1. Let f be an entire function of infinite order and suppose that the zeros of f
lie on finitely many rays emanating from the origin. Then there exists a set L ⊂ [1,∞)
of logarithmic density zero such that

lim
r→∞
r/∈L

N(r, 1/f)

T (r, f)
= 0.

Proof of Theorem 1.1. It follows from (1.4) and the definition of the proximity function
m(r, ·) that

2m

(
r,

1

E

)
= m

(
r,

1

E2

)
≤ m(r, A) +m

(
r,
E ′′

E

)
+ 2m

(
r,
E ′

E

)
+O(1).

Suppose that E has infinite order. Lemma 2.1 and the first fundamental theorem yield
that there exists a set L of logarithmic density zero such that

m

(
r,

1

E

)
∼ T (r, E) as r →∞, r /∈ L.

On the other hand, the lemma on the logarithmic derivative [22, Chapter 3, § 1], applied
to both E and E ′, implies that there exists a set M of finite logarithmic measure such
that

m

(
r,
E ′′

E

)
+ 2m

(
r,
E ′

E

)
= O(log T (r, E)) +O(log r) as r →∞, r /∈M.

Combining the last three equations we conclude that

(2− o(1))T (r, E) ≤ T (r, A) as r →∞, r /∈ L ∪M.
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Since A has finite order by hypothesis, this contradicts the assumption that E has infinite
order. �

3. Analytic proof of Theorem 1.2

Throughout this section, we consider a Bank-Laine function E and the functions A
and F given by (1.4) and (1.5). To prove Theorem 1.2, we wish to establish upper and
lower bounds on the behavior of E on the real axis. We begin by proving an upper
bound.

Proposition 3.1. Let E be a real Bank-Laine function of finite order. If E has infinitely
many positive zeros, then

lim sup
x→+∞

|E(x)|
x

<∞.

If E has infinitely many negative zeros, then lim supx→−∞|E(x)/x| <∞.

Remark 3.1. Our second, geometric, proof of Theorem 1.2 yields the stronger statement
that E(x) itself is bounded as x→ +∞ resp. as x→ −∞. Moreover, this holds not only
for the function E, which is the product of two solutions of (1.1), but for any individual
solution of having infinitely many zeros. See Remark 8.2 below.

To prove Proposition 3.1, we consider the function G defined by

G(z) =
E(z)

z
,

and relate the singularities of G−1 over ∞ to the singularities of F−1 over non-zero
finite values. Langley [37, Proposition 2.1, (C)] proved that under the hypotheses of
Proposition 3.1 every neighborhood of a transcendental singularity of F−1 over a non-
zero finite value contains a neighborhood of a singularity of G over ∞. We strengthen
this result as follows.

Proposition 3.2. Let E be a Bank-Laine function of finite order, F a locally univalent
function satisfying E = F/F ′ and G(z) = E(z)/z.

Then there is a bijection between the singularities of G−1 over ∞ and the singularities
of F−1 over values in C∗, with the following property: Any sequence of points converging
to a singularity of G−1 over ∞ also converges to the corresponding singularity of F−1.

In order to prove Proposition 3.2 we will use the following lemma.

Lemma 3.3. Let F be a meromorphic function and set E := F/F ′. Then every neigh-
borhood of a direct transcendental singularity of E−1 over ∞ contains an asymptotic
path for some asymptotic value a ∈ C∗ of F .

To prove the lemma, we use the following result of Huber [30]; see also [41].

Lemma 3.4. Let u : C→ [−∞,∞) be subharmonic and let λ > 0. Suppose that

lim
r→∞

M(r, u)

log r
=∞.
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Then there exists a path γ tending to ∞ such that∫
γ

e−λu(z)| dz| <∞.

Proof of Lemma 3.3. Let W be a neighborhood of a direct singularity of E over ∞; we
may choose W as a component of {z : E(z)| > K} for some K > 0. Assuming that K
is large, W is a direct tract. This implies that the function

u(z) =

log

∣∣∣∣E(z)

K

∣∣∣∣ if z ∈ W,

0 if z /∈ W,

satisfies the hypothesis of Lemma 3.4; see [9, Theorem 2.1]. We apply Lemma 3.4 with
λ = 1. It follows that W contains a curve γ tending to ∞ such that∫

γ

∣∣∣∣F ′(z)

F (z)

∣∣∣∣ · | dz| = ∫
γ

| dz|
|E(z)|

<∞.

This means that the image of γ under a branch of logF has finite Euclidean length,
and hence this branch tends to some value β ∈ C as z tends to ∞ along γ. Setting
α := eβ ∈ C∗ we thus have F (z)→ α as z →∞, z ∈ γ. �

When F is locally univalent, then E is entire and hence every transcendental singular-
ity of E over ∞ is direct. In particular, every neighborhood of a transcendental singu-
larity of G over ∞ is also a neighborhood of a direct singularity of E, and thus contains
an asymptotic path of F−1. Under the hypotheses of Proposition 3.2, the corresponding
singularity of F−1 is logarithmic by [35, Corollary 1.1]. To prove Proposition 3.2, we use
an estimate on the derivative of a function having a logarithmic singularity, which is a
consequence of Koebe’s theorem. Such estimates are useful in other contexts, notably
in the study of the class B in complex dynamics, and therefore we state the result in
this generality for future reference. (A similar estimate is also used by Langley; see the
second displayed formula in the proof of [37, Proposition 2.1].)

Lemma 3.5. Let H = {z : Re z > 0} be the right half-plane and φ : H → C be univalent.
Let z0, z ∈ H with Re z ≥ Re z0. Then

|φ′(z)| ≥ |φ′(z0)| ·
(

1 +
|z − z0|
Re z0

)−4

.

Proof. Pre- and post-composing by suitable affine maps, we may assume that z0 = 1
and φ′(z0) = 1. Put M(z) := (z − 1)/(z + 1). Then M maps H conformally to the unit
disk and we have M ′(z) = 2/(z+ 1)2. Set ψ := φ◦M−1. Since ψ′(0) = φ′(1)/M ′(1) = 2,
Koebe’s distortion theorem yields that

|ψ′(w)| ≥ 2
1− |w|

(1 + |w|)3

for |w| < 1. Since φ′(z) = ψ′(M(z))M ′(z) we thus have

|φ′(z)| ≥ 2
1− |M(z)|

(1 + |M(z)|)3
· 2

|z + 1|2
= 4

|z + 1| − |z − 1|
(|z + 1|+ |z − 1|)3

= 16
Re(z − 1) + 1

(|z + 1|+ |z − 1|)4
.
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Since |z + 1| ≤ |z − 1|+ 2 we conclude that

|φ′(z)| ≥ 1

(1 + |z − 1|)4

for Re z ≥ 1. �

Proof of Proposition 3.2. Let E, F and G be as in the statement of the Proposition. Let
α ∈ C∗ be an asymptotic value of F . As already mentioned, every singularity ξ of F
over α is logarithmic.
Claim. If U is a sufficiently small neighborhood of ξ, then |G(z)| is bounded on ∂U .
Moreover, for large enough R > 0, the set {z : |G(z)| > R} ∩ U is unbounded and
connected.

To prove the claim, observe first that 1/G(z) is the derivative of ζ 7→ logF (exp(ζ)),
where exp ζ = z. To study this in more detail, choose β with exp β = α and consider,
for small ε > 0, the disk D = {z : |z − β| < ε} centered at β. Let Ω be the connected
component of F−1(exp(D)) that is a neighborhood of ξ. If ε is sufficiently small, then
F : Ω→ exp(D)\{α} is a universal covering and 0 /∈ Ω. Let T be a connected component
of exp−1(Ω). Let λ be the branch of (logF ) ◦ exp on T that takes values in D \ {β};
then λ is also a universal covering. If ζ ∈ T and z = exp(ζ), then

(3.1) λ′(ζ) =
zF ′(z)

F (z)
=

1

G(z)
.

If φ is a conformal map fromH ontoW , then λ◦φ : H → D\{β} is a universal covering.
Another universal covering from H onto D \ {β} is given by w 7→ ε exp(−w) + β. We
may normalize φ so that these two maps are equal. Thus

λ(φ(w)) = ε exp(−w) + β

for w ∈ H. Set g := G ◦ exp ◦φ. Then, by (3.1),

(3.2) |g(w)| = |G(exp(φ(w)))| = 1

|λ′(φ(w))|
=

1

ε
· |φ′(w)| · exp(Rew),

for w ∈ H. Since T is disjoint from its 2πiZ-translates, we have

(3.3) |φ′(w)| ≤ 4π

Rew

for all w ∈ H by Koebe’s theorem. (See [20, Lemma 1], and compare [47].) Thus,
by (3.2), |g(w)| is bounded when Rew is bounded away from 0 and ∞. Note also that
if w ∈ H with Rew = R > 0, then z = expφ(w) satisfies

|(logF )(z)− β| = |λ(φ(w))− β| = ε exp(−R).

The first part of the Claim follows for the component U of F−1(exp({z : |z−β| < εe−R}))
contained in Ω, and in fact for every sufficiently small neighborhood U of ξ.

On the other hand, by (3.2) and Lemma 3.5, for Rew ≥ Rew0,

(3.4)
|g(w)|
|g(w0)|

≥ exp(Rew − Rew0) ·
(

1 +
|w − w0|

Rew0

)−4

.

In particular, g(w) tends to infinity along every horizontal line. Moreover, suppose
that Rew0 ≥ 1 and w belongs to the sector of opening angle π/2 based at w0; i.e.,
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Rew − Rew0 > |Imw − Imw0|. Then the right-hand side of (3.4) is bounded below by
1/(1 +

√
2)4.

Now let R > 4πe and let V be a connected component of

{w ∈ H : Rew > 1 and |g(w)| > R}.
Then Rew > 1 for all w ∈ V by (3.2) and (3.3), and hence |g(w)| = R for all w ∈ ∂V .
Since g is unbounded on V there is some w0 ∈ V with |g(w0)| > (1 +

√
2)4R. So V

contains a sector based at w0 as above, and in particular all sufficiently large points at
argument between −π/5 and π/5. Hence the component V is unique, and the Claim is
proved.

To complete the proof, recall that, since E and hence G are of finite order, the number
n of singularities of G−1 over ∞ is finite. Let K0 > 0 be so large that {z : |G(z)| > K0}
has exactly n unbounded components, one component V (S) for each singularity S ofG−1.
By Lemma 3.3, there is a singularity S ′ of F−1 over some value α ∈ C∗ such that every
neighborhood of S ′ intersects V (S). By the Claim, every neighborhood of S ′ is also a
neighborhood of S, and hence any sequence of points converging to S also converges
to S ′. That the map S 7→ S ′ is a bijection also follows from the Claim. �

Proof of Proposition 3.1. Suppose that E has infinitely many positive zeros, and let Ω
be a logarithmic tract of F over a point in C∗. We may assume that Ω contains no zeros
and poles of F and hence no zeros of E. Since a logarithmic tract is simply connected
and since a logarithmic tract intersecting the real axis is symmetric, the intersection
of Ω with the real axis is connected, and hence bounded from above. So if (xn) is a
sequence tending to +∞, then (xn) does not converge to a transcendental singularity
of F−1. Hence, by Proposition 3.2, a sequence (xn) tending to +∞ cannot converge to
a transcendental singularity of G−1. Thus |G(xn)| is bounded for such a sequence. In
other words, |G| is bounded on the positive real axis, as claimed.

The case that E has infinitely many negative zeros reduces to the case of positive
zeros by considering E(−z) instead of E(z). �

Having established an upper bound for G and hence E on the real axis, we now prove
a lower bound, outside certain neighborhoods of the zeros. We use the following lemma
due to Laguerre and Borel; see [42].

Lemma 3.6. Let f be a real entire function of finite genus p with m non-real zeros.
Then, in addition to one zero of the derivative f ′ of f between each pair of adjacent real
zeros of f , the derivative f ′ has at most p+m real and non-real zeros.

