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Abstract

We construct a holomorphic function f in the unit disc, whose
derivative belongs to the Hardy class H1 , and the image of the unit
circle under

z 7→
∫ z

1
f ′(ζ)

dζ

ζ

is a simple curve, but f is not univalent.

1. Introduction. In [1] Danikas and Nestoridis proved an interesting mean
value theorem for the space H1 . They showed that if f ∈ H1 and z0 is any
point in ∆ := {z : |z| < 1} then there exist a, b, such that a < b < a + 2π
and

Φa,b(f) :=

∫ b

a

f(eit)dt = (b− a)f(z0).

In particular if f ′ ∈ H1 and

Φa,b(f
′) 6= 0, a < b < a+ 2π, (1)

then f ′(z) 6= 0 in ∆, so this f is locally univalent in ∆. This lead Danikas
and Ruscheweyh [2] to ask whether (1) actually implies

f is univalent in ∆. (2)

In this paper we provide a negative answer to this question by showing that
(1) and (2) are independent, i. e. neither implies the other.
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2. We first provide a very simple example where (2) holds but (1) is false.
We set

f(z) =
z

1− ρz , z ∈ ∆, 0 < ρ < 1. (3)

Then f maps ∆ onto the disk which has the points −1/(1 + ρ), 1/(1− ρ)
as ends of a diameter. Thus f is certainly univalent. On the other hand if ρ
is close to 1, f does not satisfy (1).

To see this we write 0 < a < π, b = 2π − a. Then, since
f ′(eit) = f ′(ei(2π−t)),

Φa,π(f
′) = Φπ,b(f ′),

so that Φa,b(f
′) is real and

Φa,b(f
′) = 2Re {Φa,π(f

′)} = 2Im

∫ −1

a

f ′(z)
dz

z
,

where integration is along |z| = 1 in the anticlockwise direction. Since

f ′(z)

z
=

1

z(1− ρz)2
=

1

z
+

ρ

1− ρz +
ρ

(1− ρz)2
,

we obtain

Φa,b(f
′) = 2Im

{
log

z

1− ρz +
1

1− ρz

}−1

eia

= 2

[
arg

z

1− ρz

]−1

eia
− 2ρ sin a

(ρ− cos a)2 + sin2 a
.

This is a continuous function of a in [0, π] and is equal to 2π when a = 0.
Also if cos a = ρ, and ρ→ 1

Φa,b(f
′) = −2 + o(1)

sin a
→ −∞.

Thus if ρ is close to 1 there exist a, b such that Φa,b(f
′) = 0, and

0 < a < cos−1 ρ, b = 2π − a. Thus f given by (3) satisfies (2) but not (1).

3. Next we construct a function which satisfies (1) but not (2).
We fix ε ∈ (0, 0.001) and consider the region D0 shown in the picture.
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H 0

α

πi/4

β1

β2

This region can be described as the union of the following three sets:

the left half-plane H ,
the ε-neighborhood of the segment [−εi, 1− εi] and
the ε-neighborhood of the broken line

[πi/4, 1.01] ∪ [1.01, 0.01− i].

Our ε is sufficiently small for D0 to be a Jordan region. The set ∂D0\iR
consists of two simple arcs which we call β1 and β2 . The component of the set
∂D0 ∩ iR between β1 and β2 will be called α . We notice that α∩β1 = {0}.
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The segments

γ1 = [0, 1] and γ2 = [0.01− i+ ε
√

2i, 1.01− ε
√

2] (4)

also belong to the boundary ∂D0 .
Now we define the region

D =
⋃
n∈Z

(D0 + 2πni).

This D is a Jordan region in the extended complex plane, invariant under
the transformation z 7→ z + 2πi.

Let h : H → D be the conformal map, which leaves three boundary
points 0, 2πi and ∞ fixed. Then we have

h′(z)→ k as z →∞, |Im z| < −Re z, (5)

where k is a positive constant. Notice that both functions h and
h0(z) := h(z+2πi)−2πi fix 0 and ∞ and satisfy (5) with the same constant
k . So h = h0 that is

h(z + 2πi) = h(z) + 2πi, for z ∈ H. (6)

It is clear that h can be continuously extended to the boundary ∂H . More-
over, h′ has continuous extension to ∂H minus a discrete set of points, and
this extension is locally integrable.

We define P by h([0, iP ]) = α , and the intervals b1 and b2 on the
imaginary axix by h(b1) = β1 and h(b2) = β2 . Then

|b1| → 0 and |b2| → 0, as ε→ 0 (7)

by an easy harmonic measure argument.
For every positive δ we have

|h(z)− z| < δ for z ∈ [0, iP ], (8)

if ε is small enough. Indeed, the Caratheodory convergence theorem together
with the Schwarz reflection principle imply that h→ id as ε→ 0 uniformly
on every compact subset of (0, iP ). In addition, the map h : [0, iP ]→ α is
monotone, so we obtain (8).
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It is also easy to see that

P → π/4 as ε→ 0. (9)

We define a multiply-valued function g(z) = h(log z), 0 < |z| < 1, and
notice that g(ze2πi) = g(z)+2πi, which follows from (6). Thus the derivative
g′ is a single-valued function in 0 < |z| < 1, and the asymptotics (5) implies
that g′ has a simple pole at the origin. We conclude that the function zg′(z)
is analytic in the unit disk. It has integrable boundary values on the circle
|z| = 1, so we can define

f(z) =

∫ z

1

ζg′(ζ) dζ, |z| ≤ 1,

where the path of integration belongs to the closed unit disk. This function
f satisfies the assumptions of the Danikas and Ruscheweyh conjecture (1),
because

g(z) =

∫ z

1

f ′(ζ)
dζ

ζ

maps the circle |z| = 1 onto a simple curve ∂D . So it remains to show that
f is not univalent.

