On a conjecture of Danikas and Ruscheweyh

A. Eremenko* and W. K. Hayman

November 30, 1999

Abstract

We construct a holomorphic function f in the unit disc, whose derivative belongs to the Hardy class H^{1}, and the image of the unit circle under $$
z \mapsto \int_{1}^{z} f^{\prime}(\zeta) \frac{d \zeta}{\zeta}
$$

is a simple curve, but f is not univalent.

1. Introduction. In [1] Danikas and Nestoridis proved an interesting mean value theorem for the space H^{1}. They showed that if $f \in H^{1}$ and z_{0} is any point in $\Delta:=\{z:|z|<1\}$ then there exist a, b, such that $a<b<a+2 \pi$ and

$$
\Phi_{a, b}(f):=\int_{a}^{b} f\left(e^{i t}\right) d t=(b-a) f\left(z_{0}\right)
$$

In particular if $f^{\prime} \in H^{1}$ and

$$
\begin{equation*}
\Phi_{a, b}\left(f^{\prime}\right) \neq 0, \quad a<b<a+2 \pi, \tag{1}
\end{equation*}
$$

then $f^{\prime}(z) \neq 0$ in Δ, so this f is locally univalent in Δ. This lead Danikas and Ruscheweyh [2] to ask whether (1) actually implies

$$
\begin{equation*}
f \text { is univalent in } \Delta \text {. } \tag{2}
\end{equation*}
$$

In this paper we provide a negative answer to this question by showing that (1) and (2) are independent, i. e. neither implies the other.

[^0]2. We first provide a very simple example where (2) holds but (1) is false. We set
\[

$$
\begin{equation*}
f(z)=\frac{z}{1-\rho z}, \quad z \in \Delta, 0<\rho<1 \tag{3}
\end{equation*}
$$

\]

Then f maps Δ onto the disk which has the points $-1 /(1+\rho), 1 /(1-\rho)$ as ends of a diameter. Thus f is certainly univalent. On the other hand if ρ is close to $1, f$ does not satisfy (1).

To see this we write $0<a<\pi, b=2 \pi-a$. Then, since $f^{\prime}\left(e^{i t}\right)=\overline{f^{\prime}\left(e^{i(2 \pi-t)}\right)}$,

$$
\Phi_{a, \pi}\left(f^{\prime}\right)=\overline{\Phi_{\pi, b}\left(f^{\prime}\right)},
$$

so that $\Phi_{a, b}\left(f^{\prime}\right)$ is real and

$$
\Phi_{a, b}\left(f^{\prime}\right)=2 \operatorname{Re}\left\{\Phi_{a, \pi}\left(f^{\prime}\right)\right\}=2 \operatorname{Im} \int_{a}^{-1} f^{\prime}(z) \frac{d z}{z}
$$

where integration is along $|z|=1$ in the anticlockwise direction. Since

$$
\frac{f^{\prime}(z)}{z}=\frac{1}{z(1-\rho z)^{2}}=\frac{1}{z}+\frac{\rho}{1-\rho z}+\frac{\rho}{(1-\rho z)^{2}},
$$

we obtain

$$
\begin{aligned}
\Phi_{a, b}\left(f^{\prime}\right) & =2 \operatorname{Im}\left\{\log \frac{z}{1-\rho z}+\frac{1}{1-\rho z}\right\}_{e^{i a}}^{-1} \\
& =2\left[\arg \frac{z}{1-\rho z}\right]_{e^{i a}}^{-1}-\frac{2 \rho \sin a}{(\rho-\cos a)^{2}+\sin ^{2} a}
\end{aligned}
$$

This is a continuous function of a in $[0, \pi]$ and is equal to 2π when $a=0$.
Also if $\cos a=\rho$, and $\rho \rightarrow 1$

$$
\Phi_{a, b}\left(f^{\prime}\right)=-\frac{2+o(1)}{\sin a} \rightarrow-\infty .
$$

Thus if ρ is close to 1 there exist a, b such that $\Phi_{a, b}\left(f^{\prime}\right)=0$, and $0<a<\cos ^{-1} \rho, b=2 \pi-a$. Thus f given by (3) satisfies (2) but not (1).
3. Next we construct a function which satisfies (1) but not (2).