Here zeros are counted with multiplicities. The result implies that a real entire func-
tion of finite order with only finitely many non-real zeros has only finitely many non-
negative local minima and non-positive local maxima. Moreover, the same is true for
all its derivatives. Thus we can apply the following fact to the restriction of E to the
interval between any two successive (and sufficiently large) zeros.

Lemma 3.7. Let f : [a, b]→ R be C2 with the following properties.

(a) f(a) = f(b) = 0.
(b) |f ′(a)| = |f ′(b)| ≥ 1.
(c) f ′ has a unique zero c in (a, b).
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(d) f ′′ has at most one zero in [a, c] and at most one in [c, b].
(e) f ′′ has no non-negative local minima or non-positive local maxima.

Then

(3.5) |f(x)| > min{x− a, b− x}
20

for all x ∈ (a, b).

Proof. By considering the map x 7→ f((b− a)x+ a)/(b− a), we may assume that a = 0
and b = 1. Replacing f with −f if necessary, we further assume that f(x) > 0 for
0 < x < 1. Then f ′(0) ≥ 1, f ′(1) ≤ −1 and f ′′(c) ≤ 0.

We first claim that

(3.6) f(c) = max
0≤x≤1

f(x) >
1

20
.

Suppose, by contradiction, that f(c) ≤ 1/20. Choose η ∈ [0, 1/3] by such that f ′′(η) is
minimal. Then

f ′(x) = f ′(0) +

∫ x

0

f ′′(t) dt ≥ 1 +

∫ x

0

f ′′(η) dt = 1 + f ′′(η)x

for 0 ≤ x ≤ 1/3, and hence

1

20
≥ f(c) ≥ f

(
1

3

)
=

∫ 1/3

0

f ′(t) dt ≥
∫ 1/3

0

(1 + f ′′(η)t) dt =
1

3
+
f ′′(η)

18
.

Thus f ′′(η) ≤ 18/20 − 6 < −5. Applying the same argument to x 7→ f(1 − x), we also
find η∗ ∈ [2/3, 1] with f ′′(η∗) < −5.

Without loss of generality, we may assume that c ≥ 1/2. Otherwise, replace f by
x 7→ f(1− x). Let τ ∈ [1/3, 1/2] be such that f ′′(τ) is maximal. For x ∈ [1/3, 1/2], we
have

f ′(x) ≥ f ′(x)− f ′
(

1

2

)
= −

∫ 1/2

x

f ′′(t) dt ≥
(

1

2
− x
)
· (−f ′′(τ)).

It follows that

1

20
≥ f(c) ≥ f

(
1

2

)
> f

(
1

2

)
− f

(
1

3

)
=

∫ 1/2

1/3

f ′(t) dt ≥ −f ′′(τ)

∫ 1/2

1/3

(
1

2
− t
)

dt = −f
′′(τ)

72
,

and thus f ′′(τ) ≥ −72/20 > −5 > max{f ′′(η), f ′′(η∗)}.
It follows that f ′′(τ) takes a local maximum between 1/3 and 2/3. By assumption (e),

this maximum value is positive. So the interval [η, η∗] contains at least two zeros of f ′′,
bounding an interval on which f ′′ is positive. Since f ′′(c) ≤ 0, these zeros either both
belong to [0, c] or both to [c, 1], contradicting (d). Thus (3.6) is proved.

To complete the proof of the lemma, we show that

(3.7) min
ε≤x≤1−ε

f(x) ≥ ε

20
.
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The minimum on the left-hand side is assumed either at x = ε or x = 1 − ε; we may
assume the former. In particular, c ≥ ε. By the mean value theorem, there exists
ξ ∈ (0, ε) such that

(3.8) f ′(ξ) =
f(ε)

ε
.

There also exists ξ∗ ∈ (ε, c) such that

(3.9) f ′(ξ∗) =
f(c)− f(ε)

c− ε
≥ f(c)− f(ε)

1− ε
.

We may assume that f(ε) ≤ ε since otherwise there is nothing to prove. Then f ′(ξ) ≤ 1.
We show that f ′(ξ∗) ≤ f ′(ξ). In fact, otherwise f ′ would have a local minimum between
0 and ξ∗ and, since f ′(c) = 0, a local maximum between ξ and c, contradicting (d). Thus
f ′(ξ∗) ≤ f ′(ξ). It now follows from (3.8) and (3.9) that

ε · (f(c)− f(ε)) ≤ f(ε) · (1− ε).

Thus εf(c) ≤ f(ε). Combined with (3.6) this yields (3.7) and hence the conclusion. �

Remark 3.2. The lower bound for |f(x)| in (3.5) can certainly be improved, but it suffices
for our purposes.

Given an entire function f , a sequence (rk) is called a sequence of Pólya peaks of order
σ ∈ [0,∞) for logM(r, f), if for every ε > 0 we have

logM(trk, f) ≤ (1 + ε)tσ logM(rk, f) for ε ≤ t ≤ 1

ε

for all large k. Put

ρ∗ = sup

{
p ∈ R : lim sup

r,t→∞

logM(tr, f)

tp logM(r, f)
=∞

}
and

ρ∗ = inf

{
p ∈ R : lim inf

r,t→∞

logM(tr, f)

tp logM(r, f)
= 0

}
.

Drasin and Shea [14] proved that Pólya peaks of order σ exist for all finite σ ∈ [ρ∗, ρ
∗]

and that we always have

(3.10) 0 ≤ ρ∗ ≤ µ(f) ≤ ρ(f) ≤ ρ∗ ≤ ∞,

where µ(f) denotes the lower order of f .

Proof of Theorem 1.2. We will first consider the case that E has infinitely many positive
and infinitely many negative zeros; that is, we will prove conclusion (b) of the theorem.
The minor modifications to handle conclusion (a) will be discussed at the end of the
proof.

We will show that if (rk) is a sequence of Pólya peaks of some order σ for logM(r, E),
then σ = N for some odd integer N . In view of (3.10) this yields that µ(E) = ρ(E) = N .
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We consider the subharmonic functions uk given by

uk(z) =
log |E(rkz)|
logM(rk, E)

.

Given ε > 0 we then have

uk(z) ≤ (1 + ε)|z|σ for ε ≤ |z| ≤ 1

ε

and large k. This implies (cf. [28, Theorems 4.1.8 and 4.1.9] or [29, Theorems 3.2.12 and
3.2.13]) that, passing to a subsequence if necessary, the limit

(3.11) u(z) = lim
k→∞

log |E(rkz)|
logM(rk, E)

exists and is either −∞ or a subharmonic function in C. Here the convergence is in
the Schwartz space D ′. This implies that we also have convergence in L1

loc. There are
a number of papers where entire and meromorphic functions are studied in terms of a
subharmonic u obtained as in (3.11); see, e.g., [17] for further details.

The function u is harmonic in C \ R and satisfies

(3.12) u(z) ≤ |z|σ for z ∈ C

as well as

(3.13) M(1, u) = 1,

so in particular u 6≡ −∞. It follows from Proposition 3.1 that

u(x) ≤ 0 for x ∈ R.

We shall show that we also have u(x) ≥ 0 and thus u(x) = 0 for x ∈ R. In order to do
so, suppose that u(x) < 0 for some x ∈ R. Then there exist δ > 0, t > 0 and ξ ∈ R\{0}
such that u(z) < −δ for z ∈ D(ξ, t). It follows that (see [29, (3.2.6)])

(3.14) |E(z)| < 1 for z ∈ D(rkξ, rkt),

if k is sufficiently large. Hence

|E ′(z)| =

∣∣∣∣∣ 1

2πi

∫
|ζ−rkξ|=rkt

E(ζ)

(ζ − z)2
dζ

∣∣∣∣∣ ≤ 4

rkt
< 1 for z ∈ D

(
rkξ,

1

2
rkt

)
provided k is sufficiently large. By the Bank-Laine property (1.3), E has no zeros in
D(rkξ, rkt/2).

Suppose that ξ > 0, and let (xn) be the sequence of positive zeros of E. (The
case ξ < 0 is analogous, replacing positive by negative zeros). We choose n such that
xn < rkξ < xn+1. Then xn ≤ rkξ− rkt/2 while xn+1 ≥ rkξ+ rkt/2. Applying Lemma 3.7
to the restriction E|[xn,xn+1], we see that

E(rkξ) ≥
rkt

40
> 1
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for sufficiently large k. This contradicts (3.14); thus

u(x) = 0 for x ∈ R.

Since u is harmonic in the upper half-plane, the reflection principle for harmonic
functions yields that

v(z) =

{
u(z) if Im z ≥ 0,

−u(z) if Im z < 0,

defines a harmonic function v : C → R. Next there exists an entire function w with
Rew(0) = 0 such that v = Imw. It follows from (3.12) that w(0) = 0 and

Imw(z) ≤ |z|σ for z ∈ C.

This implies that w is a polynomial and in fact that σ ∈ N and w(z) = czσ for some
c ∈ C. Hence µ(E) = ρ(E) = σ ∈ N.

By (3.13) we have |c| = 1. Since u(x) = v(x) = Imw(x) = 0 for x ∈ R we have
c ∈ R and thus c = ±1. Hence we have v(reiθ) = crσ sin(σθ) and consequently u(reiθ) =
crσ sin(σ|θ|) for |θ| ≤ π. Using that u is subharmonic we actually find that c = 1 and
that σ is odd, say σ = 2n− 1 with n ∈ N. Thus

(3.15) u(reiθ) = rσ sin(σ|θ|) = r2n−1 sin((2n− 1)|θ|) for |θ| ≤ π.

It follows from (3.11) and (3.15) that

T (rk, E) = m(rk, E) ∼ 2n

(2n− 1)π
logM(rk, E)

and

m

(
rk,

1

E

)
∼ 2n− 2

(2n− 1)π
logM(rk, E)

so that

N

(
rk,

1

E

)
∼ 2

(2n− 1)π
logM(rk, E)

as k → ∞. This implies that not only µ(E) = ρ(E) = σ = 2n − 1, but also that
λ(E) = 2n − 1. Moreover, it follows from (1.4) and the lemma on the logarithmic
derivative [22, Chapter 3, § 1] that

m(r, A) = 2m

(
r,

1

E

)
+O(log r).

We conclude that we also have ρ(A) = 2n− 1. This completes the proof of (b).
Suppose now that all zeros of E are positive. We proceed as above, but in this case

u is harmonic in C \ [0,∞). We now apply the above reasoning to u∗(z) = u(z2). Then
u∗ is harmonic in the upper half-plane and u∗(x) = 0 for x ∈ R. We now find that 2σ is
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an odd integer, say 2σ = 2n− 1 with n ∈ N, and that

u∗(reiθ) = r2σ sin(2σ|θ|) = r2n−1 sin((2n− 1)|θ|) for |θ| ≤ π.

It follows that

u(reiθ) = rσ sin(σθ) = rn−1/2 sin

((
n− 1

2

)
θ

)
for 0 ≤ θ ≤ 2π.

As before we can now conclude that λ(E) = ρ(E) = ρ(A) = n− 1/2. �

Remark 3.3. One can derive from this proof further regularity of the asymptotic behavior
of A and E. Indeed, since we established that the possible values of the order σ of the
Pólya peaks form a discrete sequence, we conclude that

ρ∗ = ρ∗ = µ(f) = ρ(f) > 0

in (3.10); that is, A and E are of regular growth in the sense of Valiron. Furthermore,
following the argument from [17, p. 1210-1211], one can show that

logM(r, E) = rρ`(r),

where ` is a slowly varying function in the sense of Karamata; that is, `(cr)/`(r)→ 1 as
r →∞ for every c > 1. Moreover,

log |E(reiθ)| ∼ `(r)h(θ) as r →∞,

outside an exceptional set satisfying (1.6). Similar statements apply to the function A.
However, as we mentioned in Remark 1.3, the method of this section does not allow

to show that A and E are of normal type.

