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ABSTRACT.We consider the class B of entire functions of the form 

f = e x ~ g j ,C P ~  
where pj are polynomials and gj  are entire functions. We prove that the zero- 
set of such an f ,  if infinite, cannot be contained in a ray. But for every region 
containing the positive ray there is an example of f E B with infinite zerc-set 
which is contained in this region. 

Let B be Borel's class of entire functions of one complex variable that are finite 
sums of entire functions with only finitely many zeros (possibly none). Clearly 
f E B if and only if 

where the pj are polynomials and the gj are entire functions. This class is called 
B1 in [HRS]. 

Theorem 1. N o  function i n  B can have as i ts  zero set a n  infinite set of positive 
real numbers. 

Theorem 2. Given any  open set R i n  the complex plane that contains the positive 
real axis, there i s  a function f i n  B whose zero set i s  a n  infinite subset of R. 

Proof of Theorem 1. We will use H. Cartan's theory of holomorphic curves [C, L]. 
An n + 1-vector of entire functions ( f o , .. . ,f,) without zeros common to all f, 
defines a holomorphic curve F which is a holomorphic map of the complex plane C 
into the complex projective space Pn. The characteristic T ( r ,  F )  is defined in the 
following way: 

max (log 1 f o l , .  . . log 1 f n l )  (reie)d8.  

For any vector a = ( a o , .. .a,) E Cnf '\{O) define 

N ( r ,a,F )  = -lo log la0 fo + . . . + a,  f ,l(reZe)d8. 
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Such a vector a defines a hyperplane in Pnby the equation aoxo +. . .+anxn = 0. 
If we denote by n( r ,  a,F )  the number of preimages of this hyperplane under F which 
are contained in the disk {z : lzl 5 r ) ,  then by the Jensen formula 

If n = 1, the Cartan characteristic T ( r ,  F )  coincides (up to  an additive constant) 
with the usual Nevanlinna characteristic of the meromorphic function f l /  fo.  We 
will use the Second Main Theorem of Cartan, which (in a simplified form) states 
the following: Let a l ,  . . . , a ,  be an admissible system of vectors; that is, any n + 1 
of them are linearly independent. If the components fo ,  . . . ,fn  of a curve F are 
linearly independent, then 

( 2 )  ~ ( r ,  n 1+ o( l ) )T( r ,  F ) ,  r E Rt\Ela,. F) > (p - -

j=1 


where E is an exceptional set of finite length. 
The following theorem due to  E. Bore1 (see, for example [L, p. 1861) is a simple 

corollary of the Second Main Theorem of Cartan. Let f j  = p j  exp gj,  where p j  # 0 
are polynomials and gj  are entire functions. If {fo,.  . . ,fn )  are linearly dependent, 
then there are two functions exp gj  and exp gr,, which are proportional (with constant 
coeficients). 

I t  follows from Borel's theorem that every function of the class B can be written 
in reduced form, namely the functions f j  = pj  expgj in (1) are linearly independent. 
Furthermore in the proof of Theorem 1 we may assume without loss of generality 
that f is transcendental, the polynomials p j  have no zeros common to all p j  and 
that go = 0. 

With these assumptions we introduce the holomorphic curve F with coordinates 
f j  = pj  expgj,  0 < j < n ,  and show first that 

(3) r = O(T(r ,  F ) ) ,  r +m. 

Because f in (1) is assumed to  be transcendental, a t  least one of gj  is not constant. 
Assume that gn # const. Then by the definition of characteristic and by our 
assumption that go = 0 we have 

l o  max{O, Re gn)d0 + O(1og r )  > cr + O(1og r ) ,  

for some c > 0, which proves (3). 
We need the following estimate 
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To prove this we use first the inequality log la +bl < maxilog lal, log I bl} + log 2 and 
then our assumption that go = 0 (so log 1 f o /  = log IpoI = O(1ogr)): 

= 2aT(r,  F )  + O(1og r ) .  

Now we apply the Second Main Theorem of Cartan with q = n+2, and the following 
vectors: aj for 1 5 j I n +  1 is the j-th row of the ( n +  1) x ( n +  1) unit matrix and 
a n + 2  = (1 , .. . ,1 )  is the row of 1's. Then we have N( r , a j ,  F )  = O(logr),  r + w ,  
and N( r ,  an+z,F)= N ( r ,  0, f ) ,  the usual Nevanlinna counting function of zeros of 
the entire function f .  From (2) it follows that 

( 5 )  N(r ,  0, f )  2 (1+ o( l ) )T( r ,  F ) ,  r E R + \ E .  

Combined with (4) this implies 

(6) 	 N(r ,  0, f )  N T( r ,  f ) ,  r + m ,  r E R'\E. 

In particular, this asymptotic equality combined with (3) implies that the genus of 
f is a t  least 1 (maybe infinite). 

Finally we use the following result of A. Edrei and VIT.Fuchs [EF] and J. Miles 
[MI: Iff is an entire function of genus at  least 1, with positive zeros, then there is 
a set El of zero logarithmic density and a constant E > 0 such that 

Since this estimate is incompatible with (6): Theorem 1 must hold 

Proof of Theorem 2. By taking a smaller region if necessary (but still including the 
positive real axis), we may assume that R is connected and simply connected, and 
is bounded by a single smooth simple curve y : [-1,1] + C such that y(t)  +w as 
t + kl  and y intersects the real axis once (this intersection happens on the negative 
ray). The complement T of R is an Arakelyan set, i.e. 52 is connected and locally 
connected a t  m (see [GAI]). Using the Arakelyan approximation theorem [GAI] we 
find a non-constant entire function g with the property Ig(z) - 1/21 < 114, z E T. 
Thus g-l(Z) C R and f (z) = exp[2aig(z)]- 1 gives the required example. 
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