Lemma 1 For t ∈ b1 we have

f(eit)− g(eit)→ 0 as ε→ 0,

uniformly with respect to t.

Proof.

|f(eit)− g(eit)| =

∣∣∣∣∣
∫ eit

1

(ζ − 1)g′(ζ) dζ

∣∣∣∣∣ =
∣∣∣∣∫ t

0

(eiτ − 1)h′(iτ)idτ

∣∣∣∣
≤ |b1|

∫ t

0

|h′(iτ)| dτ = |b1||β1| = o(1)

where we used (7) and |β1| ≤ 2.5. 2

We put

b =

∫ π/4

0

(eiτ − eiπ/4)idτ = eiπ/4 − 1− iπ

4
eiπ/4 ≈ 0.262 + 0.152i,

and a = eiπ/4 .
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Lemma 2 For t ∈ b2

f(eit)− ag(eit)− b→ 0 as ε→ 0,

uniformly with respect to t.

Proof.

f(eit)− ag(eit) =

∫ t

0

(eiτ − eiπ/4)h′(iτ)idτ =

∫ P

0

+

∫ t

P

.

The second integral is estimated as in Lemma 1:∣∣∣∣∫ t

P

(eiτ − eiπ/4)h′(iτ)idτ
∣∣∣∣ ≤ |b2|

∫ t

P

|h′(iτ)| |dτ | = o(1).

The first integral tends to b:∫ P

0

(eiτ − eiπ/4)h′(iτ)idτ − b

=

∫ P

0

(eiτ − eiπ/4)(h′(iτ)− 1)idτ −
∫ π/4

P

(eiτ − eiπ/4)idτ

= (h(iτ)− iτ)(eiτ − eiπ/4)
∣∣P
0
−
∫ P

0

ieiτ (h(iτ)− iτ)dτ + o(1) = o(1),

where we used (8) and (9). 2

Now we consider the segments γ1 and γ2 on the boundary ∂D , defined
in (4). The g -preimages of these segments, which we call B1 and B2 are
mapped by the principal branch of the logarithm into b1 and b2 , respectively.
We define L(z) = az + b. Then L(γ2) is a vertical segment, which crosses
the horizontal segment γ1 at the point q := 1.01/

√
2 − ε + Re b ≈ 0.9762.

Consider a closed square S = [a, b, c, d] centered at q , with sides parallel to
the coordinate axes, and having length 0.01:
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g(B1)

g(B2)

g(B1)

L ◦ g(B2)

a b

cd

From lemmas 1 and 2, and the fact that f is continuous in the closed unit
disk, we conclude that for every positive δ there exist ε in (0, 0.001) and r
in (0, 1), such that

|f(rz)− g(z)| < δ for z ∈ B1

and
|f(rz)− ag(z)− b| < δ for z ∈ B2.

In other words, the parametric curves f(B1) and f(B2) are uniformly close
to g(B1) = γ1 and L ◦ g(B2) = L(γ2), respectively. It follows from the
Bolzano–Weierstrass theorem that the arcs f(rB1) and f(rB2) have subarcs
l1 and l2 in Q respectively, such that l1 connects the sides [d, a] and [b, c]
of Q, and l2 connects the sides [a, b] and [c, d]. We extend the arc l1 by
two horizontal rays outside Q to obtain a closed curve L1 in C̄ and the arc
l2 by two vertical rays to obtain a closed curve L2 in C̄. These two closed
curves L1 and L2 on the Riemann sphere intersect transversally at infinity.
So they have to intersect at least at one more point, because the intersection
number of two closed curves in the sphere is always zero [3]. Thus l1 and l2
intersect. We conclude that f(rB1) and f(rB2) intersect, so that f is not
univalent. 2
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We note finally that the Danikas–Nestoridis Mean Value Theorem remains
true, if we replace dt by dz . In fact if f ′ ∈ H1 and for every pair of distinct
points a1 and z2 on T := {z : |z| = 1} we have∫ z2

z1

f ′(z) dz 6= 0,

then f maps T onto a simple closed curve Γ. Thus f maps ∆ onto the
interior of Γ, so that f ′(z) 6= 0 in ∆. We deduce that, if F ∈ H1 and
z0 ∈ ∆, then there exist distinct points z1 and z2 on T , such that

(z2 − z1)F (z0) =

∫ z2

z1

F (z) dz.

For otherwise we may write f ′(z) = F (z)−F (z0) and apply the above remark
to obtain a contradiction.

The authors thank A. Weitsman and S. Ruscheweyh for useful discussion
of the problem.
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