4. Preliminaries for the proof of Theorem 1.3

4.1. Gluing of elements. As a general reference for the concepts considered in this
section we mention [18]. We consider connected bordered oriented surfaces D, not
necessarily compact. The border ∂D is equipped with the standard orientation (such
that the interior stays on the left).

An element (D, f) is a pair, where D is a bordered surface and f : D → C is a
topologically holomorphic map. Two pairs (D1, f1) and (D2, f2) are called equivalent if
there is an orientation-preserving homeomorphism φ : D1 → D2 such that f1 = f2 ◦ φ.
Of course, we write this as (D1, f1) ∼ (D2, f2).

There is a unique conformal structure on D that makes f holomorphic. Equivalence
classes are called Riemann surfaces spread over the sphere. By the Uniformization The-
orem, each pair (D, f) with open simply connected D0 is equivalent to a pair (D0, f0)
where D is the whole plane or an open disk and f0 is meromorphic in D0.

Consider two elements (D1, f1) and (D2, f2) and suppose that there are two closed
arcs Ij ⊂ ∂Dj which are mapped by fj onto the same arc homeomorphically, but with
opposite orientations. Then there is a homeomorphism φ : I1 → I2 such that f1 = f2 ◦ φ
on I1. By gluing D1 and D2 along this homeomorphism we obtain a new element (D, f),
where f = fj on Dj. (For the formal definition of gluing of topological spaces see, for
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example, [11, § 2.5].) We can apply this procedure when (D1, f1) = (D2, f2), and glue
an element to itself.

The following result says that this gluing operation is compatible with the equivalence
relation on elements.

Proposition 4.1. If (D1, f1) ∼ (D2, f2) and (D3, f3) ∼ (D4, f4), and we can glue
(D1, f1) to (D3, f3) along some arcs, then (D2, f2) can be glued to (D4, f4) along the
corresponding arcs, and results of the gluings are equivalent.

Proof. Let φ1 : D1 → D2 and φ3 : D3 → D4 be homeomorphisms as in the definition
of equivalence and let ψ1 : I1 → I3, where I1 ⊂ ∂D3 and I3 ⊂ ∂D3, be the gluing
homeomorphism. Thus f1 = f2 ◦ φ1, f3 = f4 ◦ φ3 and f1(x) = f3(ψ1(x)), x ∈ I1. We
define

(4.1) ψ2 = φ3 ◦ ψ1 ◦ φ−1
1 : φ1(I1)→ φ3(I3),

and verify that
f2 = f4 ◦ ψ2 on ψ1(I1).

So (D2, f2) and (D4, f4) can be glued along the arcs φ1(I1) and φ3(I3).
Now the homeomorphism φ from the gluing of D1 and D2 to the gluing of D3 and D4

is given by the formula

φ(z) =

{
φ1(z) if z ∈ D1,

φ3(z) if z ∈ D2.

One checks using (4.1) that ψ1 and ψ2 match on the arc along which D1 and D2 were
glued; that is, we have

φ3 ◦ ψ1(x) = ψ2 ◦ φ1(x) for x ∈ I1. �

If one glues two simply connected surfaces along a connected arc one obtains a simply
connected surface. If one glues one simply connected surface to itself along two disjoint
arcs, one obtains a doubly connected surface of genus zero which is homeomorphic to
a ring in the plane. Every doubly connected open Riemann surface of genus zero is
conformally equivalent to a round ring {z : r < |z| < R}, where 0 ≤ r < R ≤ +∞.

4.2. Cell decompositions. A cell decomposition of a bordered surface D is a represen-
tation of D as a locally finite union of disjoint cells of dimensions 0 (vertices), 1 (edges)
and 2 (faces), so that the boundary of each cell is a union of cells of smaller dimension.
Here a vertex is a point. An edge is homeomorphic to an open interval and its closure
is homeomorphic to a closed interval. A face is homeomorphic to an open disk and its
closure is homeomorphic to a closed disk or closed half-plane.

The edges and vertices of a cell decomposition can be of two types: those which belong
to ∂D we call boundary edges (vertices), and those which belong to the interior of D we
call inner edges (vertices).

Two cell decompositions are combinatorially equivalent if there is a bijection p of the
set of cells of one of them onto the set of cells of the other, respecting the cell dimensions,
and such that p(∂c) = ∂p(c) for every cell c. This is equivalent to the existence of a
homeomorphism of the ambient surfaces which maps each cell homeomorphically. We
call such pairs of cell decompositions simply equivalent.
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4.3. Labeled cell decompositions. Let us consider a cell decomposition C of C, with
two vertices which we denote × and ◦. Suppose that there are q ∈ N edges, with q ≥ 2,
each edge connecting × to ◦, and q faces. All faces are digons. Suppose that a finite set
A containing one point in the interior of each face is given. Let (D, f) be an element
and let L be a cell decomposition of D such that f maps every cell of L into a cell of C
of the same dimension, with the following properties:

(a) The restriction of f onto the closure of each edge of L is a homeomorphism onto
the closure of an edge of C,

(b) For each face c of L, the restriction of f onto c\{f−1(a)} is a covering of f(c)\{a},
where {a} = A ∩ f(c).

It follows from (b) that each interior edge of L belongs to the boundaries of two distinct
faces. A boundary edge evidently belongs to the boundary of one face.

We label each vertex of L by × or ◦, according to its image, and we label each face of
L by the element of A which is contained in its image cell. This set of labels defines the
image under f of each cell of L. Indeed, a boundary edge can be labeled by the label
of the unique face to which it belongs, and an inner edge can be labeled by the pair
of labels of two faces to whose boundaries it belongs. Since every two faces of C have
at most one common boundary edge, the image of each edge of L is determined by the
labels of faces and vertices.

Proposition 4.2. Let C and A be as above, and (D1, f1), (D2, f2) be two elements
with labeled cell decompositions L1, L2 of D1, D2 satisfying conditions (a) and (b). If
L1 is combinatorially equivalent to L2, where the equivalence respects the labels, then
(D1, f1) ∼ (D2, f2).

Proof. We have to define a homeomorphism φ : D1 → D2 such that f1 = f2 ◦ φ. Let
c 7→ c′ be the bijection between cells of L1 and L2. Since this bijection preserves labels,
for each cell c of L1, we have f1(c) = f2(c′). This defines a unique homeomorphism φ of
the 1-skeleton of L1 onto the 1-skeleton of L2 such that f1 = f2 ◦ φ on the 1-skeleton. It
remains to extend φ into faces. Let c and c′ be closures of some corresponding faces of
L1 and L2. Let a ∈ A be the label of c. Let z0 ∈ ∂c, and w0 = φ(z0) ∈ ∂c′. Let z ∈ c,
and choose an open arc γ in c from z0 to z such that a 6∈ f1(γ). There is a unique lift γ2

of this curve by f2 starting at w0. The endpoint w of γ2 determines φ(z). It is evident
that thus defined φ is the required homeomorphism. �

4.4. Representation of Speiser class functions by line complexes and trees.
The definition of the Speiser class S given in Remark 1.5 extends to topologically holo-
morphic maps. So we say that a topologically holomorphic map f : C → C belongs to
class S if there is a finite set A such that

f : C \ f−1(A)→ C \ A

is a covering. For a linear-fractional transformation, this holds with A = f(∞), and to
avoid trivialities, we assume that f has at least two singular values (critical or asymptotic
values), so the set A contains at least two points. For such an f ∈ S, consider a cell
decomposition C of C and a finite set A of its singular values. Let Lf = f−1(C) be the



DIFFERENTIAL EQUATIONS WITH SOLUTIONS HAVING ONLY REAL ZEROS 19

preimage of C. Then Lf is a labeled cell decomposition of C satisfying the conditions
stated in § 4.3.

This labeled cell decomposition Lf is called the line complex of f corresponding to C.
It has the following properties:

(a) Its 1-skeleton is a bipartite graph embedded in the plane.
(b) The cyclic order of face labels around each ×-vertex is the same: it coincides

with the cyclic order of face labels around the ×-vertex of C. The cyclic order
of face labels around an ◦-vertex is opposite.

For fixed A and C, any cell decomposition of C with these two properties arises from
some topologically holomorphic map of class S.

It follows from Proposition 4.2 that any two functions f and g of class S with the
same labeled cell decomposition Lf = Lg (and same A and C) are equivalent: f = g ◦φ,
where φ : C→ C is a homeomorphism.

For a local homeomorphism we can choose A to be the set of asymptotic values. When
f is a local homeomorphism, all faces of Lf are either digons or∞-gons. The restriction
of f on each digon is a homeomorphism, while the restriction of f on an ∞-gon is a
universal covering of a face of C minus the element of A which it contains.

For a local homeomorphism f , one can describe the cell decomposition Lf by a simpler
object. If for some pair of vertices there is more than one edge connecting them, replace
all these edges by a single edge. So digons disappear. We preserve the labels of the
remaining faces and the labels of vertices. The resulting cell decomposition T = Tf has
the following properties:

(i) Its 1-skeleton T is a bipartite graph embedded in C.
(ii) The cyclic order of face labels around each ×-vertex (◦-vertex) is consistent with

(a restriction of) the cyclic order of face labels around the ×-vertex (◦-vertex)
of C.

Given any connected bipartite graph embedded in C with labeled complementary
components satisfying (ii), one can recover the whole line complex L in a unique way
(up to equivalence).

In the case that f is a local homeomorphism, Tf is a tree. So equivalence classes of
local homeomorphisms f of class S are encoded by trees embedded in C with labeled
vertices and complementary components satisfying (ii).

4.5. Symmetric local homeomorphisms. We recall that a local homeomorphism
f : C → C is called symmetric if f(z) = f(z) for all z ∈ C. In this case, the set
of asymptotic values is symmetric, that is, we have A = A. A cell decomposition is
called symmetric if the complex conjugation z 7→ z maps each cell onto a cell of the
same dimension with complex conjugate label. If f and the cell decomposition C are
symmetric, then the line complex Lf and the tree Tf are symmetric. Conversely, to each
symmetric C and L (or T ) corresponds a symmetric local homeomorphism f .

The complex conjugation acts on the faces of a symmetric cell decomposition. So each
face of a symmetric cell decomposition is either symmetric or disjoint from the real line.

Unfortunately, for a symmetric set A, a symmetric cell decomposition C may not
exist. (It exists if and only if A contains at most 2 real points.) There are several
methods of dealing with this difficulty in the study of symmetric functions of class S;
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see, for example, [21, 19]. In this paper we will use a somewhat different approach, by
using symmetric sub-decompositions of a generally non-symmetric C.

4.6. Quasiconformal mappings. While the first part of the proof of Theorem 1.3
given in section 7 will only deal with topologically holomorphic mappings, the second
part given in section 8 will also use quasiregular and quasiconformal mappings. For the
definition and general properties of quasiconformal mappings we refer to [3, 39]. We
note that quasiregular mappings are called quasiconformal functions in [39].

For a region D and a quasiregular map f : D → C we use the notation

µf (z) =
fz(z)

fz(z)
, Kf (z) =

1 + |µf (z)|
1− |µf (z)|

and K(f) = sup
z∈D
|Kf (z)|.

The following result is a consequence of the existence theorem for a quasiconformal
mappings with prescribed dilatation [39, § V.1].

Lemma 4.3. Let f : C → C be quasiregular. Then there exists a quasiconformal map
φ : C→ C such that f ◦ φ is meromorphic.

The next result is known as the Teichmüller-Wittich-Belinskii theorem [39, § V.6].

Lemma 4.4. Let U and V be neighborhoods of∞ and let φ : U → V be a quasiconformal
map with φ(∞) =∞. Suppose that

(4.2)

∫
U

Kφ(z)− 1

x2 + y2
dx dy <∞.