We fix $\epsilon \in(0,0.001)$ and consider the region D_{0} shown in the picture.

This region can be described as the union of the following three sets:
the left half-plane H,
the ϵ-neighborhood of the segment $[-\epsilon i, 1-\epsilon i]$ and the ϵ-neighborhood of the broken line

$$
[\pi i / 4,1.01] \cup[1.01,0.01-i]
$$

Our ϵ is sufficiently small for D_{0} to be a Jordan region. The set $\partial D_{0} \backslash i \mathbf{R}$ consists of two simple arcs which we call β_{1} and β_{2}. The component of the set $\partial D_{0} \cap i \mathbf{R}$ between β_{1} and β_{2} will be called α. We notice that $\alpha \cap \overline{\beta_{1}}=\{0\}$.

The segments

$$
\begin{equation*}
\gamma_{1}=[0,1] \quad \text { and } \quad \gamma_{2}=[0.01-i+\epsilon \sqrt{2} i, 1.01-\epsilon \sqrt{2}] \tag{4}
\end{equation*}
$$

also belong to the boundary ∂D_{0}.
Now we define the region

$$
D=\bigcup_{n \in \mathbf{Z}}\left(D_{0}+2 \pi n i\right)
$$

This D is a Jordan region in the extended complex plane, invariant under the transformation $z \mapsto z+2 \pi i$.

Let $h: H \rightarrow D$ be the conformal map, which leaves three boundary points $0,2 \pi i$ and ∞ fixed. Then we have

$$
\begin{equation*}
h^{\prime}(z) \rightarrow k \quad \text { as } \quad z \rightarrow \infty, \quad|\operatorname{Im} z|<-\operatorname{Re} z \tag{5}
\end{equation*}
$$

where k is a positive constant. Notice that both functions h and $h_{0}(z):=h(z+2 \pi i)-2 \pi i$ fix 0 and ∞ and satisfy (5) with the same constant k. So $h=h_{0}$ that is

$$
\begin{equation*}
h(z+2 \pi i)=h(z)+2 \pi i, \quad \text { for } \quad z \in H . \tag{6}
\end{equation*}
$$

It is clear that h can be continuously extended to the boundary ∂H. Moreover, h^{\prime} has continuous extension to ∂H minus a discrete set of points, and this extension is locally integrable.

We define P by $h([0, i P])=\alpha$, and the intervals b_{1} and b_{2} on the imaginary axix by $h\left(b_{1}\right)=\beta_{1}$ and $h\left(b_{2}\right)=\beta_{2}$. Then

$$
\begin{equation*}
\left|b_{1}\right| \rightarrow 0 \quad \text { and } \quad\left|b_{2}\right| \rightarrow 0, \quad \text { as } \quad \epsilon \rightarrow 0 \tag{7}
\end{equation*}
$$

by an easy harmonic measure argument.
For every positive δ we have

$$
\begin{equation*}
|h(z)-z|<\delta \quad \text { for } \quad z \in[0, i P] \tag{8}
\end{equation*}
$$

if ϵ is small enough. Indeed, the Caratheodory convergence theorem together with the Schwarz reflection principle imply that $h \rightarrow$ id as $\epsilon \rightarrow 0$ uniformly on every compact subset of $(0, i P)$. In addition, the map $h:[0, i P] \rightarrow \alpha$ is monotone, so we obtain (8).