Then there exists c ∈ C∗ such that

(4.3) φ(z) ∼ cz as z →∞.

The logarithmic area of a measurable subset A of C is defined by

logareaA =

∫
A

dx dy

|z|2
.

Let φ : U → V be as in Lemma 4.4. Then∫
U

Kφ(z)− 1

x2 + y2
dx dy ≤ (K(φ)− 1) logarea(supp(µf )).

We conclude that if

logarea(supp(µf )) <∞,
then (4.2) and hence (4.3) hold.

The next lemma is easily proved by direct computation.

Lemma 4.5. Let A ⊂ C be measurable and α > 0. Suppose that some branch of z 7→ zα

is injective on A and let Aα be the image of A under this branch. Then

logarea(Aα) = α2 logarea(A).

In particular, logarea(Aα) is finite if and only if logarea(A) is finite.
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5. Construction of examples, and outline of the proof of Theorem 1.3

In this section, we will prove statement (v) of Theorem 1.3. Note that we only need to
construct examples of local homeomorphisms satisfying the assumptions of the theorem
with any m as described in (i) − (iii). In order to conclude that all values of m do
actually occur for meromorphic functions, we will need the first part of the theorem
which says that there is a homeomorphism φ such that F0 = F ◦ φ is a meromorphic
function. This part will be proved later.

5.1. Examples without zeros or with one zero. For case (i) in Theorem 1.3, func-
tions with the required properties are easily given. Given m ∈ N,

Fm(z) = exp

(∫ z

0

eζ
m

dζ

)
is a real local homeomorphism with m singularities over C∗ which has no zeros or poles
while

(5.1) Gm(z) = z exp

(∫ z

0

e−t
m − 1

t
dt

)
= exp

(∫ 1

0

e−t
m − 1

t
dt+

∫ z

1

e−t
m

t
dt

)

is a real local homeomorphism with m singularities over C∗ and one zero at the origin.
The inverses of the functions Fm and Gm, as well as those of all other functions we
construct in this section, clearly have infinitely many singularities over 0 and ∞.

5.2. Infinite one-sided sequence of zeros and poles. The required function with
m ≥ 2 is constructed by gluing two elements. Our first element is (D1, f1) where
D1 = {z : Re z > 0} is the right half-plane and f1(z) = tan z.

The second element is very closely related to the function Gk introduced in (5.1) with
k = 2(m− 1). For m ≥ 2 we put

c2(m−1) = lim
x→∞

G2(m−1)(x) = exp

(∫ 1

0

e−t
2(m−1) − 1

t
dt+

∫ ∞
1

e−t
2(m−1)

t
dt

)

and define

(5.2) f2(z) =
i

c2(m−1)

G2(m−1)(−iz).

Our second element is (D2, f2) where D2 = {z : Re z < 0} is the left half-plane.
Both f1 and f2 map the imaginary axis homeomorphically onto the interval (i,−i),

with the same orientation. Viewed as the boundary of D1 and D2, the imaginary axis has
opposite orientations. Thus (D1, f1) and (D2, f2) can be glued. The resulting function
f is locally univalent and has m singularities over C∗. Moreover, the gluing can be done
symmetrically so that the resulting function f is also symmetric, with all zeros and poles
on the positive axis.
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5.3. Finitely many zeros and poles. As in § 5.2, we consider the function f1(z) =
tan z, define f2 by (5.2) and put D2 = {z : Re z < 0}. However, this time we put
D1 = {z : 0 < Re z < nπ}, with n ∈ N. Finally, we put D3 = {z : Re z > nπ},
f3(z) = f2(z − nπ). Then we can glue (D2, f2) and (D1, f1) along the imaginary axis
and (D3, f3) and (D1, f1) along the line {z : Re z = nπ}.

The resulting function has f has n poles and n + 1 zeros. Of course, 1/f has n + 1
poles and n zeros.

In order to construct an example with the same number n of zeros and poles, one
takes D1 = {z : 0 < Re z < (n − 1/2)π} and glues 1/f2 to it along the line {z : Re z =
(n− 1/2)π}.

The number of singularities over C∗ in such examples is even. To obtain an odd
number greater than 1, we can use functions f1 and f3 with different values of m. It
seems that there are no examples with m = 1 and a finite number larger than 1 of zeros
and poles.

5.4. Infinite two-sided sequence of zeros and poles. These examples use the line
complex and the associated tree, as described in section 4. We will have four asymptotic
values in C∗, say {i,−i, 2i,−2i}.

We consider a symmetric cell decomposition C of C with two vertices × and ◦ on the
real line, such that each face contains exactly one asymptotic value. Then we consider
the tree T embedded in C as shown in Figure 1 for m = 4. This tree satisfies all
conditions stated in § 4.4, for the cell decomposition shown in Figure 2, so it defines a
local homeomorphism F . Observe that every non-real vertex is adjacent to logarithmic
tracts both over 0 and over ∞, which implies that all of the zeros and poles of F are
real; hence F satisfies the hypotheses of Theorem 1.3 (iii), for m = 4.

We may insert additional logarithmic tracts by splitting the tree at any vertex that
is adjacent only to a face labeled 0 and a face labeled ∞ (and symmetrically, at its
complex conjugate), inserting additional branches to ensure that every non-real vertex
is again adjacent to a face labeled 0 and a face labeled ∞. See Figure 3. Repeating this
procedure, we obtain local homeomorphisms with the desired properties for every even
m ≥ 4, as claimed.

5.5. Outline of the proof of Theorem 1.3. We will show that all functions F satisfy-
ing the conditions of Theorem 1.3 are similar to these examples. To do this, we draw m
disjoint asymptotic curves γj corresponding to all distinct singularities of F−1 over C∗.
These curves will split the plane into m disjoint sector-like regions G0, . . . , Gm−1 plus a
compact set. Assuming that F has infinitely many positive zeros and poles, we enumer-
ate them so that the positive zeros and poles are contained in G0 and that the whole
partition of the plane into G0, . . . , Gm−1 is symmetric. So when there are infinitely many
negative zeros and poles, they will lie in Gm/2.

Then we will show that the restrictions of our function F onto Gj are of two special
types described in the next section. One type which we call Ta is symmetric, has
infinitely many zeros and poles, but 0 and∞ are not asymptotic values for this element.
This element is similar to the element (D1, f1) considered in § 5.2. The second type Bd1,d2

has no zeros and poles, but infinitely many singularities over 0 and ∞. It is similar to
the element (D2, f2) of § 5.2, with m = 2.



DIFFERENTIAL EQUATIONS WITH SOLUTIONS HAVING ONLY REAL ZEROS 23

2ii

−i −2i

0

0
0

∞
∞

∞

0

0
0

∞
∞

∞

Figure 1. The tree T for m = 4.

In the next section we construct explicit quasiregular representatives of these classes
of elements, and show that their quasiconformal dilatation is supported on a small set
(of finite logarithmic area). This will allow us to paste them together to reconstruct our
function F . All asymptotic properties will follow from the Teichmüller–Wittich–Belinskii
theorem (Lemma 4.4).

6. Elements of special type

As explained in § 5.5, we will divide the plane into certain regions Gj such that the
restriction of F toGj is equivalent to one of two special types of elements. These elements
(D, f) have the following properties: The domain D is bounded by a curve γ : R → C
such that |γ(t)| → ∞ as t→ ±∞. Here γ is oriented in the positive direction so that D
is on the left of γ. The function f is such f(γ(t)) tends radially to certain asymptotic
values as t → ±∞. This means that there exist t± ∈ R, a± ∈ C∗, θ± ∈ (−π, π] and
ε > 0 such that

(∗) f maps [t+,∞) homeomorphically onto (a+, a+ +eiθ+ε] and (−∞, t−] homeomor-
phically onto (a−, a− + eiθ−ε].

We will only need the cases where θ ∈ {0,±π/2, π} so that f approaches the asymptotic
value parallel to the real or imaginary axis.
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0

i

2i

−i

−2i

Figure 2. The cell decomposition for the trees in Figures 1 and 3.

We call the pairs d± := (a±, θ±) oriented asymptotic values. If there exist t± ∈ R
and ε > 0 such that (∗) holds, then we say that the element (D, f) has the oriented
asymptotic values d± at ±∞. We shall assume that if a+ = a−, then θ+ = θ−, since this
suffices for our purposes.

One element will essentially be the restriction of the tangent function to the right
half-plane H := {z : Re z > 0}. The boundary curve γH is then given by γH(t) = −it.
Then (∗) holds with a± = ∓i and θ± = ±π/2. Thus (H, tan) has the oriented asymptotic
values (∓i,±π/2) at ±∞. For technical reasons, we will, however, later introduce some
modification of the element (H, tan). Essentially, we will show that if F has infinitely
many zeros and poles in Gj, then (Gj, F ) is equivalent to this (modified) element.

But before doing so we will deal with the domains Gj where F has no zeros and poles.

6.1. Elements without zeros and poles. The domains where F maps to C∗ are
covered by the following definition.

Definition 6.1. Let D be an unbounded simply-connected domain bounded by a curve
γ : R→ C, with γ(t)→ ±∞ as t→ ±∞, and let F : D → C∗ be a local homeomorphism.
Suppose that if c ∈ C∗, then there exists δ > 0 such that F−1(D(c, δ)) has no unbounded
connected component whose closure is in D.

Let d± = (a±, θ±), where a± ∈ C∗ and θ± ∈ (−π, π], with θ+ = θ− if a+ = a−.
If (D,F ) has the oriented asymptotic values d± at ±∞, then (D,F ) is called of type
Bd+,d− .
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2ii

i

∞0

Figure 3. The tree for m = 6. (Since the tree is symmetric, only its upper part is
shown. Unlabeled faces are asymptotic tracts over 0 or ∞.)

We will show that these elements can be represented in a particular form, similar to
the ones considered in § 5.1. We begin with the case where a± > 0 and θ± = 0. Here
and in the following we put H+ = {z : Im z > 0}.

Proposition 6.2. Let a± > 0 and put d± = (a±, 0). Let (D,F ) be of type Bd+,d−. Then
there exist compact sets K and K0, a symmetric rational function R0 with at most one
pole and ξ, c0 ∈ R such that with

(6.1) F0(z) = exp

(∫ z

ξ

R0(t)e−t
2

dt+ c0

)
we have (D \K,F ) ∼ (H+ \K0, F0).

To prove Proposition 6.2, we will use the following lemma. We omit its proof, but
note that it can easily be deduced from a result of Morse and Heins [44, Theorem 20.4].

Lemma 6.3. Let 0 < t < T and let f : {z : |z| > t} → C be a topologically holomorphic
map. Then there exists a topologically holomorphic map F : C → C such that F (z) =
f(z) for |z| > T .
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The map F can be chosen to have at most one pole, which is located at 0. Moreover,
if f is symmetric, then F can be chosen to be symmetric.

The following result is due to Lindelöf [22, Chapter 5, Lemma 1.2].

Lemma 6.4. Let f : {z : Re z ≥ 0} → C be continuous and bounded. Suppose that f
is holomorphic in {z : Re z > 0} and that there exist a± ∈ C such that f(it) → a± as
t→ ±∞. Then a := a+ = a− and f(z)→ a as |z| → ∞.

We will also use the following result.

Lemma 6.5. Let f be a meromorphic function with only finitely many zeros and poles.
Suppose that there exists N ∈ N such that for each R > 0 the set {z : |f(z)| > R} has at
most N unbounded components. Then f has the form

(6.2) f(z) = Q(z)eP (z),

where Q is rational and where P is a polynomial of degree at most N .

Proof. It is clear that f has the form (6.2) with a rational function Q and an entire
function P . We have to prove that P is a polynomial of degree at most N .

Let

u(z) = log |f(z)| = ReP (z) + log |Q(z)|.
If K is sufficiently large, then the unbounded components of the sets

A = {z : u(z) > K} and B = {z : u(z) < −K}

do not contain zeros and poles of f . By [55, 41] each unbounded component of A
contains a path γ such that u(z)/ log |z| → ∞ as z →∞, z ∈ γ, while each unbounded
component of B contains a path γ such that u(z)/ log |z| → −∞ as z →∞, z ∈ γ.

Thus the “tail” of such a curve γ is contained in a component of

A′ = {z : ReP (z) > 0} or B′ = {z : ReP (z) < 0},

respectively. (Note that the components of A′ and B′ are always unbounded.) Con-
versely, the components of A′ and B′ contain curves whose tails are contained in un-
bounded components of A and B, respectively.

It follows from Lindelöf’s Lemma 6.4 that “between” two unbounded components of
A there is a component of B, and vice versa. This also holds with A and B replaced
by A′ and B′. Overall we see that there is a one-to-one correspondence between the
unbounded components of A and the components of A′.

By hypothesis, A and hence A′ have at most N components. Let now w ∈ C with
Rew > 0 such that w is not a critical value of P and let z1, z2 ∈ C be such that
P (z1) = P (z2) = w. We will show that if z1 6= z2, then z1 and z2 are contained in
different components of A. Thus w has at most N preimages. Since this holds for every
such w with Rew > 0 which is not a critical value of P , the conclusion follows.

Thus suppose that z1 6= z2 and let ϕ1 and ϕ2 be branches of P−1 such that ϕ1(w) = z1

and ϕ2(w) = z2. By the Gross star theorem [46, p. 292] there exists t ∈ (−π/2, π/2)
such that both ϕ1 and ϕ2 can be continued analytically along the ray {w+ reit : r ≥ 0}.
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For j = 1, 2, let γj be the image of this ray under ϕj. Then γj is a curve connecting zj
with ∞.

Suppose that now that z1 and z2 are in the same component U of A. We connect z1

and z2 by a simple curve γ0 in U which intersects γ1 and γ2 only in z1 and z2. Then
the curves γ0, γ1 and γ2 bound a subdomain V of U . Its image P (V ) is an unbounded
domain whose boundary is contained in the union of the ray {w+reit : r ≥ 0} with P (γ0).
This implies that P (V ) contains points with negative real part. This is a contradiction
since V ⊂ U and U is a component of A. �

Proof of Proposition 6.2. Without loss of generality we may assume that F is holomor-
phic, D = H+ and γ(t) = t. Since (D,F ) has the oriented asymptotic values (a±, 0)
at ±∞, there exists a compact interval I such that, by reflection, F extends to a map
holomorphic in C \ I. By Lemma 6.3 there exist R > 0 and a symmetric, topologically
holomorphic map F1 : C → C with no poles in C∗ such that F1(z) = F (z) for |z| > R.
Next, there exists a homeomorphism φ1 : C→ C such that F0 = F1 ◦ φ1 is meromorphic
in C. Here φ1 can be chosen to be symmetric so that F0 is also symmetric and has no
poles in C∗.

The function F0 has only finitely many zeros and no poles in C∗. Thus there exist a
symmetric rational function Q and a symmetric entire function g such that

F0(z) = Q(z)eg(z).

Moreover, F0 has only finitely many critical points. Thus

L(z) :=
F ′0(z)

F0(z)
= g′(z) +

Q′(z)

Q(z)

has only finitely many zeros. Hence there exist a symmetric rational function R0 with
no poles in C∗ and a symmetric entire function h such that

(6.3) L(z) = R0(z)eh(z).

Note that F0 has the form

(6.4) F0(z) = exp

(∫ z

1

L(t) dt+ c0

)
for some c0 ∈ R. The conclusion thus follows if we can show that h in (6.3) is a quadratic
polynomial, since once this is known, we can achieve by an affine change of variable that
h(z) = −z2. This will change the lower limit in the integral in (6.4) from 1 to some
ξ ∈ R.

For K > 0, consider a component U of

(6.5) {z : |L(z)| < e−K} = {z : Reh(z) + log |R0(z)| < −K}

which does not contain any zeros of L. Huber’s [30] Lemma 3.4 yields that U contains
a curve Γ tending to ∞ such that∫

Γ

|L(z)| · | dz| <∞.
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Hence there exists α ∈ C such that if z is a point on Γ and if Γz denotes the part of Γ
which connects the starting point of Γ with z, then∫

Γz

L(t) dt =

∫
Γz

F ′0(t)

F0(t)
dt→ α as z →∞, z ∈ Γ.

Hence there exists β ∈ C∗ such that F0(z)→∞, z ∈ Γ.
By hypothesis, the inverse of F and hence that of F0 have no singularities over values

in C∗ except for the two asymptotic values a±, for which the positive and negative real
axis are asymptotic paths.

This implies (cf. Proposition 3.2) that the set considered in (6.5) has at most two
components which do not contain a zero of L. Lemma 6.5 implies that h is a polynomial
of degree at most 2. In fact, since the positive and negative axis are asymptotic paths,
the degree of h is exactly 2. �

Proposition 6.2 required that a± > 0 and θ± = 0. We will now lift this restriction.
In our applications, it will be convenient to work with the slit plane Ω0 := C \ [0,∞)
instead of the upper half-plane H+. Note that z 7→ z2 maps H+ onto Ω0. The boundary
of Ω0 is parametrized by the curve γΩ : R→ ∂Ω which is given by γΩ(t) = −t for t < 0
and γΩ(t) = t for t ≥ 0. So we consider the bordered surface Ω whose interior is Ω0 and
the border ∂Ω is the curve γΩ. We put ∆ = {z : |z| ≥ 1}.
Proposition 6.6. Let (D,F ) be of type Bd+,d−. Then there exist compact sets K and K ′,
a local homeomorphism B : Ω \K ′ → C and t0 > 0 such that (Ω \K ′, B) ∼ (D \K,F )
and

(6.6) B(γΩ(t))− a± = eiθ± exp(−|t|) for |t| ≥ t0.

The map B is quasiregular with

(6.7) logarea
(
supp(µB) ∩∆

)
<∞

and there exists c ∈ C∗ and d ∈ R with 2d ∈ Z such that, as z →∞,

(6.8) B(z)− a± ∼ czd exp(−z)

in any closed subsector of the first or fourth quadrant, respectively, while

(6.9) logB(z) ∼ czd exp(−z)

in any closed subsector of the left half-plane.

Proof. As already mentioned, we will reduce this result to Proposition 6.2. Since this
proposition is phrased for functions defined in the half-plane H+, we will first prove a
“half-plane version” of our conclusion. We will show that there exist compact sets K
and K1, a local homeomorphism F1 : H+\K1 → C and x0 > 0 such that (H+\K1, F1) ∼
(D \K,F ) and

(6.10) F1(x)− a± = eiθ± exp(−x2) for ± x ≥ x0.

Here F1 is quasiregular with

(6.11) logarea
(
supp(µF1) ∩∆

)
<∞.

Moreover, there exists c ∈ C∗ and d ∈ Z such that if δ > 0, then, as z →∞,

(6.12) F1(z)− a± ∼ czd exp(−z2)
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for δ ≤ arg z ≤ π/4− δ and 3π/4 + δ ≤ arg z ≤ π − δ, respectively, while

(6.13) logF1(z) ∼ czd exp(−z2)

for π/4 + δ ≤ arg z ≤ 3π/4 − δ. Defining B by B(z2) = F1(z) we then see that B has
the properties stated.

In order to construct the function F1 we note that if a+ 6= a−, then there exist ε > 0
and a quasiconformal map ψ : C→ C such that

ψ(z) =

{
z if |z| ≤ ε or |z| ≥ 1/ε,

a± + 2∓1eiθ±
(
z − 2±1

)
if
∣∣z − 2±1

∣∣ ≤ ε.

If a+ = a− := a and thus θ+ = θ− =: θ, then we choose ψ such that

ψ(z) =

{
z if |z| ≤ ε or |z| ≥ 1/ε,

a+ eiθ (z − 1) if |z − 1| ≤ ε.

In the first case (D,ψ−1 ◦ F ) has the oriented asymptotic values (2±1, 0) at ±∞, in the
second case (D,ψ−1 ◦ F ) has the oriented asymptotic value (1, 0) at ±∞.

In both cases, Proposition 6.2 is applicable to (D,ψ−1 ◦ F ) and we conclude that
there exists a function F0 as given in (6.1) and compact sets K and K0 such that
(D \K,ψ−1 ◦ F ) ∼ (H+ \K0, F0). This means that (D \K,F ) ∼ (H+ \K0, ψ ◦ F0).

In order to prove (6.10) and (6.11), we restrict to the case a+ 6= a−. The other case
is analogous. Then F0 has the oriented asymptotic value (2, 0) at +∞ and thus

exp

(∫ ∞
ξ

R0(t)e−t
2

dt+ c0

)
= 2.

For large x, say x ≥ x0, we then have

ψ(F0(x)) = a+ +
1

2
eiθ+(F0(x)− 2) = a+ + eiθ+

(
exp

(
−
∫ ∞
x

R0(t)e−t
2

dt

)
− 1

)
.

Similarly,

ψ(F0(x)) = a− + eiθ−

exp

(
−
∫ x

−∞
R0(t)e−t

2

dt

)
− 1


for negative x of large modulus, and we may choose x0 such that this holds for x ≤ −x0.
Note that since F and ψ ◦ F0 have the oriented asymptotic values (a±, θ±), this implies
that R0(x) < 0 if |x| is large. We may assume that this holds for |x| ≥ x0.

We put

u(x) =

exp
(
−
∫∞
x
R0(t)e−t

2
dt
)
− 1 if x ≥ x0,

exp
(
−
∫ x
−∞R0(t)e−t

2
dt
)
− 1 if x ≤ −x0,
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so that

(6.14) ψ(F0(x)) = a± + eiθ±u(x) if ± x ≥ x0.

We have u(x) > 0 and can thus define h : (−∞,−x0] ∪ [x0,∞)→ R by

(6.15) exp(−h(x)2) = u(x),

with h(x) > 0 for x ≥ x0 and h(x) < 0 if x ≤ −x0. It is easy to see that for x ≥ x0 we
have

u(x) ∼ −
∫ ∞
x

R0(t)e−t
2

dt ∼ −R0(x)

2x
e−x

2

as x→ +∞.

Similarly

u(x) ∼ R0(x)

2x
e−x

2

as x→ −∞.

It follows that

h(x)2 = x2 − log

∣∣∣∣R0(x)

2x

∣∣∣∣+ o(1)

and hence

(6.16) h(x) = x+ o(1) as x→ ±∞.
Moreover, a computation shows that

(6.17) h′(x)→ 1 as x→ ±∞.
Increasing the value of x0 if necessary, we can extend h to a diffeomorphism of R. We
now define τ : H+ → H+,

τ(x+ iy) =

{
x+ iy + (1− y)(h(x)− x) if 0 < y ≤ 1,

x+ iy if y > 1.

For 0 < y < 1 we have

(6.18) µτ (z) =
(1− y)(h′(x)− 1)− i(h(x)− x)

2 + (1− y)(h′(x)− 1) + i(h(x)− x)
.

Using (6.16) and (6.17) we see that τ is quasiconformal.
We now put F1 = ψ ◦ F0 ◦ τ−1. Since τ(x) = h(x) for x ∈ R we deduce from (6.14)

and (6.15) that

F1(x)− a± = ψ(F0(τ−1(x)))− a± = eiθ±u(τ−1(x))

= eiθ± exp(−h(τ−1(x))2) = eiθ± exp(−x2)

for ±x ≥ x0. Thus we have (6.10).
To prove (6.11) let

M =

{
z : ε ≤ |z| ≤ 1

ε
,
∣∣z − 2±1

∣∣ ≥ ε

}
.
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Recall here that F0 has logarithmic singularities over 2±1, as well as over 0 and∞. Thus
M is disjoint of the set of singular values. To prove (6.11) it suffices to prove that

(6.19) logarea(F−1
0 (M) ∩∆) <∞.