It is also easy to see that

$$
\begin{equation*}
P \rightarrow \pi / 4 \quad \text { as } \quad \epsilon \rightarrow 0 . \tag{9}
\end{equation*}
$$

We define a multiply-valued function $g(z)=h(\log z), 0<|z|<1$, and notice that $g\left(z e^{2 \pi i}\right)=g(z)+2 \pi i$, which follows from (6). Thus the derivative g^{\prime} is a single-valued function in $0<|z|<1$, and the asymptotics (5) implies that g^{\prime} has a simple pole at the origin. We conclude that the function $z g^{\prime}(z)$ is analytic in the unit disk. It has integrable boundary values on the circle $|z|=1$, so we can define

$$
f(z)=\int_{1}^{z} \zeta g^{\prime}(\zeta) d \zeta, \quad|z| \leq 1
$$

where the path of integration belongs to the closed unit disk. This function f satisfies the assumptions of the Danikas and Ruscheweyh conjecture (1), because

$$
g(z)=\int_{1}^{z} f^{\prime}(\zeta) \frac{d \zeta}{\zeta}
$$

maps the circle $|z|=1$ onto a simple curve ∂D. So it remains to show that f is not univalent.

Lemma 1 For $t \in b_{1}$ we have

$$
f\left(e^{i t}\right)-g\left(e^{i t}\right) \rightarrow 0 \quad \text { as } \quad \epsilon \rightarrow 0,
$$

uniformly with respect to t.

Proof.

$$
\begin{aligned}
\left|f\left(e^{i t}\right)-g\left(e^{i t}\right)\right| & =\left|\int_{1}^{e^{i t}}(\zeta-1) g^{\prime}(\zeta) d \zeta\right|=\left|\int_{0}^{t}\left(e^{i \tau}-1\right) h^{\prime}(i \tau) i d \tau\right| \\
& \leq\left|b_{1}\right| \int_{0}^{t}\left|h^{\prime}(i \tau)\right| d \tau=\left|b_{1}\right|\left|\beta_{1}\right|=o(1)
\end{aligned}
$$

where we used (7) and $\left|\beta_{1}\right| \leq 2.5$.
We put

$$
b=\int_{0}^{\pi / 4}\left(e^{i \tau}-e^{i \pi / 4}\right) i d \tau=e^{i \pi / 4}-1-\frac{i \pi}{4} e^{i \pi / 4} \approx 0.262+0.152 i
$$

and $a=e^{i \pi / 4}$.

Lemma 2 For $t \in b_{2}$

$$
f\left(e^{i t}\right)-a g\left(e^{i t}\right)-b \rightarrow 0 \quad \text { as } \quad \epsilon \rightarrow 0
$$

uniformly with respect to t.
Proof.

$$
f\left(e^{i t}\right)-a g\left(e^{i t}\right)=\int_{0}^{t}\left(e^{i \tau}-e^{i \pi / 4}\right) h^{\prime}(i \tau) i d \tau=\int_{0}^{P}+\int_{P}^{t}
$$

The second integral is estimated as in Lemma 1:

$$
\left|\int_{P}^{t}\left(e^{i \tau}-e^{i \pi / 4}\right) h^{\prime}(i \tau) i d \tau\right| \leq\left|b_{2}\right| \int_{P}^{t}\left|h^{\prime}(i \tau)\right||d \tau|=o(1)
$$

The first integral tends to b :

$$
\begin{aligned}
& \int_{0}^{P}\left(e^{i \tau}-e^{i \pi / 4}\right) h^{\prime}(i \tau) i d \tau-b \\
= & \int_{0}^{P}\left(e^{i \tau}-e^{i \pi / 4}\right)\left(h^{\prime}(i \tau)-1\right) i d \tau-\int_{P}^{\pi / 4}\left(e^{i \tau}-e^{i \pi / 4}\right) i d \tau \\
= & \left.(h(i \tau)-i \tau)\left(e^{i \tau}-e^{i \pi / 4}\right)\right|_{0} ^{P}-\int_{0}^{P} i e^{i \tau}(h(i \tau)-i \tau) d \tau+o(1)=o(1)
\end{aligned}
$$

where we used (8) and (9).
Now we consider the segments γ_{1} and γ_{2} on the boundary ∂D, defined in (4). The g-preimages of these segments, which we call B_{1} and B_{2} are mapped by the principal branch of the logarithm into b_{1} and b_{2}, respectively. We define $L(z)=a z+b$. Then $L\left(\gamma_{2}\right)$ is a vertical segment, which crosses the horizontal segment γ_{1} at the point $q:=1.01 / \sqrt{2}-\epsilon+\operatorname{Re} b \approx 0.9762$. Consider a closed square $S=[a, b, c, d]$ centered at q, with sides parallel to the coordinate axes, and having length 0.01:

From lemmas 1 and 2, and the fact that f is continuous in the closed unit disk, we conclude that for every positive δ there exist ϵ in $(0,0.001)$ and r in $(0,1)$, such that

$$
|f(r z)-g(z)|<\delta \quad \text { for } \quad z \in B_{1}
$$

and

$$
|f(r z)-a g(z)-b|<\delta \quad \text { for } \quad z \in B_{2}
$$

In other words, the parametric curves $f\left(B_{1}\right)$ and $f\left(B_{2}\right)$ are uniformly close to $g\left(B_{1}\right)=\gamma_{1}$ and $L \circ g\left(B_{2}\right)=L\left(\gamma_{2}\right)$, respectively. It follows from the Bolzano-Weierstrass theorem that the arcs $f\left(r B_{1}\right)$ and $f\left(r B_{2}\right)$ have subarcs l_{1} and l_{2} in Q respectively, such that l_{1} connects the sides $[d, a]$ and $[b, c]$ of Q, and l_{2} connects the sides $[a, b]$ and $[c, d]$. We extend the arc l_{1} by two horizontal rays outside Q to obtain a closed curve L_{1} in $\overline{\mathbf{C}}$ and the arc l_{2} by two vertical rays to obtain a closed curve L_{2} in $\overline{\mathbf{C}}$. These two closed curves L_{1} and L_{2} on the Riemann sphere intersect transversally at infinity. So they have to intersect at least at one more point, because the intersection number of two closed curves in the sphere is always zero [3]. Thus l_{1} and l_{2} intersect. We conclude that $f\left(r B_{1}\right)$ and $f\left(r B_{2}\right)$ intersect, so that f is not univalent.

We note finally that the Danikas-Nestoridis Mean Value Theorem remains true, if we replace $d t$ by $d z$. In fact if $f^{\prime} \in H^{1}$ and for every pair of distinct points a_{1} and z_{2} on $T:=\{z:|z|=1\}$ we have

$$
\int_{z_{1}}^{z_{2}} f^{\prime}(z) d z \neq 0
$$

then f maps T onto a simple closed curve Γ. Thus f maps Δ onto the interior of Γ, so that $f^{\prime}(z) \neq 0$ in Δ. We deduce that, if $F \in H^{1}$ and $z_{0} \in \Delta$, then there exist distinct points z_{1} and z_{2} on T, such that

$$
\left(z_{2}-z_{1}\right) F\left(z_{0}\right)=\int_{z_{1}}^{z_{2}} F(z) d z
$$

For otherwise we may write $f^{\prime}(z)=F(z)-F\left(z_{0}\right)$ and apply the above remark to obtain a contradiction.

The authors thank A. Weitsman and S. Ruscheweyh for useful discussion of the problem.

References

[1] N. Danikas and V. Nestoridis, A property of H^{1} functions, Complex Variables Theory Appl. 4 (1985), no. 3, 277-284.
[2] N. Danikas and S. Ruscheweyh, Semi-convex hulls of analytic functions in the unit disc, Analysis, 19, 1 (1999), 69-78.
[3] H. Seifert and W. Trelfall, Seifert and Trelfall: A textbook of topology (English translation), Acad. Press, NY, 1980.

Purdue University, West Lafayette, Indiana 47907, U.S.A eremenko@math.purdue.edu

Imperial College, London SW7 2BZ, UK

[^0]: *supported by NSF grant DMS-9800084.