In the terminology of [16, Definition 1.5] we thus have to show that F0 has the area
property.

Put

g(z) =

∫ z

ξ

R0(t)e−t
2

dt+ c0

so that F0 = exp g. Let T1 = {x + iy : 0 ≤ y ≤ x − 1}, T2 = {x + iy : y ≥ |x| + 1} and
T3 = {x+ iy : 0 ≤ y ≤ −x− 1}. We will show that

(6.20) logarea(F−1
0 (M) ∩ Tj) <∞

for 1 ≤ j ≤ 3. This easily yields (6.19).
Since F0(x)→ 2 as x→∞ we find that g(x)→ log 2 as x→∞. Similarly as before

we find that there exists r0 such that

g(z)− log 2 = −
∫ ∞
z

R0(t)e−t
2

dt for 0 ≤ arg z ≤ π

4
, |z| ≥ r0.

Here the path of integration connects z with the positive axis, and then runs through
∞ through it. To be definite, let the path of integration be the segments [z, 2|z|] and
[2|z|,∞). Integration by parts (cf. [27, Lemma 4.1]) shows that

(6.21) g(z)− log 2 ∼ R0(z)

2z
e−z

2

as z →∞, z ∈ T1.

For z = x+ iy ∈ T1 we have Re(z2) = x2−y2 ≥ 2x+1 ≥ x and hence | exp(−z2)| ≤ e−x.
It follows that g(z) → log 2 as z → ∞, uniformly for z ∈ T1. Hence F0(z) → 2 as
z → ∞, uniformly for z ∈ T1. Thus F−1

0 (M) ∩ T1 is bounded so that (6.20) holds for
j = 1. An analogous argument shows that (6.20) holds for j = 3.

To show that (6.20) also holds for j = 2, we note that z 7→ p(z) := i
√
z maps

the right half-plane H conformally onto {z : π/4 < arg z < 3π/4}. Put g0 = g ◦ p
and G0 = F0 ◦ p = exp g0. In view of Lemma 4.5 it thus suffices to show that with
T ′2 = p−1(T2) we have

(6.22) logarea
(
G−1

0 (M) ∩ T ′2
)
<∞.

With K = log(1/ε) we have

G−1
0 (M) ⊂ AK := {z : |Re g0(z)| < K}.

Thus (6.22) will follow if we show that

(6.23) logarea
(
AK ∩ T ′2

)
<∞.

Integration by parts yields that

(6.24) g(z) ∼ −R0(z)

2z
e−z

2

as z →∞, z ∈ T2.
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Thus there exists α ∈ C∗ and β ∈ R such that

g0(z) ∼ −R0(i
√
z)

2i
√
z

ez ∼ αzβez as z →∞, z ∈ T ′2.

For z ∈ T ′2 of sufficiently large modulus we may thus write g0(z) = expϕ0(z) with a map
ϕ0 satisfying

ϕ0(z) = z + β log z + logα + o(1) as z →∞, z ∈ T ′2.
With T ′′2 = {z ∈ T ′2 : dist(z, ∂T ′2) ≥ 1} this yields that

ϕ′0(z)→ 1 as z →∞, z ∈ T ′′2 .
Hence for C ⊂ T ′′2 we have logareaϕ0(C) < ∞ if and only if logareaC < ∞. To
prove (6.23) it thus suffices to show that

C = {z : Re z > 1, |Re(ez)| ≤ K}
has finite logarithmic area. In order to do so we put, for k ∈ Z,

Sk = {x+ iy : x ≥ 1, kπ ≤ y ≤ (k + 1)π}.
For z = x+ iy ∈ Sk we have z ∈ C if | cos y| = | sin(y − (k + 1/2)π)| ≤ e−x. Hence

Sk ∩ C ⊂ S ′k :=

x+ iy :

∣∣∣∣∣y −
(
k +

1

2

)
π

∣∣∣∣∣ ≤ e−x

 .

For k ≥ 1 and z = x+ iy ∈ S ′k we have x2 + y2 ≥ y2 ≥ k2. Thus

logarea(S ′k) =

∫
S′k

dx dy

x2 + y2
≤ 1

k2

∫ ∞
1

∫ π/2+πk+e−x

π/2+πk−e−x

dy dx =
2

k2

∫ ∞
1

e−x dx =
2

ek2
.

The same argument yields that if k ≤ −2, then logarea(S ′k) ≤ 2/(e(k+ 1)2). Overall we
obtain

logareaC ≤
∞∑

k=−∞

logarea(S ′k) ≤
4

e

∞∑
k=1

1

k2
+ logarea{x+ iy : x ≥ 1, |y| ≤ π} <∞.

This completes the proof of (6.23) and hence (6.22), finishing the proof of (6.10).
Finally, it follows from the definition of F1 and (6.21) that

F1(z)− a+ = ψ(F0(z))− a+ =
1

2
eiθ+(F0(z)− 2) = eiθ+(exp(g(z)− log 2)− 1)

∼ eiθ+(g(z)− log 2) ∼ −eiθ+R0(z)

2z
e−z

2

as z →∞, z ∈ T1.

This yields the asymptotics for F1(z) − a+ given in (6.12). Those for F1(z) − a− are
obtained analogously. Finally, (6.13) follows from (6.24) in the same fashion. This
completes the proof of Proposition 6.6. �
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6.2. Elements with infinitely many zeros and poles. We want to glue the element
(Ω \K ′, B) from Proposition 6.6 to (a modification of) the tangent map. Instead of the
tangent we will, for a ∈ C \ R, consider the restriction of

(6.25) va(z) = tan

(
z

2

)
Im a+ Re a

to the right half-plane H. The element (H, va) has the oriented asymptotic values
(a,− sign(Im a)π/2) at −∞ and (a, sign(Im a)π/2) at +∞. This yields that (H, va) can
be glued to (Ω \K ′, B) if

(6.26) d+ = (a,− sign(Im a)π/2) or d− = (a, sign(Im a)π/2).

To make this gluing explicit we modify the map va. Note that

(6.27) va(iy) = a+

(
tan

(
iy

2

)
− i

)
Im a = a− i2 Im a

ey + 1

as well as

va(iy) = a+

(
tan

(
iy

2

)
+ i

)
Im a = a+ i

2 Im a

e−y + 1
.

Our aim is to construct a quasiconformal map φ such that if (6.26) holds, then there
exists t1 ≥ t0 such that

(va ◦ φ)(γH(−t)))− a = va(φ(it))− a = B(γΩ(t))− a+ for t ≥ t1

or

(va ◦ φ)(γH(−t)))− a = va(φ(it))− a = B(γΩ(t))− a− for t ≤ −t1,

respectively.
To construct the map φ, put ya = max{1,− log | Im a|} and define

(6.28) qa : [ya,∞)→ R, qa(y) = log
(
2| Im a|ey − 1

)
.

Then

(6.29) qa(y) = y + log(2| Im a|) + o(1) as y → +∞

and

(6.30) q′a(y) = 1 + o(1) as y → +∞.
Thus there exists a diffeomorphism Qa : R→ R such that

(6.31) Qa(y) =

{
qa(y) if y ≥ ya,

−qa(−y) if y ≤ −ya.

We now define φ = φa : H → H,

(6.32) φa(x+ iy) =

{
x+ iy + i(1− x)(Qa(y)− y) if 0 < x ≤ 1,

x+ iy if x > 1.
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Thus φa(iy) = iQa(y). A computation analogous to (6.18) shows together with (6.29)
and (6.30) that φa is quasiconformal.

We now define Ta : H → C,

(6.33) Ta(z) = va(φa(z)).

Definition 6.7. An element (D,F ) is of type Ta if there exist compact sets K and K ′

such that (D \K,F ) ∼ (H \K ′, Ta).

Of course, if (D,F ) is of type Ta, then also (D\K,F ) ∼ (H\K ′′, va) for some compact
set K ′′.

Lemma 6.8. Let d± = (a±, θ±), (D,F ), B and t0 be as in Proposition 6.6 and let Ta
be defined by (6.33). Let t1 = max{t0, ya}.

(i) If d+ = (a,− sign(Im a)π/2), then

Ta(γH(−t)))− a = B(γΩ(t))− a+ for t ≥ t1.

(ii) If d− = (a, sign(Im a)π/2), then

Ta(γH(−t)))− a = B(γΩ(t))− a− for t ≤ −t1.

Proof. To prove (i) we note that if t ≥ t1, then by (6.33), (6.32), (6.31), (6.27), (6.28)
and (6.6) we have

Ta(γH(−t))− a = Ta(it)− a = (va ◦ φa)(it)− a = va(iQa(t))− a

= va(iqa(t))− a = −i 2 Im a

exp qa(t) + 1
= −i sign(Im a) exp(−t)

= e−i sign(Im a)π/2 exp(−t) = B(γΩ(t))− a+.

The proof of (ii) is analogous. �

Finally we note that because Ta is conformal except in the vertical strip {z : 0 <
Re z < 1}, we have

(6.34) logarea
(
supp(µTa) ∩∆

)
<∞.

7. Beginning of the proof of Theorem 1.3: Cutting into pieces

Let F be a symmetric local homeomorphism of class S with a finite number m of
singularities of F−1 over C∗.

Suppose first that m = 0. Then F : C → C∗ is a covering. This leads easily to the
following result.

Lemma 7.1. Let F : C → C be a local homeomorphism such that the inverse F−1 has
no singularities over points in C∗. Then (C, F ) ∼ (C, exp).

Since the inverse of the exponential function has only one singularity over 0 and ∞,
while our hypothesis says that F−1 has infinitely many singularities over 0 and ∞, we
deduce that the case m = 0 does not occur. Thus m ≥ 1.
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Next we show that F−1 actually has infinitely many singularities over both 0 and ∞.
To do so, we may assume without loss of generality that F−1 has infinitely many sin-
gularities over 0. Lemma 6.4 yields that F is unbounded in the region “between” two
tracts over 0. Since all poles are real, this means that with at most two exceptions the
region between two tracts over 0 must contain a tract over ∞.

To each asymptotic value a ∈ C∗ we associate a semi-open segment `a = (a, a+eiθ(a)ε].
Here ε > 0 is chosen so small that the disks D(a, 2ε) are disjoint and do not contain 0.
The choice of θ(a) ∈ {0,±π/2, π} will be fixed later.

For an asymptotic value a ∈ C∗, there exists at least one unbounded component U
of F−1(D(a, 2ε)). For each such component U , the map F : U → D(a, 2ε) \ {a} is a
universal cover. Hence U contains a component γU of F−1(`a). Clearly γU is curve
tending to ∞ in U . For each component U we fix such a curve γU . So overall there are
m such curves and they are disjoint. If U is symmetric, then we may choose γU as a
subset of R. Then θ(a) ∈ {0, π}. If symmetry interchanges two components, then we
choose the corresponding angles and curves such that θ(a) = −θ(a) and γU = γU .

If F has a two-sided sequence of zeros and poles, then no such curve γU can be
contained in R. Hence the set of these curves splits into complex conjugate pairs. It
follows that the number m must be even in this case.

Since the curves γU tend to ∞, there is a cyclic order on the set of these curves. We
enumerate them counterclockwise. This enumeration is independent of the choice of the
angles θ(a). If there are infinitely many positive zeros and poles, we do it in such a way
that the positive ray is between γm and γ1. Let aj be the asymptotic value along γj. By
symmetry, we have aj = am−j+1 and γj = γm−j+1 for 1 ≤ j ≤ m. We put γ0 = γm and
a0 = am.

0

i

−i

a ∞

Figure 4. The symmetric cell decomposition C0 in the proof of Lemma 7.2.

Lemma 7.2. If F has infinitely many positive zeros and poles, then a1 6= am so that
a1 = am /∈ R and m ≥ 2.

If, in addition, F has infinitely many negative zeros and poles, then m is even, am/2 6=
am/2+1 and am/2 = am/2+1 /∈ R.

Proof. Suppose that a1 = am so that a := a1 = am = a1 ∈ R. Consider a symmetric cell
decomposition C0 of the sphere C with two vertices × = i and ◦ = −i, three edges and
three faces containing 0, ∞ and a, respectively; see Figure 4. We may assume that the
edges do not intersect any of the disks D(aj, 2ε). Thus all these disks are contained in
some face of C0. Let L0 = F−1(C0).

Since F is real and locally univalent, F is either always decreasing or always increasing
between two adjacent poles. This implies that if x0 is the smallest positive pole and if
(xk) denotes the sequence of all poles, zeros and a-points greater than or equal to x0,
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ordered such that x0 < x1 < x2 < . . . , then xk is a pole if k is divisible by 3, and either
xk is a zero if k ≡ 1 (mod 3) and an a-point if k ≡ 2 (mod 3), or vice versa.

Let Xk be the face of L0 containing xk. For 1 ≤ j ≤ m, let Uj be the component
of F−1(D(a, 2ε)) containing γj. Then at most m of the Xk can contain one of the
domains Uj.

For all other k, the map F is a covering from Xk \ {xk} to the corresponding face
of C0, with the point F (xk) ∈ {0, a,∞} deleted. It follows that F maps Xk univalently
to the corresponding face of C0. This implies Xk is a digon for such k. In particular,
Xk is a digon for all sufficiently large k. Let K be such that this holds for all k ≥ K.
Now XK shares an edge with XK+1, and these two edges end at the same vertices. Next,
XK+1 shares an edge with XK+2, and again these two edges end at the same vertices.
We conclude that the edges of XK , XK+1 and XK+2 end all at the same vertices. This
is a contradiction, since only three edges can meet at a vertex.

The conclusion that am/2 6= am/2 + 1 if F has infinitely many negative zeros and poles
follows by considering F (−z) instead of F (z). �

Let θj = θ(aj). Lemma 7.2 says that if F has infinitely many positive zeros and
poles, then Im a1 = − Im am 6= 0. In order to apply Lemma 6.8, we choose θ1 =
− sign(Im a1)π/2 and θm = −θ1. Similarly, if F has infinitely many negative zeros and
poles, then we choose θm/2 = − sign(Im am/2)π/2 and θm/2+1 = −θm/2. If γj is contained
in the real axis, then, as already mentioned, we have θj = 0 or θj = π. For all other j
the choice of θj is irrelevant, but to be definite we choose θj = 0 for these j. We put
dj = (aj, θj).

We connect the endpoints of γj to some point in R by curves σj which are pairwise
disjoint except for their common endpoint in R. Moreover, we assume that σj intersects
γj only in its endpoint, and does not intersect any other γk. Then, for 1 ≤ j ≤ m, there
exists an unbounded domain Gj whose boundary is formed by the curves γj−1, γj, σj−1

and σj.
The proof of Theorem 1.3 is split into two parts: The first part (given in this section)

is a purely topological statement, and the second part (in the next section) deals with
the asymptotic behavior.

The topological statement is the following.

Theorem 7.3. Let F : C → C be a symmetric local homeomorphism such that the
inverse F−1 has a finite, non-zero number m of singularities over points in C∗. Then:

(i′) If F has only finitely many zeros and poles, then (Gj, F ) is of type Bdj ,dj+1
for

all j.
(ii′) If F has infinitely many zeros and poles, all of them positive, then m ≥ 2 and

(G0, F ) is of type Ta1 while (Gj, F ) is of type Bdj ,dj+1
for 1 ≤ j ≤ m− 1.

(iii′) If F has a two-sided sequence of zeros and poles, all of them real, then m is even
and m ≥ 2. Moreover, (G0, F ) is of type Ta1 and (Gm/2, F ) is of type Tam/2+1

while (Gj, F ) is of type Bdj ,dj+1
for all other j.

Proof. Definition 6.1 says that if F has no zeros and poles in Gj, then (Gj, F ) is of type
Bdj ,dj+1

. This already proves (i′) and also shows that in case (ii′) the (Gj, F ) are of
the stated type if j 6= 0 and that in case (iii′) they are of the stated type if j 6= 0 and
j 6= m/2.
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To deal with (G0, F ) in cases (ii′) and (iii′), we consider a symmetric cell decompo-
sition C1 of the sphere with two vertices × and ◦ on the real line, four edges and four
faces containing 0, ∞, a := a1 and a = am, respectively, see the left part of Figure 5.
According to Lemma 7.2, we have a1 6= am, which justifies this construction.

0

a

∞

a

0

a

∞

a

0

F

Figure 5. A cell decomposition for singular values 0, a, a and ∞.

We may assume that if aj is an asymptotic value with aj /∈ {a, a}, then the disk
D(aj, 2ε) is contained in one of the faces labeled 0 and∞. Let L1 = F−1(C1). Then the
restriction of F to an unbounded face of L1 labeled by a or a is a universal cover from
this unbounded face to the corresponding face of C1 punctured at a or a, respectively.

The same argument as in the proof of Lemma 7.2 shows that all sufficiently large
positive poles and zeros of F must belong to digons of L1. Each such digon has both
vertices on the positive ray. Conversely, every sufficiently large positive vertex belongs
to two digons, one labeled 0 and one labeled ∞.

Thus there is a one-sided chain of the form × = ◦ = × = ◦ = × = . . . infinite in
the positive direction, consisting of faces labeled 0 and ∞ alternatively. Consideration
of the cyclic order of face labeling around vertices of these digons containing zeros and
poles shows that immediately above and below this chain we must have ∞-gons labeled
a and a; cf. the right part of Figure 5.

These ∞-gons must contain γ1 and γm, since there are no other asymptotic curves γj
with asymptotic values in C∗ between γm and γ1 in the sense of the counterclockwise
cyclic order at ∞. Let D be the region consisting of these two ∞-gons and the closure
of digons of the chain.

Recall that Ta1 is defined in (6.33) by Ta1 = va1 ◦ φa1 , with va1 given by (6.25) and a
quasiconformal map φa1 . The cell decomposition v−1

a1
(C1) consists of a two-sided infinite

chain of digons the form . . . = × = ◦ = × = ◦ = . . . and two ∞-gons. Removing
the closure of the left part of this infinite chain, we obtain a region D′ with a cell
decomposition combinatorially equivalent to the restriction of the cell decomposition L1

on D. Therefore, the restriction of F to D is equivalent to the restriction of va1 to D′,
that is va1 = F ◦ ψ, where ψ : D′ → D is a homeomorphism. Since F and va1 are
symmetric, ψ can also be chosen to be symmetric. Moreover, since γm = γ1 and since F
maps the curves γ1 and γm onto the segments (a1, a1 + eiθ1ε] = (a, a− sign(Im a)i] and
(am, am + eiθmε] = (a, a+ sign(Im a)i], we see that there exists k ∈ Z such that ψ−1(γ1)
and ψ−1(γm) are contained in the line {z : Re z = kπ}. There is no loss of generality to
assume that they are on the imaginary axis.
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Now we extend the curves γ1 and γm until they hit some vertices on the boundary of
their ∞-gons. This can be done in such a way that ψ−1(γ1) and ψ−1(γm) are contained
in the right half-plane. These extended curves cut from D a region D0 which contains a
positive ray. The restriction of F on D0 is equivalent to the restriction of va1 onto the
region ψ−1(D0), and hence the restriction of Ta1 onto φ−1(ψ−1(D0)). This yields that
(G0, F ) is of type Ta1 . This completes the proof of (ii′) and also handles the case of
(G0, F ) in case (iii′).

To complete the proof in case (iii′) we only have to note that considering F (−z)
instead of F (z) corresponds to interchanging G0 and Gm/2 as well as a1 and am/2+1. �

8. Completion of the proof of Theorem 1.3: Gluing pieces together

Let (i′) − (iii′) be the cases considered in Theorem 7.3. Of course, these correspond
to the cases (i)− (iii) of Theorem 1.3. We divide the plane into m sectors S0, . . . , Sm−1,
enumerated counterclockwise and such that S0 is bisected by the positive real axis. Let
σj be the opening angle of Sj. We choose ρ and the opening angles σj as follows:

Case (i′): ρ = m and σj = 2π/ρ for all j.
Case (ii′): ρ = m− 1/2, σ0 = π/ρ and σj = 2π/ρ for 1 ≤ j ≤ m− 1.
Case (iii′): ρ = m− 1, σ0 = σm/2 = π/ρ and σj = 2π/ρ for all other j.

Recall here that m is even in case (iii′) by Theorem 7.3. We call a sector Sj large if
σj = 2π/ρ and small if σj = π/ρ.

If Sj is a large sector, then there exists ej ∈ C with |ej| = 1 such that z 7→ ejz
ρ maps

Sj conformally onto Ω. In fact, we have ej = −1 for all j in case (i′) and ej = −i for
all j in case (ii′). In case (iii′) we have ej = −i for 1 ≤ j ≤ m/2 − 1 and ej = i for
m/2 + 1 ≤ j ≤ m− 1.

If S0 is a small sector, then z 7→ zρ maps S0 onto the right half-plane H. If Sm/2
is a small sector, which happens only in case (iii′), then z 7→ −zρ maps S0 onto the
right half-plane. Putting e0 = 1 and em/2 = −1 we see that if Sj is a small sector and
thus j ∈ {0,m/2}, then z 7→ ejz

ρ maps Sj to H. Let pj : Sj → C, pj(z) = ejz
ρ. Then

pj(Sj) = Ω or pj(Sj) = H, depending on whether Sj is large or small.
Let dj = (aj, θj) be as in section 7 and let G0, . . . , Gm−1 be the domains defined

before Theorem 7.3. By Theorem 7.3, each element (Gj, F ) is of one of two types. If
it is of type Bdj ,dj+1

, we choose the map Bj and compact sets Kj and K ′j according to
Proposition 6.6 so that (Ω \K ′j, Bj) ∼ (Gj \Kj, F ). Otherwise there are compact sets
Kj and K ′j such that so that (H \K ′j, Taj+1

) ∼ (Gj \Kj, F ). Note that our labeling of
the sectors is such that

(8.1) (Gj \Kj, F ) ∼

{
(Ω \K ′j, Bj) if Sj is large,

(H \K ′j, Taj+1
) if Sj is small.

We consider the map F1 :
⋃m−1
j=0 Sj → C, which for z ∈ Sj of sufficiently large modulus

is defined by

(8.2) F1(z) =

{
Bj(pj(z)) if Sj is large,

Taj+1
(pj(z)) if Sj is small.
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Proposition 6.6 and Lemma 6.8 yield that, apart from some bounded set, the expressions
defining F1 match on the boundaries of the sectors. Thus there exists R > 0 such
that (8.2) defines a quasiregular map F1 : {z : |z| > R} → C.

By (8.1) there exist homeomorphisms φj : pj(Sj) \K ′j → Gj \Kj such that

(8.3) F (φj(z)) =

{
Bj(z) if Sj is large,

Taj+1
(z) if Sj is small.

Let τj = φj ◦ pj. Then

F (τj(z)) = F (φj(pj(z))) =

{
Bj(pj(z))) if Sj is large

Taj+1
(pj(z))) if Sj is small

= F1(z) for z ∈ Sj \ p−1
j (Kj)

by (8.2) and (8.3). Hence the τj can be glued together to yield compact sets K and K ′

and a homeomorphism τ : C \K ′ → C \K such that

F (τ(z)) = F1(z) for z ∈ C \K ′.

On the other hand, as explained in § 4.1, the Uniformization Theorem yields that there
exists 0 < R ≤ ∞, a homeomorphism φ0 : C → D(0, R) and a meromorphic function
F0 : D(0, R)→ C such that F = F0 ◦ φ0. With α = φ0 ◦ τ we thus have

F0(α(z)) = F1(z) for z ∈ C \K ′.

Since F0 is meromorphic and F1 is quasiregular, we find that α is quasiconformal. Since
a quasiconformal map distorts the modulus of an annulus only by a bounded factor, this
implies that R =∞.

The set where α is not conformal agrees with the set where F1 is not meromorphic.
By Lemma 4.5, (6.7) and (6.34) this set has finite logarithmic area. It thus follows from
the Teichmüller–Wittich–Belinskii theorem (Lemma 4.4) that there exists a ∈ C∗ such
that

α(z) ∼ az as z →∞.

It will be convenient to consider the inverse β = α−1. With b = 1/a we then have

(8.4) F0(z) = F1(β(z)) for z ∈ C \K,

with

(8.5) β(z) ∼ bz as z →∞.

As F0 and F1 are symmetric, β is also symmetric. This implies that b is real. In fact,
we may assume that b > 0.

It follows from the definition of the Taj and Bj, (8.2), (8.4) and (8.5) that

logm(r, F0) = O(rρ)
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as r →∞. Moreover, we find that if F0 has infinitely many zeros and poles, then there
exists a positive constant C such that

N(r, F0) ∼ Crρ and N

(
r,

1

F0

)
∼ Crρ

as r →∞. In fact, we have C = bρ/(2π) if the sequence of zeros and poles is one-sided
and C = bρ/π if it is two-sided. It follows from these equations and the lemma on
the logarithmic derivative [22, Chapter 3, § 1] that F ′0/F0 and hence E = F0/F

′
0 have

order ρ. Moreover, it follows that λ(E) = ρ in cases (ii) and (iii).
To prove that E is of completely regular growth, we first consider a large sector Sj.

Let S ′j be a subsector of Sj which is mapped to a subsector of the left half-plane under pj.
By (6.9) we have

logF0(z) = logBj(pj(β(z)))) ∼ cpj(β(z))d exp(−pj(β(z))) as z →∞, z ∈ S ′j
and thus

log logF0(z) ∼ −pj(β(z)) ∼ −ej(bz)ρ as z →∞, z ∈ S ′j.
Replacing, without changing notation, S ′j by a smaller subsector we find that

F ′0(z)

F0(z) logF0(z)
∼ −ejρbρzρ−1 as z →∞, z ∈ S ′j.

Hence

E(z) =
F0(z)

F ′0(z)
∼ −ejρb

ρzρ−1

logF0(z)
as z →∞, z ∈ S ′j

so that logE(z) ∼ − log logF0(z) and hence

(8.6) logE(z) ∼ ej(bz)ρ as z →∞, z ∈ S ′j.
Let now Sj be a large sector and let S ′j be a subsector which is mapped by pj to a

subsector of the first quadrant {z : Re z > 0, Im z > 0}. By (6.8) we have

F0(z)− aj = logBj(pj(β(z))))− aj ∼ cpj(β(z))d exp(−pj(β(z))) as z →∞, z ∈ S ′j
Similarly as above this yields

(8.7) log(F0(z)− aj) ∼ −pj(β(z)) ∼ −ej(bz)ρ as z →∞, z ∈ S ′j
and thus, passing to a smaller subsector,

F ′0(z)

F0(z)− aj
∼ −ejρbρzρ−1 as z →∞, z ∈ S ′j.

We conclude that

E(z) =
F0(z)

F ′0(z)
∼ aj
F ′0(z)

∼ − 1

ejρbρzρ−1(F0(z)− aj)
as z →∞, z ∈ S ′j.

Thus logE(z) ∼ − log(F0(z)− aj) and (8.7) yields that (8.6) holds again.
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The case that S ′j is mapped by pj to a subsector of the fourth quadrant {z : Re z >
0, Im z < 0} is analogous. Then the above equations hold with aj replaced by aj+1, and
again we obtain (8.6).

Next we consider the case that Sj is a small sector. Again, let S ′j be a subsector which
is mapped by pj to a subsector of the first quadrant. Then

F0(z) = tan

(
pj(β(z))

2

)
Im aj+1 + Re aj+1 for z ∈ S ′j,

provided |z| is sufficiently large. We conclude that F0(z)→ aj+1 as z →∞, z ∈ S ′j, and
passing as before without change of notation to a smaller sector,

F ′0(z) =
p′j(β(z))β′(z)

2 cos2
(
pj(β(z))

2

) Im aj+1 ∼
ejρb

ρzρ−1 Im aj+1

2 exp(−ipj(β(z)))
as z →∞, z ∈ S ′j.

It follows that

E(z) ∼ 2aj+1 exp(−ipj(β(z))

ejρbρzρ−1 Im aj+1

and hence

(8.8) logE(z) ∼ −ipj(β(z)) ∼ −iej(bz)ρ as z →∞, z ∈ S ′j.

An analogous argument shows that if S ′j is mapped by pj to a subsector of the fourth
quadrant, then

(8.9) logE(z) ∼ ipj(β(z)) ∼ iej(bz)ρ as z →∞, z ∈ S ′j.

Suppose now that we are in case (ii). Then (8.6) holds for 1 ≤ j ≤ m − 1. If j = 0
and S ′0 is a subsector of S0 which is contained in the upper half-plane, then pj(S

′
0) is

contained in the first quadrant and thus we have (8.8) with j = 0. Recalling that e0 = 1
and ej = −i for all other j in case (ii), we find that if T is any closed subsector of the
upper half-plane whose image under z 7→ zρ does not intersect the real or imaginary
axis, then

(8.10) logE(z) ∼ −ibρzρ as z →∞, z ∈ T.
With c = bρ this yields that

log |E(z)| ∼ Re
(
−ibρrρeiρt

)
= crρ cos

(
ρt− π

2

)
= crρ sin(ρt) as r →∞, reit ∈ T.

Since E is symmetric, an analogous result holds for subsectors of the lower half-plane.
Thus E is of completely regular growth on every ray except for finitely many. Since the
set of rays of completely regular growth is closed [40, § III.1], E is of completely regular
growth in the plane, with indicator as stated.

An analogous reasoning can be made in case (iii). In this case a subsector of Sm which
is contained in the upper half-plane is mapped to the fourth quadrant. Thus we have
to use (8.9) instead of (8.8) if j = m/2. But since em = −1 we again find that (8.10)
holds for any subsector T of the upper half-plane whose image under z 7→ zρ does not
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intersect the real or imaginary axis. As before we can conclude that E has completely
regular growth, with indicator as stated.

Finally, to prove that A has completely regular growth, we note that it follows
from (8.10) that if T is a closed sector containing no zeros of E, then there exists a
constant c′ such that

(8.11) −2
E ′′(z)

E(z)
+

(
E ′(z)

E(z)

)2

∼ c′z2ρ−2 as z →∞, z ∈ T.

Since E has completely regular growth this implies together with (1.4) that A has com-
pletely regular growth, with indicator given by (1.7). �

Remark 8.1. It follows from (8.11) that if E has infinitely many positive zeros, then

(8.12) A(z) ∼ 1

4
c′z2ρ−2 as z →∞, z ∈ T,

for any closed subsector T of S0\R. Lemma 6.4, applied to A(z)/z2ρ−2, shows that (8.12)
in fact holds for any closed subsector T of S0. An analogous result holds is E has infinitely
many negative zeros.

Thus we actually have a much more precise description of the asymptotics of A than
given by (1.7): In the sectors corresponding to the intervals where hA = 0 we have (8.12).

In particular is follows from (8.12) that A is non-constant. But this can also be
deduced directly from the hypothesis that F−1 has infinitely many singularities over 0
or ∞.

Remark 8.2. Suppose that E has infinitely many positive zeros. Since between two
positive zeros of a solution w of (1.1) there is positive local maximum or a negative local
minimum of w, we deduce from (1.1) that c′ > 0 in (8.12). This implies that A′(x) > 0
for all large positive x. It follows (see [10] or [25, Chapter XIV, Part I, Theorem 3.1])
that all solutions of (1.1) are bounded on the positive real axis. In particular, E is
bounded there. Alternatively, this can be obtained from F0(z) = Ta1(pj(β(z)), which
holds for z of sufficiently large modulus in any subsector of S0. Again an analogous
result holds if E has infinitely many negative zeros.

Since E ′ has only finitely many non-real critical points by Lemma 3.6, this yields that
the set of critical values of E is bounded. Moreover, by the Denjoy-Carleman-Ahlfors
theorem [22, Chapter 5, § 1], E has only finitely many asymptotic values. We conclude
that E is in the class B consisting of all entire functions for which the set of critical and
(finite) asymptotic values is bounded. As the Speiser class, it plays an important role
in value distribution and holomorphic dynamics [52].

9. Proof of Theorem 1.4

We will use the following result [6, Theorem 1].

Lemma 9.1. Let F be a meromorphic function such that the preimage of three points
belongs to the real line. Then F maps the real line into a circle, unless

(9.1) F (z) = L

(
1− ei(a1z−b1)

1− ei(a2z−b2)

)
,

where L is a linear-fractional transformation and aj, bj ∈ R.
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Let D be the unit disk. A meromorphic function F : D → C is called normal if the
family {F ◦ S : S ∈ Aut(D)} is normal, where Aut(D) denotes the set of biholomorphic
maps from D to D. The following result is due to Lehto and Virtanen [38, Theorem 2].

Lemma 9.2. Let F : D → C be a normal meromorphic function. Suppose that there
exist a ∈ C and a curve γ ending at point P ∈ ∂D such that F (z)→ a as z → P , z ∈ γ.
Then f has the angular limit a at P .

Proof of Theorem 1.4. Let w1, w2, w3 be pairwise linearly independent solutions of (1.1)
with only real zeros. Without loss of generality we may assume that w3 = w1−w2, since
otherwise we can replace w1 and w2 by suitable multiples. As before we put F = w2/w1.
Then F is a locally univalent meromorphic function which has only real zeros, 1-points
and poles.

In view of (1.2) we have to show that the Schwarzian derivative of F is constant. This
is the case if F has the form (9.1). Using Lemma 9.1 we may thus assume that F maps
R to a circle C.

The Schwarzian derivative of a linear-fractional transformation is 0. So we may assume
that F is not a linear-fractional transformation. Then the inverse of F has a singularity.
Since F is locally univalent, this means that F has an asymptotic value a. Let γ be an
asymptotic path for a. Then γ is an asymptotic path for a∗, the point symmetric to a
with respect to the circle C. If γ crosses the real axis infinitely often, then a = a∗. In
this case we can build from γ and γ an asymptotic path which is contained in the upper
half-plane H+. If a 6= a∗ is non-real, then (the tail of) one of the curves γ or γ is in H+

anyway, and we may assume without loss of generality that this holds for γ. Thus F
has the asymptotic value a with an asymptotic path in the upper half-plane.

As F omits the values 0, 1 and ∞ in the upper half-plane, F is normal there.
Lemma 9.2 yields that F (z) → a as |z| → ∞, ε < arg z < π − ε. In particular, F
has only one asymptotic value which has an asymptotic path in the upper half-plane.
Overall we see that F has at most two asymptotic values, namely a and a∗. Thus the
inverse of F has at most two singularities. In fact, this also shows that a 6∈ C so that
a 6= a∗, since otherwise F−1 would have only one singularity, which is only possible
for a linear-fractional map. We conclude that F : C → C \ {a, a∗} is a covering. With
L(z) = (z − a)/(z − a∗) we deduce that L ◦ F : C→ C∗ is a covering. Thus there exists
c ∈ C∗ and d ∈ C such that (L ◦ F )(z) = exp(cz + d). It follows that the Schwarzian of
L ◦ F and hence of F is constant. Thus A is constant. �
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